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Abstract—Distributed learning enables collaborative training of machine learning models across multiple agents by exchanging model
parameters without sharing local data. Each agent generates data from distinct but related distributions, and multi-task learning can be
effectively used to model related tasks. This paper focuses on clustered multi-task learning, where agents are partitioned into clusters
with distinct objectives, and agents in the same cluster share the same objective. The structure of such clusters is unknown apriori.
Cooperation with the agents in the same cluster is beneficial and improves the overall learning performance. However, indiscriminate
cooperation of agents with different objectives leads to undesired outcomes. Accurately capturing the clustering structure benefits the
cooperation and offers many practical benefits; for instance, it helps advertising companies better target their ads. This paper proposes
an adaptive clustering method that allows distributed agents to learn the most appropriate neighbors to collaborate with and form clusters.
We prove the convergence of every agent towards its objective and analyze the network learning performance using the proposed
clustering method. Further, we present a method of computing combination weights that approximately optimizes the network’s learning
performance to determine how one should aggregate the neighbors’ model parameters after the clustering step. The theoretical analysis
is well-validated by the evaluation results using target localization and digits classification, showing that the proposed clustering method
outperforms existing distributed clustering methods as well as the case where agents do not cooperate.

Index Terms—distributed clustering, distributed cooperative learning, multi-agent networks, multi-task learning
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1 INTRODUCTION

Distributed learning has attracted increasing attention due
to the growth of machine learning (ML) applications in
distributed devices within multi-agent networks, such as
mobile phones, wearable devices, and smart homes [1],
[2], [3], [4], [5], [6]. In such networks, multiple agents can
operate in a distributed and cooperative manner to achieve a
learning task. For example, consider learning the behavior
of users in a cellular network based on data generated using
various mobile applications. Each user may generate data
that follows a distinct distribution, and it is common to
learn separate models for each user. However, people may
exhibit similar behaviors, and similarities among models
commonly exist [7]. In this case, cooperation among agents
could be leveraged to promote the learning performance
over the network. Given data privacy concerns, cooperation
among agents in a network typically relies on exchanging
model parameters instead of data. In a distributed learning
network, an agent communicates model parameters with
its local neighbors and also updates these parameters by
incorporating the neighbors’ information [8], [9]. It has
been demonstrated that such cooperation enables improved
learning performance over the network [10]. Furthermore,
compared to federated learning [11], distributed learning
with fully decentralized networked agents does not require
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a central server, thus addressing single-point-of-failure and
scalability issues.

Clustering is a fundamental problem in data analysis and
data mining with a wide variety of applications, including
image segmentation, customer segmentation, information
management, social networks analysis, and statistical data
analysis [12], [13]. The goal is to group data points into
clusters such that data objects within the same cluster are
much similar to each other compared to data objects in any
other cluster. The dataset sizes have multiplied over the years
with an expansion of geographically distributed data sources
connected through a network. Sometimes it is not feasible
due to security, technical or economic reasons to accumulate
data at one central site for clustering analysis. As a result,
effective approaches to distributed clustering have become
of significant importance [14], [15], [16]. There have been
several successful approaches for clustering in a centralized
setup; however, the topic of distributed clustering is still
under development.

At the same time, it is natural to model a distributed
learning network using clustered multi-task learning in
which agents with similar interests are grouped in the same
cluster, and different clusters represent distinct interests [17].
We note that if there are no similarities among the agents, the
clustered multi-task network reduces to a non-cooperative
network. At the same time, if all agents in the network are
similar, the network reduces to a single-task cooperative
network. Agents should not be aware of the clustered
structure beforehand, and the clustering scheme should
adapt to changes and accommodate any new agents. Clus-
tered multi-task learning offers significant practical benefits.
For instance, in a mobile application network, people of
similar age or profession may exhibit similar preferences
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for particular content. Further, such preferences may deviate
from the preferences of people of different ages or professions.
Advertising companies, in particular, use such strategies to
target better and manage their advertisements. Adaptive
clustering allows agents to perform local optimization tasks
while learning from neighbors with similar objectives. As a
result, an agent is allocated to an appropriate cluster without
knowing the clustering structure a priori [16], [18], [19],
[20], [21]. Agents can then cooperate with others in the
same cluster, thus, making cooperation more beneficial and
meaningful. However, as we show in Section 4.1, existing
methods typically rely on comparing the Euclidean distance
between model parameters to measure their similarities and
could result in two agents from different clusters starting
cooperation during learning. In particular, such cooperation
may continue and could drive agents to converge to a wrong
cluster. Our evaluation in Section 5 also shows that such
an approach could fail in learning the correct clustering
structure.

