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CAP 5993/CAP 4993

Game Theory

Instructor: Sam Ganzfried

sganzfri@cis.fiu.edu
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Golden Balls: the weirdest split or steal 

ever!

• https://www.youtube.com/watch?v=S0qjK3TWZE8
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Announcements

• HW1 

• HW2 due 2/21, added in problems from lecture
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Game trees

• A tree is a triple G = (V, E, x0) where (V,E) is a directed graph, 

x0 in V is a vertex called the root of the tree, and for every 

vertex x in V there is a unique path in the graph from x0 to x.

• Various games can be represented as trees. When a tree 

represents a game, the root of the tree corresponds to the initial 

position of the game, and every game position is represented by 

a vertex of the tree. The children of each vertex v are the 

vertices corresponding to the game positions that can be arrived 

at from v via one action. In other words, the number of children 

of a vertex is equal to the number of possible actions in the 

game position corresponding to that vertex.

– For every vertex that is not a leaf, we need to specify the player who is to 

take an action at that vertex

– At each leaf, we need to describe the outcome of the game.
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• A game in extensive form (or extensive-form game) is 

an ordered vector Γ = (N, V, E, x0, (Vi) i in N, O, u)

– N is finite set of players

– (V, E, x0) is a tree called the game tree

– (Vi) i in N is a partition of the set of vertices that are not 

leaves.

– O is the set of possible game outcomes.

– u is a utility function associating every leaf of the tree with a 

game outcome in the set O.

• Let B be a nonempty set. A partition of B is a 

collection B1, B2, …, BK of pairwise disjoint and 

nonempty subsets of B whose union is B.
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• It follows from the above description that every 

player who is to take an action knows the 

current state of the game, meaning that he 

knows all the actions in the game that led to the 

current point in the play. This implicit 

assumption is called perfect information.
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• A strategy for a player i is a function si mapping each 

vertex x in Vi to an element in A(x) (equivalently, to an 

element in C(x)).

• According to this definition, a strategy includes 

instructions on how to behave at each vertex in the 

game tree, including vertices that previous actions by 

the player preclude from being reached. For example, 

in the game of chess, even if White’s strategy calls for 

opening by moving a pawn from c2 to c3, the strategy 

must include instructions on how White should play his 

second move if in his first move he instead moved a 

pawn from c2 to c4, and Black then took his action.
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• A strategy vector is a list of strategies s = (si) i in N, 

one for each player. Player i’s set of strategies is 

denoted by Si, and the set of all strategy vectors is 

denoted S = S1x S2 x…x Sn. Every strategy vector 

determines a unique play from the root to a leaf.

• Let Γ = (N, V, E, x0, (Vi) i in N, O, u) be an extensive-

form game (with perfect information), and let x in V be 

a vertex in the game tree. The subgame starting at x, 

denoted by Γ(x), is the extensive-form game Γ(x) = (N, 

V(x), E(x), x, (Vi(x)) i in N, O, u).

– V(x) includes x and all vertices that are descendants of x.
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• Theorem (von Neumann [1928]) In every two-

player game (with perfect information) in which 

the set of outcomes is O = {Player 1 wins, 

Player 2 wins, Draw}, one and only one of the 

following three alternatives holds:

1. Player 1 has a winning strategy.

2. Player 2 has a winning strategy.

3. Each of the two players has a strategy 

guaranteeing at least a draw.
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• Theorem (Kuhn) Every finite game with perfect information has 

at least one pure strategy Nash equilibrium.

– “This is perhaps the earliest result in game theory, due to Zermelo in 

1913).

• Corollary of Nash’s Theorem: Every extensive-form game (of 

perfect or imperfect information) has an equilibrium in mixed 

strategies.
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Backward induction
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• First consider {(A,G),(C,F)}.

• {(B,H), (C,E)} less intuitive.

• Why is {(B,G), (C,E)} not an equilibrium??

• Player 1’s decision to play H is a threat. But is 

it credible? 
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• Definition: Given a perfect-information extensive-form 

game G, the subgame of G rooted at node h is the 

restriction of G to the descendants of h. The set of 

subgames of G consists of all subgames of G rooted at 

some node in G.

