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Abstract— This paper describes a preliminary performance 

evaluation of the implementation of Secure Hash Algorithm (SHA-

512) building blocks on a cell-FPGA-like hybrid CMOS/nano device 

architecture. Such circuits will combine a semiconductor- transistor 

(CMOS) stack and a two-level nanowire crossbar with nanoscale 

two-terminal nanodevices (programmable diodes) formed at each 

crosspoint. The new design is based on two-cell fabric CMOL FPGA 

which can be used for mapping any arbitrary circuit. In addition, 

using a custom set of design automation tools quasi-optimium gate 

placing, placing, routing and rerouting are provided for SHA-512 

fundamental building blocks. It is shown that such a design results in 

a circuit which is defect tolerant, much faster and strikingly denser 

than its CMOS counterpart. 
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I.  Introduction 

The purpose of a hash function is to produce a “fingerprint” of 

a file, message, or other block of data. The Secure Hash 

Algorithm (SHA) was developed by the U. S. National 

Institute of Standard and Technology (NIST) and published as 

a federal information processing standard (FIPS-180) in 1993; 

This version was reviewed and issued as FIPS 180-1 in 1995 

and is generally referred to as SHA-1. In 2002, NIST 

produced a new revised version, FIPS 180-2, which defined 

three new versions of SHA, with hash value lengths of 256, 

384, and 512 bits which have the same underlying structure 

and logical binary operations [1], [2]. Due to the essential 

need for security in Internet Protocol Security (IPSec) and 

Virtual Private Networks (VPN), an efficient and small-sized 

HMAC implementation, to authenticate both the source of a 

message and its integrity, is very important. The in inherent 

advantages of using VLSI chips for encryption and 

authentication are speed and more physical security. Software 

encryption has other features like portability and flexibility but 

is slow and suffers from insecurity in several aspects of key 

management and program manipulation. Commercial IP 

vendors introduced to the market high-speed FPGA 

implementation, which were area demanding and costly.  

So far, several architectures for efficient VLSI implementation 

of SHA-512 have been proposed and their performance 

evaluated using ASIC libraries and FPGAs. Efficient hardware 

realization of SHA is still a motivational and challenging 

subject [3-10]. This paper follows a different approach, 

compared to the alternative solutions from academia and IP 

market, and presents a novel nanoelectronic-based solution for 

high-speed and very compact implementation of the 

algorithm. The new hybrid technology paradigm will certainly 

require rethinking of the current circuit architectures. Our 

proposed method is based on the |recently proposed digital 

nanoelectronic cell-FPGA-like hybrid semiconductor 

nanowire-nanodevice structure which combines a CMOS 

transistor stack and two levels of parallel nanowires. The basic 

idea for hybrid CMOS/nanodevice circuits is to combine the 

advantages of CMOS technology (flexibility, high fabrication 

yield and gain) with nanometer scale devices, which are self-

assembled on a pre-fabricated nanowire fabric, enabling very 

high digital function density at modest fabrication cost. In 

addition, since nanoelectronic structures may never reach 

100% yield, it is appropriate to use a cell-based FPGA type 

architecture in which one can reconfigure the circuit such that 

defective connections are rerouted and functioning 

nanodevices are used in the circuit. This new design is based 

on a two-cell CMOL FPGA fabric, which is a generalization 

of the single cell structure. This fabric is a uniform mesh of 

square shaped “tiles”, while each tile consists of 12 four 

transistor basic cells and one latch cell [11-15]. To evaluate 

the potential performance of the design we used a completely 

custom design automation tools and successfully mapped our 

circuits on CMOL FPGA and estimated their performance. 

The results have shown that, in addition to high defect 

tolerance, such implementation may have extremely high 

density (more than two orders of magnitude higher than that of 

usual CMOS FPGA with the same CMOS design rules) while 

operating at higher speed at acceptable power consumption 

II.EXISTING WORK- SHA-256 ALGORITHM 

SHA-2 is a widely used family of cryptographic hash 

functions. The family comprises six members distinguished by 

the size of the hash value. In this paper, we examine one 

member of the family, namely, SHA-256. The SHA-256 

algorithm receives a message of an arbitrary length and 

produces a 256-bit-long digest [Fig. 2(a)]. At the first stage, 

the original message is padded, which makes its length an 

integer number of 512-bit chunks. The subsequent processing 

runs for each chunk sequentially.  

The processing comprises a message schedule and 64 stages, 

called compression stages. The message schedule takes the 

512-bit input and prepares 64 32-bit words, one for every 

compression stage. The first 16 words are a copy of the input 

chunk, and for the remaining 48 words, the schedule operation 
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involves bit permutations, XOR operations, and a four-input 

32-bit adder.  

