
IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1300 | P a g e

Design of IP Theft Detection Using Scan Side Channel by

SHA-512 ALGORITHM
Damera. Kamalakar1, R.Seetha2

1 P.G Student, Department of Electronics and Communication Engineering

2 Assistant professor, J.B. institute of engineering and technology

Abstract— This paper describes a preliminary performance

evaluation of the implementation of Secure Hash Algorithm (SHA-

512) building blocks on a cell-FPGA-like hybrid CMOS/nano device

architecture. Such circuits will combine a semiconductor- transistor

(CMOS) stack and a two-level nanowire crossbar with nanoscale

two-terminal nanodevices (programmable diodes) formed at each

crosspoint. The new design is based on two-cell fabric CMOL FPGA

which can be used for mapping any arbitrary circuit. In addition,

using a custom set of design automation tools quasi-optimium gate

placing, placing, routing and rerouting are provided for SHA-512

fundamental building blocks. It is shown that such a design results in

a circuit which is defect tolerant, much faster and strikingly denser

than its CMOS counterpart.

Keywords— Secure Hash Algorithm, Nanoelectronic,

CMOS/Nanodevice Architecture, CMOS FPGA, CMOL

FPGA.

I. Introduction

The purpose of a hash function is to produce a “fingerprint” of

a file, message, or other block of data. The Secure Hash

Algorithm (SHA) was developed by the U. S. National

Institute of Standard and Technology (NIST) and published as

a federal information processing standard (FIPS-180) in 1993;

This version was reviewed and issued as FIPS 180-1 in 1995

and is generally referred to as SHA-1. In 2002, NIST

produced a new revised version, FIPS 180-2, which defined

three new versions of SHA, with hash value lengths of 256,

384, and 512 bits which have the same underlying structure

and logical binary operations [1], [2]. Due to the essential

need for security in Internet Protocol Security (IPSec) and

Virtual Private Networks (VPN), an efficient and small-sized

HMAC implementation, to authenticate both the source of a

message and its integrity, is very important. The in inherent

advantages of using VLSI chips for encryption and

authentication are speed and more physical security. Software

encryption has other features like portability and flexibility but

is slow and suffers from insecurity in several aspects of key

management and program manipulation. Commercial IP

vendors introduced to the market high-speed FPGA

implementation, which were area demanding and costly.

So far, several architectures for efficient VLSI implementation

of SHA-512 have been proposed and their performance

evaluated using ASIC libraries and FPGAs. Efficient hardware

realization of SHA is still a motivational and challenging

subject [3-10]. This paper follows a different approach,

compared to the alternative solutions from academia and IP

market, and presents a novel nanoelectronic-based solution for

high-speed and very compact implementation of the

algorithm. The new hybrid technology paradigm will certainly

require rethinking of the current circuit architectures. Our

proposed method is based on the |recently proposed digital

nanoelectronic cell-FPGA-like hybrid semiconductor

nanowire-nanodevice structure which combines a CMOS

transistor stack and two levels of parallel nanowires. The basic

idea for hybrid CMOS/nanodevice circuits is to combine the

advantages of CMOS technology (flexibility, high fabrication

yield and gain) with nanometer scale devices, which are self-

assembled on a pre-fabricated nanowire fabric, enabling very

high digital function density at modest fabrication cost. In

addition, since nanoelectronic structures may never reach

100% yield, it is appropriate to use a cell-based FPGA type

architecture in which one can reconfigure the circuit such that

defective connections are rerouted and functioning

nanodevices are used in the circuit. This new design is based

on a two-cell CMOL FPGA fabric, which is a generalization

of the single cell structure. This fabric is a uniform mesh of

square shaped “tiles”, while each tile consists of 12 four

transistor basic cells and one latch cell [11-15]. To evaluate

the potential performance of the design we used a completely

custom design automation tools and successfully mapped our

circuits on CMOL FPGA and estimated their performance.

The results have shown that, in addition to high defect

tolerance, such implementation may have extremely high

density (more than two orders of magnitude higher than that of

usual CMOS FPGA with the same CMOS design rules) while

operating at higher speed at acceptable power consumption

II.EXISTING WORK- SHA-256 ALGORITHM

SHA-2 is a widely used family of cryptographic hash

functions. The family comprises six members distinguished by

the size of the hash value. In this paper, we examine one

member of the family, namely, SHA-256. The SHA-256

algorithm receives a message of an arbitrary length and

produces a 256-bit-long digest [Fig. 2(a)]. At the first stage,

the original message is padded, which makes its length an

integer number of 512-bit chunks. The subsequent processing

runs for each chunk sequentially.

The processing comprises a message schedule and 64 stages,

called compression stages. The message schedule takes the

512-bit input and prepares 64 32-bit words, one for every

compression stage. The first 16 words are a copy of the input

chunk, and for the remaining 48 words, the schedule operation

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1301 | P a g e

involves bit permutations, XOR operations, and a four-input

32-bit adder.