• The subgame-perfect equilibrium (SPE) of a game G 

are all strategy profiles s such that for any subgame G’ 

of G, the restriction of s to G’ is a Nash equilibrium of 

G’.
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Subgame perfect equilibrium

• Every SPE is also a Nash equilibrium

• Furthermore, although SPE is a stronger concept than 

Nash equilibrium (i.e., every SPE is a Nash 

equilibrium, but not every NE is a SPE) it is still the 

case that every perfect-information extensive-form 

game has at least one subgame-perfect equilibrium.

• Rules out “noncredible threats.” The only SPE is 

{(A,G, (C,F)}. Consider the subgame rooted at player 

1’s second choice node …
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Two-player zero-sum extensive-form 

games with imperfect information



20



21

LP formulation
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Maxmin and minmax strategies for 

two-player general-sum games

• Let G be an arbitrary two-player game 

G = ({1,2}, A1 x A2, (u1, u2)).

• Define the zero-sum game in which P1’s utility is 

unchanged and P2’s utility is the negative of P1’s.

G’ = ({1,2}, A1 x A2, (u1, -u1)).

• By Minmax Theorem every strategy for player 1 which 

is part of a Nash equilibrium strategy profile for G’ is a 

maxmin strategy for player 1 in G’.

– P1’s maxmin strategy is independent of P2’s utility function.

– So P1’s maxmin strategy is the same in G and G’.

• Same idea to compute minmax strategy for P2.
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Identifying dominated strategies

• Works because we do not need to check every mixed-strategy 

profile of the other players.

• If ui(si, a-i) < ui(ai, a-i), for all a-i then there cannot exist any 

mixed-strategy profile s-i for which ui(si, s-i) >= ui(ai, s-i), 

because of linearity of expectation. 

• Can the algorithm be modified for weak dominance?
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Domination by a mixed strategy
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• Strict domination

Maximize ….

Subject to Σj in Ai pj ui(aj, a-i) > ui(si, a-i) for all a-i in A-i

Σj in Ai pj = 1

pj >= 0 for all j in Ai

• Valid?
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Domination by a mixed strategy

• Strict domination

Minimize  Σj in Ai pj

Subject to Σj in Ai pj ui(aj, a-i) >= ui(si, a-i) for all a-i in A-i

pj >= 0 for all j in Ai

• Weak domination

Maximize Σa-i in A-i [(Σj in Ai pj * ui(aj, a-i)) - ui(si, a-i) 

Subject to Σj in Ai pj ui(aj, a-i) >= ui(si, a-i) for all a-i in A-i

pj >= 0 for all j in Ai

Σj in Ai pj = 1
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• It requires only polynomial time to iteratively remove 

dominated strategies until the game has been 

maximally reduced (i.e., no strategy is dominated for 

any player). A single step of this process consists of 

checking whether every pure strategy of every player is 

dominated by any other mixed strategy which requires 

us to solve at worst Σi in N |Ai| linear programs. Each 

step removes one pure strategy for each player, so there 

can be at most Σi in N (|Ai| - 1) steps.
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

Minimize U*1

Subject to  3 * s1
2 + (-5) * s2

2 + (-2) * s3
2 <= U*1

1 * s1
2 + 4 * s2

2 + 1 * s3
2 <= U*1

6 * s1
2 + (-3) * s2

2 + (-5) * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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Linear programs

• A linear program is defined by:

– a set of real-valued variables

– a linear objective function (i.e., a weighted sum of the 

variables)

– a set of linear constraints (i.e., the requirement that a 

weighted sum of the variables must be less than or equal to 

some constant).

• Let the set of variables be {x1, x2, …, xn}, which each 

xi in R. The objective function of a linear program, 

given a set of constraints w1, w2, …, wn, is

Maximize Σn
i=1 wixi
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• We can solve the dual linear program to obtain a Nash 

equilibrium strategy for player 1.