The compression stage receives an 8 × 32 bit hash value and 

produces an input to the next stage, in which six out of the 

eight words are a mere permutation of the input, and the 

remaining two words are the result of a five-element and a 

seven-element adder, respectively. The inputs to the adder are 

the words from the input of the stage, while some of them pass 

additional transformations, which include permutations, XOR, 

selectors, and a majority function. For the case of IP theft 

detection, we assume that the exact function of majority of 

combinational building blocks are known, and the objective is 

to learn how they are combined, what the structure of the 

pipeline is, and what the differences from the original function 

are, if they exist. Hence, the learning method is built around 

recognition of the known structures. The SHA-256 algorithm 

can be seen as an acyclic data flow graph with many repetitive 

stages along the way. the circuit is known, and the target is to 

discover the implementation details. Namely, each includes 6 

× 32 pass-through connections, two 32-bit adders, one five-

element, and one seven-element. In addition, the compression 

stage includes permutations, selectors, and majority functions. 

 
Fig. 1. SHA-256 algorithm block diagram. (a) SHA-256 

execution flow, including preprocessing stage, message 

schedule, which outputs 64 × 32 bit words, and 64 

compression stages. (b) Detailed diagram of two 256-bit-wide 

compression stages. 

 
The implementer can decide on a number of pipeline stages by 

dividing the stages of the algorithm. Fig. 1(b) shows two 

stages of the SHA-256 inner loop. If the implementation 

dedicates one pipeline stage for one compression stage, the 

combinational logic between the corresponding flip-flops will 

include six 32-bit pass-through connections, and two 32-bit 

arithmetic sums: one of seven and the other of five elements. 

However, if two compression stages of the algorithm comprise 

one pipeline stage, the combinational logic for one pipeline 

stage will include four 32-bit pass-through paths, and four 32-

bit arithmetic sums: of 5, 7, 11, and 17 elements.  

Alternatively, if the main constraint is power or silicon real 

estate, even a single compression stage can be divided, and the 

same erformance-hungry applications will use deep pipelines, 

and latency-oriented designs will strive to combine as many 

calculations as possible in a single pipeline stage. Despite the 

countless configurations, clearly distinguishable structures can 

be found in most of them. For example, even without knowing 

the exact configuration, such as the number of inputs or 

additional logic, multiple bit adder structures have a distinct 

pattern of dependencies between input and result bits. Adders 

constitute the majority of SHA-256 complex building blocks; 

therefore, detecting adder-like structures is helpful for both 

partitioning the data into hierarchical structures and learning 

the exact function of these blocks. 

III. PROPOSED SHA-512 ALGORITHUM 

After Based on the flowchart presented in Figure 2, 
process no. 3 that was previously encrypted using MD5 is 
changed using SHA 512 method. So in that process, the data 
transmission in the form of input from password will be 
changed to SHA 512 hash form which has the hash value 
much longer than MD5 therefore, user data will be more 
secure from a vulnerability that can occur when using MD5 as 
described in Figure2. 

 

The explanation of the conceptual image is as follows. 

1. Users access the application and login to login to the 
application. The login process is done by sending data 
in the form of username and password. The process of 
sending data is done by changing the password data in 
the form of plaintext into SHA 512 cipher text hash. 

2. The application server receives the data in the form of 
the hash value of the password and then forward it to 
the database. This process is performed to verify the 
hash sent by the user whether it is the same as the 
password hash stored in the database (hash function for 
storing password). 
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3. If the data is suitable then the user can enter and access 
the application. 

Renewal is done by changing the existing hash method 
into SHA 512 hash method combined with the addition of 
SALT secret key. Implementation done at this stage is 
encoding by creating a patch that will be used to call a hash 
function during login. The plot of the calling process and the 
data changes for the username and password is first made 
before the encoding is done, so it can be known where the 
calling of the hash function calling can change the password to 
the ciphertext hash value. This process generates a flowchart. 
To implement our method we use two SHA-512 modules in 
parallel. A message is passed to SHA-512 modules in 64-bit 
chunks, alternatively. For a given message, there will be two 
512-bit temporary signatures. There is a permutation unit that 
permutes two temporary signatures with the given secret key 
which is stored in a 1024×10-bit Block ROM. Each word of 
ROM indicates the position of corresponding bit in output 
signature. After permutation of the 1024-bit temporary 
signatures, the final signature becomes ready. 

SHA-512 LOGIC 

The algorithm takes as input a message with a maximum 
length of 2128 bit and produces as output a 512-bit message 
digest. The input is processed in 1024-bit blocks. The 
processing consists of the following steps [16]. 

Step1. Append padding bits. The message is padded so 
that its length is congruent to 896 modulo 1024. 

Step2. Append length. A bloc ck of 128 bits is appended to 
the message. This bloc ck is treated as an unsigned 128-bit 
integer and contain ns the length of the original message 
before padding. 