The compression stage receives an 8 × 32 bit hash value and

produces an input to the next stage, in which six out of the

eight words are a mere permutation of the input, and the

remaining two words are the result of a five-element and a

seven-element adder, respectively. The inputs to the adder are

the words from the input of the stage, while some of them pass

additional transformations, which include permutations, XOR,

selectors, and a majority function. For the case of IP theft

detection, we assume that the exact function of majority of

combinational building blocks are known, and the objective is

to learn how they are combined, what the structure of the

pipeline is, and what the differences from the original function

are, if they exist. Hence, the learning method is built around

recognition of the known structures. The SHA-256 algorithm

can be seen as an acyclic data flow graph with many repetitive

stages along the way. the circuit is known, and the target is to

discover the implementation details. Namely, each includes 6

× 32 pass-through connections, two 32-bit adders, one five-

element, and one seven-element. In addition, the compression

stage includes permutations, selectors, and majority functions.

Fig. 1. SHA-256 algorithm block diagram. (a) SHA-256

execution flow, including preprocessing stage, message

schedule, which outputs 64 × 32 bit words, and 64

compression stages. (b) Detailed diagram of two 256-bit-wide

compression stages.

The implementer can decide on a number of pipeline stages by

dividing the stages of the algorithm. Fig. 1(b) shows two

stages of the SHA-256 inner loop. If the implementation

dedicates one pipeline stage for one compression stage, the

combinational logic between the corresponding flip-flops will

include six 32-bit pass-through connections, and two 32-bit

arithmetic sums: one of seven and the other of five elements.

However, if two compression stages of the algorithm comprise

one pipeline stage, the combinational logic for one pipeline

stage will include four 32-bit pass-through paths, and four 32-

bit arithmetic sums: of 5, 7, 11, and 17 elements.

Alternatively, if the main constraint is power or silicon real

estate, even a single compression stage can be divided, and the

same erformance-hungry applications will use deep pipelines,

and latency-oriented designs will strive to combine as many

calculations as possible in a single pipeline stage. Despite the

countless configurations, clearly distinguishable structures can

be found in most of them. For example, even without knowing

the exact configuration, such as the number of inputs or

additional logic, multiple bit adder structures have a distinct

pattern of dependencies between input and result bits. Adders

constitute the majority of SHA-256 complex building blocks;

therefore, detecting adder-like structures is helpful for both

partitioning the data into hierarchical structures and learning

the exact function of these blocks.

III. PROPOSED SHA-512 ALGORITHUM

After Based on the flowchart presented in Figure 2,
process no. 3 that was previously encrypted using MD5 is
changed using SHA 512 method. So in that process, the data
transmission in the form of input from password will be
changed to SHA 512 hash form which has the hash value
much longer than MD5 therefore, user data will be more
secure from a vulnerability that can occur when using MD5 as
described in Figure2.

The explanation of the conceptual image is as follows.

1. Users access the application and login to login to the
application. The login process is done by sending data
in the form of username and password. The process of
sending data is done by changing the password data in
the form of plaintext into SHA 512 cipher text hash.

2. The application server receives the data in the form of
the hash value of the password and then forward it to
the database. This process is performed to verify the
hash sent by the user whether it is the same as the
password hash stored in the database (hash function for
storing password).

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1302 | P a g e

3. If the data is suitable then the user can enter and access
the application.

Renewal is done by changing the existing hash method
into SHA 512 hash method combined with the addition of
SALT secret key. Implementation done at this stage is
encoding by creating a patch that will be used to call a hash
function during login. The plot of the calling process and the
data changes for the username and password is first made
before the encoding is done, so it can be known where the
calling of the hash function calling can change the password to
the ciphertext hash value. This process generates a flowchart.
To implement our method we use two SHA-512 modules in
parallel. A message is passed to SHA-512 modules in 64-bit
chunks, alternatively. For a given message, there will be two
512-bit temporary signatures. There is a permutation unit that
permutes two temporary signatures with the given secret key
which is stored in a 1024×10-bit Block ROM. Each word of
ROM indicates the position of corresponding bit in output
signature. After permutation of the 1024-bit temporary
signatures, the final signature becomes ready.

SHA-512 LOGIC

The algorithm takes as input a message with a maximum
length of 2128 bit and produces as output a 512-bit message
digest. The input is processed in 1024-bit blocks. The
processing consists of the following steps [16].

Step1. Append padding bits. The message is padded so
that its length is congruent to 896 modulo 1024.

Step2. Append length. A bloc ck of 128 bits is appended to
the message. This bloc ck is treated as an unsigned 128-bit
integer and contain ns the length of the original message
before padding.

