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Abstract 

Technological innovation has revolutionized capability in assessing speech, making it 

possible to record, quantify, and score oral performances outside of live testing conditions. 

Technology has also increased test-user choice, with fully automated tests, which were 

initially trained on human ratings but devoid of a human component in test delivery and 

scoring, now available on the market. The goal of this chapter is to underscore the 

innovations, trade-offs, and debates in the machine scoring of speech, highlighting the central 

role of pronunciation. The consequences of machine-driven assessment and possibility of 

complementing machine scoring with human ratings will also be considered. 
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Main text 

Introduction 

Technology has revolutionized capability in assessing speaking, making it possible to 

record, quantify, and score test-takers’ oral performances outside of live testing conditions. 

Technology has also opened the door to new possibilities in terms of the delivery and scoring 

of tests, resulting in greater choices for test-users in the second language (L2) speaking 

assessments available on the market in the 21st century. The focus of this chapter is on fully 

automated assessments of L2 speech—that is, operational test delivery and scoring of speech 

production without any human intervention, achieved through both automatic speech 

recognition (ASR) technology, and an algorithmic score generator to optimize approximation 

to human ratings. As a preface to discussing how technology has transformed the L2 

speaking assessment terrain and the centrality of pronunciation (particularly segmental 

features) to the state-of-the-art in machine scoring, it is important to situate automated 

assessment in its broader historical context. After outlining how age-old concerns about the 

lack of objectivity in human ratings of L2 speech have been addressed through the use of 

technology, the chapter will focus on operational machine scoring systems used for L2 

speaking assessments, including feedback on segmental errors for low-stakes (e.g., research 

or pedagogical) purposes. The discussion will be underpinned by debates on trade-offs in 

using fully automated assessments, highlighting concerns about technological constraints 

dictating the nature of the assessment. Future directions will then be discussed, one of which 

is ways that technology can be used to prioritize the factors that are most important for 

intelligibility (i.e., being easily understandable to listeners), instead of simply promoting 

accent reduction (i.e., mastery of all L2 pronunciation features when some are more 

consequential for communication than others). Finally, the chapter will conclude with the 

possibility of using hybrid machine-human scoring systems. 
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Historical and current conceptualizations of the topic 

The L2 assessment literature has long distinguished between three modes of speaking 

assessment that are foundational to a discussion of the topic. A ‘direct test’ refers to a spoken 

assessment conducted face-to-face with an interlocutor (e.g., interviewer, examiner, test-

taker), whereas a ‘semi-direct test’ is machine administered (e.g., computer- or phone-based), 

with the test-taker speaking into a recording device. Finally, an ‘indirect test’ denotes 

assessing speaking without eliciting any form of spoken production (Ginther, 2012). An 

example of indirect test item is the following multiple-choice question: 

Which of the following words is unlike the others in terms of how the underlined sound is 

pronounced?  

(a) treasure (b) physics  (c) casual  (d) lesion  

All words in the example include /ʒ/ except for choice ‘b’, which is pronounced [z]. 

This discrete-point item is modelled on a prototype item proposed by Lado (1961), an 

exponent of structural testing, in the most comprehensive practical guide to constructing, 

administrating, and scoring L2 pronunciation tests that exists today (Isaacs, 2014). Lado’s 

contention that indirect testing could be used as an alternative to direct or semi-direct testing 

was predicated on his assumption that written responses of the type exemplified above would 

strongly correlate with test-takers’ actual L2 pronunciation productions. However, 

subsequent research confirmed that indirect testing bears little if any relation to test-takers’ 

oral outputs on the same task, and the statistical associations were even weaker with 

sentence- and discourse-level speaking tasks (Buck, 1989). Indirect testing is currently not 

regarded as a valid form of L2 speaking assessment because it strays from the seemingly 
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common-sense assertion that “the best way of assessing how well a learner speaks a language 

is to get him or her to speak” (He & Young, 1998, p. 1). 

Although this major reservation should not be overlooked, indirect testing of speech is 

attractive for at least two reasons that draw parallels with modern arguments promoting fully 

automated assessments. First, as Lundeberg (1929) stated, individual oral assessment is 

“cumbersome and time-consuming” (p. 195), particularly with large numbers of test-takers—

a point that motivated Lado’s (1961) suggestion for using indirect tests. To elaborate, human 

scoring often requires employing and training teachers or examiners to elicit and rate oral 

productions, which can be resource-intensive in terms of costs and time. Like indirect testing, 

fully automated assessment is a cheaper option and can generate results more quickly. For 

example, in English proficiency testing for university entrance purposes, the direct speaking 

component of the IELTS (British Council, 2016) and semi-direct TOEFL iBT (ETS, 2016) 

mail score reports to test-takers within 13 calendar days of taking the test, with the TOEFL 

results available on-line three days earlier. By comparison, the fully automated (computer-

mediated and scored) Pearson Test of English (PTE) Academic provides on-line results 

within five business days (Pearson, 2014). In fact, the automated scoring of a sentence-level 

speech sample takes only a few seconds for the machine to compute, but on-line file 

transmission from the test location to the e-scoring site can be subject to broadband issues 

and other technical challenges (Van Moere & Downey, 2016). Test-takers’ testimonials on 

Pearson’s website praise the rapid delivery of PTE Academic results within 24 or 48 hours of 

taking the test, revealing Pearson’s use of quick processing time for marketing purposes.  