Maximize U*1

Subject to Σj in A1 u1(a
j
1, a

k
2) * sj

1 >= U*1 for all k in A2

Σj in A1 s
j
1 = 1

sj
1 >= 0 for all j in A1
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Minimize U*1

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  <= U*1 for all j in A1

Σk in A2 s
k

2  = 1

sk
2  >= 0 for all k in A2

Minimize U*1

Subject to  3 * s1
2 + (-5) * s2

2 + (-2) * s3
2 <= U*1

1 * s1
2 + 4 * s2

2 + 1 * s3
2 <= U*1

6 * s1
2 + (-3) * s2

2 + (-5) * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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Maximize U*1

Subject to Σj in A1 u1(a
j
1, a

k
2) * sj

1 >= U*1 for all k in A2

Σj in A1 s
j
1 = 1

sj
1 >= 0 for all j in A1

Maximize U*1

Subject to  a * s1
2 + b * s2

2 + c * s3
2 <= U*1

d * s1
2 + e * s2

2 + f * s3
2 <= U*1

g * s1
2 + h * s2

2 + j * s3
2 <= U*1

s1
2 + s2

2 + s3
2 = 1

s1
2  >= 0, s2

2  >= 0, s3
2  >= 0
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Why does this matter?

• Linear programs can be solved “efficiently.”

– Ellipsoid method runs in polynomial time.

– Simplex algorithm runs in worst-case exponential 

time, but runs efficiently in practice.
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Two-player general sum games
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• Minmax Theorem does not apply, so we cannot 

formulate as a linear program. We can instead 

formulate as a Linear Complemetarity Problem (LCP).

Minimize ….. (No objective!) 

Subject to Σk in A2 u1(a
j
1, a

k
2) * sk

2  + rj
1 =  U*1 for all j in A1

Σj in A1 u2(a
j
1, a

k
2) * sk

2  + rk
2 =  U*2 for all k in A2

Σj in A1 s
j
1 = 1, Σk in A2 s

k
2  = 1

sj
1, s

k
2  >= 0 for all j in A1, k in A2

rj
1, r

k
2  >= 0 for all j in A1, k in A2

rj
1 * sj

1 = 0, rj
2 * sj

2 = 0 for all j in A1, k in A2
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• If we omitted the final constraints we would still have 

an LP, but we would have a flaw. The variables U*1 

and U*2 would be allowed to take unboundedly large 

values, because all of these constraints remain satisfied 

when both U*i and r*i are increased by the same 

constant, for any given i and j. 

• The new constraint ensures that whenever an action is 

played by a given player with positive probability then 

the corresponding slack variable must be zero. Under 

this requirement, each slack variable can be viewed as 

the player’s incentive to deviate from the 

corresponding action.
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Polynomial time (P)

• An algorithm is said to be of polynomial time if its 

running time is upper bounded by a polynomial 

expression in the size of the input for the algorithm, 

i.e., T(n) = O(nk) for some constant k. Problems for 

which a deterministic polynomial time algorithm exists 

belong to the complexity class P, which is central in 

the field of computational complexity theory. 

Cobham's thesis states that polynomial time is a 

synonym for "tractable", "feasible", "efficient", or 

"fast".
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• Logarithmic time: Binary Search

• Linearithmic time (O nlogn): MergeSort

• Linear time (O(n)): finding smallest or largest item in 

an unsorted array.

• Quadratic time: bubble sort, insertion sort

– Bubble sort is a simple sorting algorithm that repeatedly 

steps through the list to be sorted, compares each pair of 

adjacent items and swaps them if they are in the wrong order. 

The pass through the list is repeated until no swaps are 

needed, which indicates that the list is sorted. The algorithm, 

which is a comparison sort, is named for the way smaller or 

larger elements "bubble" to the top of the list.

• Cubic time: Naive multiplication of two n×n matrices.



39

P vs. NP

• John Nash letter to NSA: https://www.nsa.gov/news-

features/declassified-documents/nash-

letters/assets/files/nash_letters1.pdf

• Informally, NP is the set of all decision problems for which the 

instances where the answer is "yes" have efficiently verifiable proofs. 

More precisely, these proofs have to be verifiable by deterministic 

computations that can be performed in polynomial time.