Step3. Initialize hash buffer. A 512-bit buffer is used to
hold the intermediate and final results of hash function. The
buffer can be represented as eight 64-bit registers (a, b, c, d, e,
f, g, h). T These registers are initialized with some 64-bit
hexadecimal values.

Step4. Process message in 102 24-bit blocks. The hearth of
the algorithm is a module that consists of 80 rounds; the logic
is illustrated in F Fig. 1. Each round takes as input the 512-bit
buffer va alue abcdefgh, and updates the intermediate hash
value , Hi-1. Each round t makes use of a 64-bit value Wt,
derived from the current 1024 bit block being processed (Mi).

Step5: After all N 1024-bit b blocks have been processed;
the output from the Nth s stage is the 512-bit message digest.

IV. SIMULATION RESULTS

Input:

Output:

RTL SCHEMATIC:

TIMING REPORT:

IJRECE VOL. 6 ISSUE 4 (OCTOBER- DECEMBER 2018) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1303 | P a g e

V.CONCLUSION

The security of hash functions is determined by the size of
their outputs, referred to as hash values, n. The best known
attack against these functions, the “birthday attack”, can find a
pair of messages having the same hash value with a work
factor of approximately 2n/2. Therefore, for a SHA-512
module, complexity of the best attack is 2256. For our method
each SHA-512 has the same attack complexity, but our
permutation process increases the attack complexity in
proportion to the size of the secret key. If we use a 1024-bit
secret key, permutation complexity becomes which yields the
total complexity of 2 !210 10! × 2256 and it’s much more
secure than the SHA-512 algorithm.

VI.FUTURE WORK

Future research related to this paper can study harnessing the
flow for additional applications. One important application
that we are exploring is the detection of deviation of the
design from the original function, which may indicate the
presence of Trojan hardware.

REFERENCES

[1] M.Pecht and S. Tiku, “Bogus!” IEEE Spectrum, vol. 43,

no. 5, pp. 37–46, May 2006.

[2] G. Qu and M. Potkonjak, Intellectual Property Protection

in VLSI Designs. Boston, MA, USA: Kluwer, 2004.

[3] W. P. Griffin, A. Raghunathan, and K. Roy, “CLIP: Circuit

level IC protection through direct injection of process

variations,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 20, no. 5, pp. 791–803, May 2012.

[4] F. Koushanfar and G. Qu, “Hardware metering,” in Proc.

Design Autom. Conf., 2001, pp. 490–493.

[5] F. Koushanfar, “Provably secure active IC metering

techniques for piracy avoidance and digital rights

management,” IEEE Trans. Inf. Forensics Security, vol. 7, no.

1, pp. 51–63, Feb. 2012.

[6] T. Guneysu, B. Moller, and C. Paar, “New protection

mechanisms for intellectual property in reconfigurable logic,”

in Proc. 15th Annu. IEEE Symp. Field-Programm. Custom

Comput. Mach. (FCCM), Apr. 2007, pp. 287–288.

 [7] I. Torunoglu and E. Charbon, “Watermarking-based

copyright protection of sequential functions,” IEEE J. Solid-

State Circuits, vol. 35, no. 3, pp. 434–440, Mar. 2000.

[8] M. Lewandowski, R. Meana, M. Morrison, and S.

Katkoori, “A novel method for watermarking sequential

circuits,” in Proc. IEEE Int. Symp. Hardware-Oriented

Security Trust, Jun. 2012, pp. 21–24.

 [9] E. Charbon, “Hierarchical watermarking in IC design,” in

Proc. IEEE Custom Integr. Circuits Conf., May 1998, pp.

295–298. [10] G. T. Becker, M. Kasper, A. Moradi, and C.

Paar, “Side-channel based watermarks for integrated circuits,”

in Proc. IEEE Int. Symp. HardwareOriented Security Trust

(HOST), Jun. 2010, pp. 30–35.

 [11] Y.-C. Fan, “Testing-based watermarking techniques for

intellectualproperty identification in SoC design,” IEEE Trans.

Instrum. Meas., vol. 57, no. 3, pp. 467–479, Mar. 2008.

[12] J. L. Wong, D. Kirovski, and M. Potkonjak,

“Computational forensic techniques for intellectual property

protection,” IEEE Trans. Comput.- Aided Design Integr.

Circuits Syst., vol. 23, no. 6, pp. 987–994, Jun. 2004.

[13] S. Guilley, L. Sauvage, J. Micolod, D. Réal, and F.

Valette, “Defeating any secret cryptography with SCARE

attacks,” in Progress in Cryptology—LATINCRYPT. Berlin,

Germany: Springer, 2010, pp. 273–293. [14] T. M. Mitchell,

Machine Learning. New York, NY, USA: McGraw-Hill, Mar.

1997.