However, initially developing an ASR and machine scoring system, depending on the 

purpose and stakes of the assessment, can be large-scale and costly. Sentence-level models 

that involve machine training to recognize a particular fixed sentence that corresponds to test-

takers’ likely spoken output, as elicited through a highly controlled task (e.g., sentence 
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repetition), are much more expensive to develop than phoneme-level models (Bernstein, 

Cohen, Murveit, Rtischev, & Weintraub, 1990). Both models use phonemes as the “building 

block,” sequencing sounds based on the probability of occurrence associated with each sound 

in an effort to decode speech from the soundwave as recognizable output (Franco et al., 

2010). The distinction is that phoneme-level models, unlike sentence-level ones, are not tied 

to particular pre-determined utterances and, thus, can be used with random or impromptu 

test-taker responses. Sentence-level models, however, are superior in aligning detected 

phones with the speech signal and approximating human ratings. Once the ASR system has 

been developed, the machine scoring system is calibrated using a large database of human 

ratings of a large volume of L2 test-takers’ speech (e.g., thousands of responses produced by 

hundreds of test-takers in developing Pearson’s automated scoring technology for English; 

Pearson, 2012), which will inevitably involve some expense. However, regardless of the 

specifics of the methodology used for test development, wide-scale implementation of the 

eventual test is likely to more than offset development costs, making it an attractive option 

for assessment organizations, who may choose to pass on cost savings to test-users.  

Another parallel between indirect speaking tests and automated assessment relates to 

concerns about the inherent subjectivity of human scoring, in part due to the intangible and 

transient nature of speech (Lundeberg, 1929). For example, the dichotomous task of 

evaluating whether English learners from a mixed L1 background produce /i/ and /ɪ/ in a 

target-like or untarget-like way is unlikely to always yield exact rater agreement. Nor is 

having raters assign each token to one of the two vowel categories that represent the closest 

target-like approximation (e.g., Thomson & Isaacs, 2009). As Lado (1961) underscored, 

intelligibility (however measured) is fraught by the issue of intelligible to whom. Finally, 

global ratings of pronunciation-relevant constructs (e.g., degree of foreign accent), although 

possibly yielding high interrater reliability, clearly lack the objectivity of scoring multiple-
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choice items. Fully automated scoring offers a solution to this subjectivity issue that Lado 

found so pressing, offering standardized delivery and reliable and objective scoring of L2 

speech. In so doing, it allows the test developer to draw on some of the advantages of indirect 

testing, which are disqualifying due to concerns about validity, without actually resorting to 

indirect testing. Instead, it allows for a semi-direct, automatically scored speaking test. 

One advantage of automated scoring that ties into the objectivity argument is that it is 

impervious to the individual rater idiosyncrasies that are present in human ratings (Xi, 2012). 

That is, automated scoring eliminates sources of construct-irrelevant variance, which refers to 

variables extraneous to the L2 speaking ability being measured that could come into play in 

human ratings (Messick, 1990). For example, individual differences in rater familiarity with 

or attitudes toward test-takers’ L1 accent could unduly influence their speech or 

pronunciation ratings. Machines, which cannot replicate human listening and scoring 

processes, are not susceptible to such rater effects (Van Moere & Downey, 2016). However, 

there are trade-offs to the reliability and efficiency that automation entails, which surface in 

the next section and permeate the rest of this chapter.  

Limitations of ASR and automatic scoring 

There are several challenges in undertaking ASR and fully automated scoring of L2 

speech that need to be considered before critically evaluating the use of this technology for 

L2 assessment purposes. First, automated scoring of the spoken medium is much more 

challenging to implement than automated scoring of writing. This is mainly due to the first 

step and complicating factor of needing to recognize words from the speech signal 

(Bridgeman, Powers, Stone, & Mollaun, 2011). Second, word recognition tends to be much 

better on highly controlled tasks that constrain test-takers’ output than on extemporaneous 

speech tasks that yield relatively unpredictable test-taker output. This is because when the 

test-takers’ speech is predictable or known, the audio track can be forcibly aligned with the 
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transcription of the utterance using pattern matching, with deviations between the expected 

and actual response more easily detected (Zechner, Higgins, Xi, & Williamson, 2009). 