• Computing a Nash equilibrium in multiplayer (or two-player non 

zero-sum games): “a most fundamental computational problem 

whose complexity is wide open” and “together with factoring, the 

most important concrete open question on the boundary of P today”

https://www.nsa.gov/news-features/declassified-documents/nash-letters/assets/files/nash_letters1.pdf
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PPAD

• In computer science, PPAD ("Polynomial Parity Arguments on 

Directed graphs") is a complexity class introduced by Christos 

Papadimitriou in 1994. PPAD is a subclass of TFNP based on 

functions that can be shown to be total by a parity argument. 

• PPAD is a class of problems that are believed to be hard, but 

obtaining PPAD-completeness is a weaker evidence of 

intractability than that of obtaining NP-completeness. PPAD 

problems cannot be NP-complete, for the technical reason that 

NP is a class of decision problems, but the answer of PPAD 

problems is always yes, as a solution is known to exist, even 

though it might be hard to find that solution.

– By Nash’s Theorem, we know a Nash equilibrium always exists.
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Hardness

• NP-hardness (non-deterministic polynomial-time hard), in 

computational complexity theory, is a class of problems that are, 

informally, "at least as hard as the hardest problems in NP." 

More precisely, a problem H is NP-hard when every problem L

in NP can be reduced in polynomial time to H, that is: assuming 

a solution for H takes 1 unit time, we can use H's solution to 

solve L in polynomial time. As a consequence, finding a 

polynomial algorithm to solve any NP-hard problem would give 

polynomial algorithms for all the problems in NP, which is 

unlikely as many of them are considered hard.

• NP-completeness: in NP and NP-hard.
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• Polynomial time:

– Computing Nash equilibrium in two-player zero-sum 

strategic-form games

– Computing Minmax and Maxmin values in two-player 

general-sum games

– Computing Subgame Perfect Nash equilibrium in two-player 

zero-sum perfect-information games

– Computing Nash equilibrium in two-player zero-sum 

extensive-form games

– Various forms of domination
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• NP-hard:

– strategy elimination, reduction identity, uniqueness and 

reduction size problems for iterated weak dominance

– Finding Nash equilibrium that maximizes “social welfare,” 

or satisfies other properties

https://users.cs.duke.edu/~conitzer/nashGEB08.pdf

• PPAD-hard:

– Computing Nash equilibrium in two-player general-sum 

games, or in games with >= 2 players, for both strategic-form 

and extensive-form games
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• B. von Stengel (2002), Computing equilibria for two-

person games. Chapter 45, Handbook of Game Theory, 

Vol. 3, eds. R. J. Aumann and S. Hart, North-Holland, 

Amsterdam, 1723-1759. 
– http://www.maths.lse.ac.uk/personal/stengel/TEXTE/nashsurvey.pdf

• Longer earlier version (with more details on equivalent 

definitions of degeneracy, among other aspects): 

B. von Stengel (1996), Computing Equilibria for Two-

Person Games. Technical Report 253, Department of 

Computer Science, ETH Zürich. 

http://www.maths.lse.ac.uk/personal/stengel/TEXTE/nashsurvey.pdf
http://www.maths.lse.ac.uk/personal/stengel/TEXTE/tr-new.pdf
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• Define E = [1,…,1], e = 1, F = [1,…,1], f = 1

• Given a fixed y in Y, a best response of player 1 to y is 

a vector x in X that maximizes the expression xT(Ay). 

That is, x is a solution to the LP:

Maximize xT(Ay) 

Subject to Ex = e, x >= 0

• The dual of this LP with variables u:

Minimize eTu

Subject to ETu >= Ay
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• So a minmax strategy y of player 2 (minimizing the maximum 

amount she has to pay) is a solution to the LP

Minimize eTu

Subject to Fy = f

ETu – Ay >= 0

y >= 0

• Dual LP:

Maximize fTv

Subject to Ex = e

FTv – BTx <= 0

x >= 0
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• Theorem: The game (A,B) has the Nash 

equilibrium (x,y) if and only if for suitable u,v

Ex = e

Fy = f

ETu – Ay >= 0

FTv – BTx >= 0

x, y >= 0
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• This is called a linear complementarity program. 

• Best algorithm is Lemke Howson Algorithm.

– Does NOT run in polynomial time. Worst-case exponential.