Step3. Initialize hash buffer. A 512-bit buffer is used to 
hold the intermediate and final results of hash function. The 
buffer can be represented as eight 64-bit registers (a, b, c, d, e, 
f, g, h). T These registers are initialized with some 64-bit 
hexadecimal values. 

Step4. Process message in 102 24-bit blocks. The hearth of 
the algorithm is a module that consists of 80 rounds; the logic 
is illustrated in F Fig. 1. Each round takes as input the 512-bit 
buffer va alue abcdefgh, and updates the intermediate hash 
value , Hi-1. Each round t makes use of a 64-bit value Wt, 
derived from the current 1024 bit block being processed (Mi). 

Step5: After all N 1024-bit b blocks have been processed; 
the output from the Nth s stage is the 512-bit message digest. 

IV. SIMULATION RESULTS 

Input: 

 

 

 

Output: 

 

 

RTL SCHEMATIC: 

 

TIMING REPORT: 
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V.CONCLUSION 

The security of hash functions is determined by the size of 
their outputs, referred to as hash values, n. The best known 
attack against these functions, the “birthday attack”, can find a 
pair of messages having the same hash value with a work 
factor of approximately 2n/2. Therefore, for a SHA-512 
module, complexity of the best attack is 2256. For our method 
each SHA-512 has the same attack complexity, but our 
permutation process increases the attack complexity in 
proportion to the size of the secret key. If we use a 1024-bit 
secret key, permutation complexity becomes which yields the 
total complexity of 2 !210 10! × 2256 and it’s much more 
secure than the SHA-512 algorithm. 

VI.FUTURE WORK 

Future research related to this paper can study harnessing the 
flow for additional applications. One important application 
that we are exploring is the detection of deviation of the 
design from the original function, which may indicate the 
presence of Trojan hardware. 

REFERENCES 

[1] M.Pecht and S. Tiku, “Bogus!” IEEE Spectrum, vol. 43, 

no. 5, pp. 37–46, May 2006.  

[2] G. Qu and M. Potkonjak, Intellectual Property Protection 

in VLSI Designs. Boston, MA, USA: Kluwer, 2004.  

[3] W. P. Griffin, A. Raghunathan, and K. Roy, “CLIP: Circuit 

level IC protection through direct injection of process 

variations,” IEEE Trans. Very Large Scale Integr. (VLSI) 

Syst., vol. 20, no. 5, pp. 791–803, May 2012.  

[4] F. Koushanfar and G. Qu, “Hardware metering,” in Proc. 

Design Autom. Conf., 2001, pp. 490–493.  

[5] F. Koushanfar, “Provably secure active IC metering 

techniques for piracy avoidance and digital rights 

management,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 

1, pp. 51–63, Feb. 2012.  

[6] T. Guneysu, B. Moller, and C. Paar, “New protection 

mechanisms for intellectual property in reconfigurable logic,” 

in Proc. 15th Annu. IEEE Symp. Field-Programm. Custom 

Comput. Mach. (FCCM), Apr. 2007, pp. 287–288. 

 [7] I. Torunoglu and E. Charbon, “Watermarking-based 

copyright protection of sequential functions,” IEEE J. Solid-

State Circuits, vol. 35, no. 3, pp. 434–440, Mar. 2000.  

[8] M. Lewandowski, R. Meana, M. Morrison, and S. 

Katkoori, “A novel method for watermarking sequential 

circuits,” in Proc. IEEE Int. Symp. Hardware-Oriented 

Security Trust, Jun. 2012, pp. 21–24. 

 [9] E. Charbon, “Hierarchical watermarking in IC design,” in 

Proc. IEEE Custom Integr. Circuits Conf., May 1998, pp. 

295–298. [10] G. T. Becker, M. Kasper, A. Moradi, and C. 

Paar, “Side-channel based watermarks for integrated circuits,” 

in Proc. IEEE Int. Symp. HardwareOriented Security Trust 

(HOST), Jun. 2010, pp. 30–35. 

 [11] Y.-C. Fan, “Testing-based watermarking techniques for 

intellectualproperty identification in SoC design,” IEEE Trans. 

Instrum. Meas., vol. 57, no. 3, pp. 467–479, Mar. 2008.  

[12] J. L. Wong, D. Kirovski, and M. Potkonjak, 

“Computational forensic techniques for intellectual property 

protection,” IEEE Trans. Comput.- Aided Design Integr. 

Circuits Syst., vol. 23, no. 6, pp. 987–994, Jun. 2004.  

[13] S. Guilley, L. Sauvage, J. Micolod, D. Réal, and F. 

Valette, “Defeating any secret cryptography with SCARE 

attacks,” in Progress in Cryptology—LATINCRYPT. Berlin, 

Germany: Springer, 2010, pp. 273–293. [14] T. M. Mitchell, 

Machine Learning. New York, NY, USA: McGraw-Hill, Mar. 

1997.  

 