Compared to spontaneous speech tasks, automatic scoring of controlled or guided tasks (e.g., 

sentence read-alouds) result in much stronger correlations between machine scoring and 

human ratings. Although such tasks may be less authentic in light of the tasks that test-takers 

need to perform in real-world settings, strong statistical associations with human-rated 

measures are sometimes used by testing organizations as part of the validity argument to 

justify their use for high-stakes purposes (e.g., Bernstein, Van Moere, & Cheng, 2010).  

A third major challenge lies in decoding L2 learners’ as opposed to native speakers’ 

(NS’) utterances, particularly when test-takers are from mixed L1 backgrounds due to L1 

influence (Isaacs, 2014). Determining a standard that the speech will be compared to, which 

often begins with a NS corpus, is premised on the notion that L2 speech differs from L1 

speech in the pronunciation and sequencing of sounds and words. These deviations are 

treated as errors, and parameters need to be set so that the system can classify errors and 

provide learners with feedback on their production accuracy (Cucchiarini, Neri, de Wet, & 

Strik, 2007; Cucchiarini & Strik, this volume). However, state-of-the-art error detection 

algorithms are imperfect and occasionally provide learners with misleading feedback about 

the correctness of utterances (Eskenazi, 2009). More specifically, automatic detection 

systems for L2 learners sometimes produce false positives (i.e., the system scores the 

production of a correctly pronounced phone as an error) and false negatives (i.e., the system 

fails to detect an incorrect phone when one is uttered). Nonetheless, there is some evidence 

that learners in laboratory contexts can improve their production of targeted phonemes when 

they receive ASR-based feedback compared to learners who receive no such feedback 

(Cucchiarini, Neri, & Strik, 2009), highlighting the potential of this technology for targeting 

segmental accuracy. Unfortunately, not all fully automated tests publish information on the 
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error classification accuracy of their patented technologies, making it difficult to evaluate 

these systems (e.g., Wagner & Kunnan, 2015).  

One remaining challenge and limitation in light of technological capability is that 

current automatically scored speaking assessments heavily rely on spectral (i.e., frequency-

based) and durational (i.e., time-based) measures associated with segmental accuracy and 

temporal fluency. This is mostly at the exclusion of other measures, since machines are less 

adept at scoring higher-order features of L2 speaking performances, such as discourse 

organization, lexical resource, grammatical accuracy, prosody, and content development 

(Bridgeman et al., 2011). For example, temporal measures (e.g., speech rate, silent pause 

duration per word), which the machine can ably automatically compute, fail to capture 

broader notions of fluency that humans may heed in scoring discourse-level tasks, such as 

coherence and argumentation (Ginther, Dimova, & Yang, 2010). Thus, some aspects of the 

L2 speaking construct that test developers and examiners may value and take into account 

when scoring are currently not captured in automated scoring systems (Xi, Higgins, Zechner, 

& Williamson, 2012). Before discussing the implications of these challenges and constraints, 

the next section will describe the basic operational processes involved in fully automated 

scoring by drawing on examples of L2 assessments that use the technology. 

Illustrations and examples 

Operational ASR and automated feedback and scoring systems 

The innovation of fully automated L2 proficiency assessments has resulted in major 

shifts in the L2 assessment and research terrain in the 21st century. One effect is that the 

centrality of pronunciation in ASR and automated scoring has, in part, fuelled a resurgence of 

interest in pronunciation within the L2 assessment community following a lengthy period of 

neglect (Isaacs, 2014). In order to situate fully automated assessments within the L2 testing 

context more broadly, the 2x2 matrix in Figure 1.1 provides examples of stand-alone L2 



9 
 

speaking tests, speaking components of L2 proficiency tests, or patented scoring systems 

(e.g., SpeechRater). Quadrant II shows direct L2 speaking tests or speaking components that 

are also human scored, Quadrant I shows semi-direct tests that are human scored, and 

Quadrant IV shows machine-scored semi-direct tests (see also Galaczi, 2010). The tests listed 

in Quadrant IV are fully automated and, hence, the focus of this review. Notably, no tests 

have, as yet, been developed in Quadrant III. Producing tests that are human administered 

and machine scored would remove the advantage of having a more authentic interaction with 

a human interlocutor on an extemporaneous L2 speech task, as the type of task that could be 

used would need to be constrained considerably to make it easily machine scorable. The 

constraints in the design of such a test, the lack of standardization if different human raters 

administered even a scripted test compared to machine administration, and the lack of a 

practical advantage entailed in a human needing to test individually would seem to make it a 

less attractive and perhaps less intuitive option for test developers. On the other hand, it could 

be argued that test-takers in classroom contexts might prefer speaking tests (however 

inauthentic and regardless of how it is scored) to be administered by their L2 teacher, 

although this has yet to be established. An extension of this argument is that, in foreign 

language contexts that do not routinely teach L2 speaking (Wall & Horák, 2006), integrating 

speaking into the classroom, even in a way that is reminiscent of audiolingual (as opposed to 

communicative language) teaching, is better than no speaking focus at all. What is clear is 

that many more speaking assessments that use automated scoring will be developed in the 

future. It is important to note, however, that attractive, user-friendly, accessible applications 

do not mean that fully automated assessments are effective L2 learning tools, nor that they 

provide valid information about L2 speaking ability, whether the feedback is formal or 

informal. Automated tests, and particularly those intended for high-stakes purposes (i.e., 
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consequential decision-making) need to be held to the same standard of providing robust 

validation evidence as traditional human scored tests (see Wagner & Kunnan, 2015).  