• Computing a Nash equilibrium in these games is 

PPAD-complete, unlike for two-player zero-sum 

games where it can be done in polynomial time.
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• Assume disjoint strategy sets M and N for both players. Any 

mixed strategy x in X and y in Y is labeled with certain elements 

if M union N. These labels denote the unplayed pure strategies 

of the player and the pure best responses of his or her opponent. 

For i in M and j in N, let

– X(i) = {x in X| xi = 0},

– X(j) = {x in X| bjx >= bkx for all k in N}

– Y(i) = {y in Y | aiy >= aky for all k in M}

– Y(j) = {y in Y | yj = 0}

• Then x has label k if x in X(k) (i.e., x is a best response to 

strategy k for player 2), and y has label k if y in Y(k), for k in M 

Union N. 
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• Theorem: The game (A,B) has the Nash 

equilibrium (x,y) if and only if for suitable u,v

Ex = e

Fy = f

ETu – Ay >= 0

FTv – BTx >= 0

x, y >= 0
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• Complementarity condition: requires that whenever an action is 

played by a given player with positive probability (i.e., 

whenever an action is in the support of a given player’s mixed 

strategy), then the corresponding slack variable must be zero. 

Under this requirement, each slack variable can be viewed as the 

player’s incentive to deviate from the corresponding action. 

Thus, the complementarity condition captures the fact that, in 

equilibrium, all strategies that are played with positive 

probability must yield the same expected payoff, while all 

strategies that lead to lower expected payoffs are not played. 
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• Clearly, the best-response regions X(j) for j in N are polytopes 

whose union is X. Similarly, Y is the union of the sets Y(i) for i 

in M. Then a Nash equilibrium is a completely labeled pair (x,y) 

since then by Theorem 2.1, any pure strategy k of a player is 

either a best response or played with probability zero, so it 

appears as a label of x or y.

• Theorem: A mixed strategy pair (x,y) in X x Y is a Nash 

equilibrium of (A,B) if and only if for all k in M Union N either 

x in X(k) or y in Y(k) (or both).
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• For the following game, the labels of X and Y are:

L R

T 0, 1 6, 0

M 2, 0 5, 2

B 3, 4 3, 3
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• The equilibria are:

– (x1,y1) = ((0,0,1),(1,0)), where x1 has the labels 1, 2, 

4 (and y1 has the remaining labels 3 and 5),

– (x2,y2) = ((0,1/3,2/3),(2/3,1/3)), with labels 1, 4, 5 

for x2

– (x3,y3) = ((2/3,1/3,0),(1/3,2/3)), with labels 3, 4, 5 

for x3
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• This “inspection” is effective at finding equilibria of games of 

size up to 3x3. It works by inspecting any point x for P1 with m 

labels and checking if there is a point y having the remaining n 

labels. A game is “nondegenerate” if any x has at most m labels 

and every y has at most n labels.

• “Most” games are nondegenerate, since having an additional 

label imposes an additional equation that will usually reduce the 

dimension of the set of points having these labels by one. Since 

the complete set X has dimension m-1, we expect no points to 

have more than m labels. This will fail only in exceptional 

cirtcumstances if there is a special relationship between the 

elements of A and B.
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Support enumeration algorithm
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n-player general-sum games

• For n-player games with n >= 3, the problem of computing an 

NE can no longer be expressed as an LCP. While it can be 

expressed as a nonlinear complementarity problem, such 

problems are often hopelessly impractical to solve exactly. 

• Can solve sequence of LCPs (generalization of Newton’s 

method). 

– Not globally convergent

• Formulate as constrained optimization (minimization of a 

function), but also not globally convergent (e.g., hill climbing, 

simulated annealing can get stuck in local optimum)

• Simplicial subdivision algorithm (Scarf)

– Divide space into small regions and search separately over the regions.

• Homotopy method (Govindan and Wilson)

– n-player extension of Lemke-Howson Algorithm
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Next class: refinements of Nash equilibrium

• Is it too strict?

– Does not exist in all games

– Might rule out some more “reasonable” strategies

• Not strict enough?

– Potentially many equilibria to select through

• Just right?
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Next class

• Brief introduction to Game Theory Explorer.

• Go over HW1.

• Refinements of Nash equilibrium.
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Assignment

• HW2 due 2/21.

• Reading for next class: chapter 7 from main textbook.