  L2 test mode of delivery 

  Human Machine 
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 IELTS 

Cambridge English exams (e.g., CAE) 

Oral Proficiency Interview (OPI) 

TOEFL iBT 

Aptis 

SOPI, COPI (tape- or computer-based OPI) 
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NONE 
PTE (Academic, General) 

Versant tests 

ETS’s SpeechRater 

 

Figure 1.1. Matrix of L2 speaking assessment administration and scoring (i.e., human- or 

machine-mediated), with examples in each category 

 

But what about the architecture of assessment-oriented ASR and scoring systems? 

They tend to consist of an automatic telephone response system (if the test is telephone-

mediated; e.g., Versant), a digital storage bank for the recordings, a speech recognizer for 

decoding the speech, a speech analyser or computation model, which prepares the recognized 

speech for scoring using mathematical representations, and a score generator, which maps a 

selection of measures onto an L2 speaking score based on previous ratings by human raters 

(Pearson, 2011; Zechner et al., 2009). The speech samples on which the system is trained 

should be produced using professional quality microphones in environments with little 

ambient noise and recorded with an adequate sampling rate (e.g., 8 kHz for telephonic 

systems; 16 kHz for computer-mediated systems) and resolution (e.g., 16-bit) to ensure 
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reasonable sound quality. Where possible, operational testing conditions should also avoid 

noisy environments, provide suitable microphones, use the same sampling rate as was used to 

generate the acoustic model for audio recording, and conduct sound checks prior to the 

assessment to ensure adequate volume levels (Chengalvarayan, 2009). 

It is practical to illustrate how the technology works by drawing on some examples. 

EduSpeak, a pronunciation focused computer-assisted language learning (CALL) application 

(Franco et al., 2010), was reportedly developed using a similar approach to the patented 

technology used for Pearson’s automated speaking tests, providing some information about 

the development of the ASR technology than is not currently available in Pearson’s 

validation manuals (e.g., Pearson, 2012). Franco et al. (2010) summarize three steps in 

scoring pronunciation on sentence reading or repetition tasks: 

• phonetic segmentation (i.e., identifying the boundaries between phones) using the 

speech recognizer 

• machine generation of scores by comparing a learner’s speech to the training database 

using probabilistic models  

• calibration of the scores using an algorithm to combine automatic measures that best 

map onto scores assigned by human listeners from the training database 

As with other ASR systems, EduSpeak was developed using statistical modelling that 

derives probabilities of sounds occurring within words and, in turn, within sentences. A 

hierarchical structure is imposed, with sentences modelled as word sequences which, in turn, 

are modelled phone sequences that vary in their acoustic realization according to their 

phonetic context. The system combines data trained on both NSs and nonnative speakers 

(NNSs) of North American English by assigning them different statistical weightings. Scores 

are computed by averaging the automatically derived scores for each phone in that sentence 
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based on the likelihood of occurrence. Other computed measures are fluency-related (e.g., 

speech rate, length of phones uttered), normalized over the duration of the sentence or over 

all of the speaker’s utterances. These measures are then compared to measures from the NS 

corpus to estimate probability distributions. Final scores for reporting purposes are assigned 

using statistical modelling to classify the set of scores obtained from the automated system 

into ratings that approximate predicted human scoring based on the training corpus. 

Information on the machine’s error rates for phone-level mispronunciation is reported for 

each phone by comparing the machine scoring with the same speech manually transcribed by 

human listeners schooled in phonetics (Franco et al., 2010). For comparison purposes, in 

terms of sentence repetition scoring on Pearson’s Versant English Test (2011), word error 

frequency is operationalized as the smallest number of segmental substitutions, deletions, or 

insertions required to modify the test-taker’s output to find the best string match. An 

utterance that matches the referent speech is scored as error-free, with dysfluencies 

disregarded in scoring this task type. However, machine misclassification rates (e.g., of 

individual phones or aggregate measures) are not reported in Pearson’s test validation 

manuals, suggesting a degree of underreporting.  

It is worthwhile discussing Pearson’s Versant English Test (originally developed as 

PhonePass in the 1990s) in some depth, since this was the first fully automated L2 speaking 

test available in the high-stakes assessment market, revolutionizing the field (Isaacs & 

Harding, in press). Versant tests, which are telephone- or computer-delivered (duration: 15–

20 minutes,) are currently available in six languages in addition to an aviation English test 

(Bernstein, et al., 2010). Drawing on Levelt’s (1989) Speech production model, the Versant 

English Test validation manual defines the speaking construct as the “facility” or “ability to 

understand spoken English on everyday topics and to respond appropriately at a native-like 

conversational pace in intelligible English” or, stated differently, the “ease and immediacy in 
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understanding and producing appropriate conversational English” (Pearson, 2011, p. 8). Test 

items were initially developed for American English, were subsequently sent to NSs of other 

Inner Circle varieties for checking (e.g., British and Australian English), and were retained 

only when over 90% of educated NSs responded appropriately to them. Five of six Versant 

item types are currently operational for machine scoring: reading, repeating, and 

unscrambling short sentences, providing word length responses to short answer questions, 

and retelling a story. The other item type, which elicits an opinion or explanation about a 

defined topic, is, as yet, too unpredictable for the machine to cope with in a way that 

sufficiently replicates the numerical ratings that humans assign. 

The Versant targets “phonological fluency, sentence construction and comprehension, 

passive and active vocabulary use, listening skill, and pronunciation of rhythmic and 

segmental units” (p. 3). Score reporting includes four 5-point analytic subscores that, 

together, comprise test-takers’ “facility” reported in an Overall score (p. 18). The Sentence 

Mastery (syntactic processing) and Vocabulary (lexical comprehension and production) 

subscales are derived based on the presence of expected lexical items in the expected order. 

The Fluency subscale captures rhythm, phrasing, and timing (e.g., response latency, speech 

rate, stops and starts), whereas the Pronunciation subscale refers to “the ability to produce 

consonants, vowels, and stress in a native-like manner” at the sentence level using everyday 

vocabulary (p. 12). What is said, which relates to the first two measures, and how it is said, 

which relates to the latter two, each account for half of the total score, although different 

subscales are used depending on the task.  

Fluency and Pronunciation subscores, which are strongly correlated with the total 

score (.88 and .86, respectively), are also highly intercorrelated (.80), suggesting that they are 

measuring a similar construct, compared to much lower intercorrelations between 

Pronunciation and both Sentence Mastery (.55) and Vocabulary (.51). Correlations between 
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human and machine scoring are lower for Pronunciation (.88) than for the other and overall 

subscores (.94–.97), but still acceptably high. In terms of concurrent validity, correlations 

with TOEFL iBT speaking and IELTS speaking are around .75 (Pearson). The resulting 

scores are aligned with the Common European Framework of References for Languages 

(CEFR) levels (Council of Europe, 2001). However, the CEFR Global scale excludes 

pronunciation as a criterion from its descriptors (Isaacs, 2014)—a factor which heavily 

features in Pearson’s automated scoring. Presumably for this reason, Versant scores are also 

related to a scale that the assessment team reportedly adapted from the CEFR Oral interaction 

scale descriptors (de Jong & Bernstein, 2001), although published details about the adapted 

scale are scarce. 

Word recognition is based on acoustic models solely trained on L2 speech. These are 

aligned with or compared to an acoustic model trained on NSs from a range of age and native 

accent varieties and roughly balanced across gender (Bernstein et al., 2010). Conversion to 

scores occurs by scaling based on the likelihood of the occurrence of the given feature in the 

NS model built for that specific task. For example, the algorithm scales silent pauses based 

on the locus of its occurrence and the probability of a NS pausing that long in that 

environment (e.g., within a clause). Another example is voice onset time (VOT). Aspiration 

of the [th] sound in the word “take” (voiceless aspirated alveolar stop), for instance, would 

yield a positive voice onset time (long lag VOT), since voicing occurs only after the release 

of the aspiration. A lack of aspiration [t], which would diverge from most NS norms, would 

have a voice onset time of roughly zero (short lag VOT). Thus, the test-taker could be 

penalized based on divergence from NS norms tied to such durational or spectral 

measurements. Next, using a nonlinear statistical model, parameter weights are assigned to 

the resulting values that best approximate estimated human ratings of fluency and 

pronunciation (Bernstein et al., 2010). The PTE Academic score guide, which uses similar 
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tasks as the Versant, states that “the machine does not need to be told what features of the 

speech are important; the relevant features and their relative contributions are statistically 

extracted from the massive set of data when the system is optimized to predict human scores” 

(Pearson, 2012, p. 52). This is how the stochastic system works. However, the precise 

combination of measures selected in non-linear models to result in the score that best 

approximates the human ratings is opaque even to the test developers. 

Although in traditional ASR scoring and feedback systems, segmental measures 

dominate, and pronunciation clearly plays a central role in Person’s approach to automated 

scoring, this is not ubiquitous (Van Moere & Downey, 2016). Educational Testing Service 

(ETS), a global competitor to Pearson in the English standardized testing industry, models a 

markedly different approach. For example, SpeechRater 1.0 was developed to help TOEFL 

iBT applicants with test preparation through informal feedback on their speaking 

performances. Due to the complex nature of extemporaneous discourse-level speaking tasks 

on the TOEFL iBT, SpeechRater’s job of recognizing and automatically scoring the speech is 

much more challenging than would be the case with the highly constrained word- or 

sentence-level Pearson style tasks (Xi et al., 2012). Using variable sets of test-takers' 

responses in terms of L2 speaking proficiency level, correlations between trained TOEFL 

raters’ operational ratings and SpeechRater’s scores were between .65 and .69 (Bridgeman et 

al., 2011). This is much lower than the correlations obtained for Pearson tests with human 

raters, as reported above (Pearson, 2011). In several outputs centering on test validation and 

issues such as construct coverage (e.g., Xi et al., 2012), ETS researchers argue that until 

SpeechRater’s performance is more optimal, which would necessitate major improvements in 

the technological capability of the state-of-the-art in ASR and automatic scoring, the intended 

uses of SpeechRater will remain low-stakes, which they deem appropriate. This is in contrast 
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to Pearson tests, which are currently used for high-stakes purposes (e.g., government visas, 

academic admissions, professional certification).   

 Notably, Pearson (2012) does not publish a list of possible machine-generated 

measures that the algorithm could draw from (there could plausibly be hundreds or 

thousands) to optimize measurement and automatically derive test scores. In contrast, ETS 

provides a list of 29 automated speech measures that were candidates for selection for two 

statistical scoring models explored for use with SpeechRater 1.0. Eleven of these were 

ultimately selected in a final multiple regression model that was chosen, with fixed weights 

assigned for different measures as pre-specified by a panel of experts (Zechner et al., 2009). 

This advisory group took into account factors such as statistical efficiency, approximation to 

human scoring, and construct coverage, as reflected in the link between the automated 

measures, and the descriptors used in the TOEFL iBT Speaking Scoring Rubrics (Educational 

Testing Service, 2009). Seven of the 11 included measures are fluency-related (e.g., mean 

duration of long pauses; silent pause duration per word) and two are lexical richness 

measures (types), expressed over the duration of the word or speech sample. The remaining 

measures are the “language model,” related to grammatical accuracy, and the “acoustic 

model,” related to segmental errors identified using phoneme sequence probabilities (p. 890). 

With the exception of the language model measure, all included measures can be related to 

the descriptors in the TOEFL iBT Delivery subscale, which is one of three subscales 

contributing to overall TOEFL speaking scores. Conversely, features related to the Language 

Use subscale (i.e., lexical and grammatical resource) are only partially represented in the 

scoring model, and none of the measures link to Topic Development (e.g., content relevance, 

coherence) due to current technological limitations (Zechner et al., 2009). Therefore, 

although automated scoring eliminates sources of construct-irrelevant variance that play into 

human ratings, resulting in more objective and efficient scoring, there are trade-offs. 
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SpeechRater only measures a portion of the related features that make up the multifaceted 

TOEFL speaking construct, failing to assess the full range of construct-relevant linguistic 

features reflected in the scales (Bridgeman et al., 2011). It also does not encapsulate the 

breadth of linguistic properties that human raters reportedly heed in their scoring decisions, 

including prosody, task completion, and discourse-level features (Brown, Iwashita, & 

McNamara, 2005). The sections below will refer to this and other practical challenges and 

ways forward. 

New directions and recommendations 

This chapter has described technological advances in machine recognition and scoring 

of speech. These innovations have resulted in new ways of assessing L2 speaking, removing 

longstanding concerns about subjective element of rating (e.g., Lundeberg, 1929), since the 

machine, once trained, will always reach the same result. The introduction of fully automated 

assessment of L2 proficiency has resulted in major shifts in the L2 assessment market, 

accentuating differences between products (e.g., direct vs. fully automated speaking tests). It 

is difficult to predict how technology will push the assessment field forward in the 

generations to come. Perhaps the growing use of interactive spoken dialogue systems will 

lead to tests involving test-takers creating avatars of themselves and interacting with a virtual 

teacher or interlocutor, who would be pre-programmed to respond to their spoken responses, 

providing feedback or leading simulated interactions (Wik & Hjalmarsson, 2009). The 

possibilities may appear limitless. For example, it may be that ASR and scoring systems will 

one day move beyond monologic tasks to capture interactional activities involving multiple 

talkers and overlapping speech, locating interlocutors in time and space. Although machines 

are able to predict human scoring, they will never be able to replicate human processing. 

Humans will remain the ultimate arbitrators of whether and the extent to which 
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communication has been successful in real-world settings, and there will always be 

constraints in what machines are able to do (Isaacs & Harding, in press).  

When fully automated assessments intended for high-stakes purposes began to be 

actively marketed to test-users on the global stage in the first decade of the 21st century, field-

wide debates surrounding this development were initially heated and even acerbic. For 

example, critics from a sociocultural perspective decried the inauthenticity of Versant’s 

decontextualized items (Chun, 2006). However, Pearson (2011) contends that by using tasks 

that are not contextually embedded, the test excludes cultural schema and social factors from 

the assessment of L2 speaking ability. They argue that this is more efficient for assessing 

actual speaking ability by spending the time eliciting test-takers’ speech samples rather than 

creating context. Further, the test correlates with context-dependent speaking tests (e.g., 

TOEFL, IELTS), supporting the claim that test scores are related to speaking ability on 

contextually richer speaking tasks (Van Moere & Downey, 2016). Despite these and other 

rebuttals from the test provider, including about the psycholinguistic nature of the test 

construct, concerns about validity and authenticity still resonate. In fact, most Versant tasks 

are more reminiscent of now dated grammar translation and audiolingual style activities than 

they are of more contemporary style communicative tasks. These points aside, the language 

assessment community has now transitioned to a more pragmatic understanding that 

automated assessments are here to stay (Xi, 2010). The next section turns to the topic of 

setting pedagogical and assessment priorities in relation to features being targeted using 

automated scoring. 

Defining pedagogical priorities 

Not all errors are created equal, with some being more detrimental for communication 

than others (Derwing & Munro, 2015). This chapter has drawn mostly on segmental 

examples but would not be complete without reference to prosody. There is growing evidence 
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that prosodic features are important for listener understanding of L2 speech (e.g., Kang, 

Rubin, & Pickering, 2010). However, prosody is difficult for ASR to target. For example, 

comparing an L2 learner's pitch variation over time to that of referent speakers from a 

training corpus is more difficult than examining segmental features analyzed segment by 

segment (Eskenazi, 2009). In addition, prosodic features tend to be amenable to 

sociolinguistic variables such as age, gender, social class, or geographical variety, making it 

complicated to determine acceptable deviations from the norm (van Santen, Prud’hommeaux, 

& Black, 2009). Thus, taking into account inter-speaker L2 prosodic variation, particularly in 

contexts that allow for different target NS varieties, is challenging. It is relatively easy to set 

cut-offs in terms of acoustic space for vowel formants (Deng & O'Shaughnessy, 2003), with 

more or less stringent criteria applied depending on the language varieties accepted and the 

desired difficulty or leniency of the automated system. However, identifying a similarly 

narrow range for prosodic features, even after normalizing for vocal tract size differences, is 

not currently feasible. Van Santen et al. (2009) suggest using prosodic minimal pairs or 

lexical items with particular stress patterns as tasks to avoid unwanted prosodic variation. 

However, this would necessitate even more constrained speaking prompts than are currently 

common for ASR. To summarize, minimal focus on prosody is a limitation of current 

automated scoring. 

In terms of segmental errors, research on the sound contrasts that most impede 

communication can inform instructional and assessment priorities (Isaacs, 2014) and this 

extends to automated scoring. Carnegie Speech’s commercial NativeAccent program for 

training purposes detects mispronunciations of phonemes (Pelton, 2012), including some 

consonant cluster strings and minimal pairs (e.g., /t/ substituted for /θ/) that are unlikely to 

actually interfere with intelligibility (see Derwing & Munro, 2015). The cautionary note is 

that linguistic features that are easy for a machine to detect and score may not be of much 
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importance for communication. Therefore, claims by test providers about how the selected 

features affect intelligibility may be moot, unsubstantiated, or even contradictory of existing 

evidence. In the case of NativeAccent, the tool’s claim to “teach students to speak the 

language intelligibly in less training time” (Pelton, 2012, p. 11) is likely both overstated and 

misleading. The element of accent reduction that the software is targeting may be 

incompatible with helping learners become intelligible (Levis, 2005), with time likely better 

spent giving learners feedback other pronunciation features.  

It is useful to illustrate a related point in reference to a high-stakes automated test. In 

score reporting for the PTE Academic image (e.g., graph) description task, the proportion of 

uttered words detected as unintelligible is specified at the three lowest levels of the 6-level 

pronunciation scale (0-5), with half of the words unintelligible at level 0, a third unintelligible 

at level 1, and over two-thirds intelligible at level 2 (Pearson, 2012). However, at the scalar 

extremes, the descriptors of “native-like” (level 5) and “non-English” pronunciation (level 0) 

suggest that what is being measured is not intelligibility, but rather deviations from what 

human raters consider to be NS norms, which is reflected in the machine training and scoring 

methodology (p. 54). The issue here is that being more intelligible does not incrementally 

increase with sounding more native-like (Derwing & Munro, 2015). In sum, although 

automated speaking tests may claim to assess intelligibility, most of the emphasis tends to be 

placed on pronunciation accuracy or congruence with NS norms.  

Cucchiarini et al. (2007) demonstrate one approach to preventing an ASR system 

from indiscriminately targeting all learner errors in an experimental CALL setting. They pre-

defining error types as “relevant” (p. 2182) for learners of Dutch from different L1 groups 

using the following criteria: 

 

• common to speakers from different L1 backgrounds 

• perceptually salient 
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• potentially impede communication 

• frequent 

• persist over time 

After training the model on a NS passage, it was applied to detect segmental (substitution, 

epenthesis, deletion) errors in addition to using a silent pause model to detect undue 

dysfluencies. Measurement thresholds for each phone were derived by artificially introducing 

errors in the NSs' productions and comparing the manipulated speech to the error-free NS 

productions for the selected targets. The efficacy of model classifications and pre- and post-

test results comparing targeted and untargeted sounds were reported.  

Raux and Kawahara (2002) describe an alternative approach to pre-specifying 

segmental errors (target: 10 epenthesis, deletion, and substitution errors) for Japanese learners 

of English using a probabilistic algorithm to relate intelligibility to error rates detected by 

their ASR system. A human rater scored learners’ read-aloud productions targeting each error 

type using a Likert-type intelligibility scale, with the ratings also used to derive an “error 

priority function” suggesting the most crucial segmental errors for intelligibility (p. 737). 

They then evaluated the model by eliciting additional data. The model was trained by 

calculating the error rate distribution of the speech samples for each of the five intelligibility 

levels, with constraints applied to the formula in light of the assumption that error rates 

decrease with intelligibility gains (although see Harding, 2017, for problems with this 

approach). Finally, they examined the difference between the error rate of each learner on the 

10 pre-specified errors and the pooled performance of learners at that ability level, with 

underperformance relative to the mean for features deemed relevant suggesting that it could 

be a pedagogical focus. Despite the methodological shortcomings of this small-scale study, 

we can conclude that it is possible to develop an approach to scoring L2 segmental accuracy 

taking into account presumed pedagogical importance (Eskenazi, 2009).  
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Is hybrid machine-human scoring a way forward? 

One of the issues that has permeated this chapter is that fully automated assessment 

can result in what Galaczi (2013) has termed a reductionist approach to L2 speaking and a 

narrowing of the construct. Such tests fail to capture, among other things, different 

interactional patterns that are typical of tests that adopt an expansive approach to assessing 

speaking, which is at the other end of the spectrum (e.g., Cambridge First Certificate of 

English). Bennett and Bejar (1998) articulate the potential risks to validity when constraints 

of automated scoring having to do with the mode of delivery dictate the way that the 

assessment is carried out 

…the interface helps set task and construct parameters. In the worst case, it can 

unintentionally distort the task and construct definition, either by making the 

mechanics of response entry so difficult that the responses gathered are not fully 

reflective of examinee competence or by constraining the substantive aspect of the 

task to the point that it no longer represents the original construct definition (p. 11). 

One way of mitigating limitations in technology-driven assessment is by having 

automatic scoring operate in tandem with human ratings. ETS’ Test of English-for-Teaching 

(TEFT), the assessment component of an on-line teacher professional development training 

program, demonstrates one way of combining machine and human scoring (Zechner et al., 

2015). In contrast to the relatively unpredictable discourse-level TOEFL iBT tasks, the TEFT 

uses controlled tasks more reminiscent of the Versant (Pearson, 2011). To address difficulties 

that arose in a pilot administration of SpeechRater when it was applied to the test, ETS 

researchers developed a system whereby test-takers’ responses viewed as unscorable by 

human raters, either due to poor recording quality (e.g., background noise, equipment issues) 

or to problematic responses (e.g., not in English, off topic), which would have resulted in 

lower reliability had they been automatically scored, were filtered out and rerouted to a 
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human rater. In this way, all non-problematic items could be machine scored and all screened 

problematic ones could be human scored. Poorly recorded items raise questions about the 

validity of the assessment, with intelligibility speech possibly confounded with poor sound 

quality (Munro, 1998). However, this example demonstrates that, rather than being an either-

or option, human and machine scoring could be used in complementary ways in assessing 

test-takers’ performances. A hybrid human-machine scoring system could consist of the 

machine scoring the elements it does best, including segmental and fluency measures. This 

way, instead of human raters providing holistic scores on overall speaking ability or on all 

facets of the performance using detailed analytic scales, an alternative could be implemented. 

Raters could instead be asked to focus solely on and provide ratings for some elements of the 

performance not already being assessed (and not scored well, if at all) by the machine (e.g., 

cohesion, idea development, task execution). This could free up raters’ attentional space to 

concentrate on discrete aspects of speech when rating, potentially simplifying some of the 

complexity of the rating task (see Lumley, 2005). In sum, one way of offsetting the 

limitations of technology-mediated assessment and allowing for greater construct coverage is 

by having automatic scoring complement human ratings—an area for future exploration. 
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