To address such problems, we propose an adaptive cluster-
ing method by comparing the losses of two agents. The main idea
is that agents sharing similar objectives have similar underlying
data distributions, and hence their models should fit each other’s
data distributions. Moreover, to make the cooperation lead to
a better learning performance (smaller loss), it is appropriate
for an agent to cooperate only with those neighbors who
incur a smaller loss than the agent itself. To measure
similarity between an agent and its neighbor, we propose that
an agent compute the loss by fitting its neighbor’s model
to its data and then comparing it to the one obtained by
fitting the data to its own model. The agent cooperates with
a neighbor only if the loss with the neighbor’s model is no
greater than the agent’s own loss. In doing so, it is guaranteed
that the loss is reduced in expectation by the cooperation,
and agents converge to the objective of the cluster.

The main contributions of the paper are:

◦ We propose an adaptive clustering method in dis-
tributed multi-task learning networks that allows
agents to perform the optimization task while si-
multaneously learn which neighbors are suitable for
cooperation.

◦ We analyze the convergence and learning perfor-
mance for the proposed method.

◦ We propose combination weights for aggregating
the neighbors’ model parameters after recognizing
which neighbors to cooperate with using the proposed
clustering method that approximately optimizes the
network learning performance.

◦ We evaluate the proposed method for both linear re-
gression and classification problems and compare the
results with existing distributed clustering methods.
The evaluation results show that the proposed method
improves learning performance significantly com-
pared to the non-cooperative approach by correctly
estimating the clustering structure. In contrast, other
methods fail to achieve the clustering information
and exhibit inferior learning performance.

2 RELATED WORK

Multi-Task Learning. Multi-task learning (MTL) deals with
the problem of solving multiple related optimization tasks
simultaneously to improve the overall performance of the
models learned by each task with other auxiliary tasks [22].
There is a large body of related work in the area of MTL
with different variations. For example, one area of work
is related to deep learning, intending to learn multiple
objectives from a shared representation by sharing layers
and splitting architecture in the deep neural networks [23],
[24], [25], [26], [27], [28]. Such a framework usually assumes
that data sets are collected from all the tasks in a central
server and uses a single model to do the learning. An
example is simultaneously learning the depth and semantics
of RGB images [29]. In contrast, in this paper, we consider
distributed multi-task learning where networked agents
maintain separate data sets and models without a central
server [30], [31]. While the first MTL framework is widely
used in deep learning, e.g., computer vision and natural
language processing, the second framework considered in
this paper is naturally suited for distributed learning in
multi-agent systems, such as mobile phones, autonomous
vehicles, and smart cities [2], [32], [33], [34]. We note
that the scope of this work overlaps slightly with [31],
which also studies the problem of distributed multi-task
learning. However, in [31], the focus is on the resilient
aggregation among agents in the presence of adversarial
agents. Similarities may exist among agents, and the objective
of [31] is to promote such similarities. However, agents may
not form clusters, and the objective of [31] is not related
to any clustered structure among agents. In this work, we
assume the clustered structure exists in the network. Our
goal is to make sure agents stop exchanging information
with neighbors sharing a different learning objective (i.e.,
from a different cluster) and are accurately clustered at the
end of learning.

Distributed Clustering over Networks. Clustering is a well-
known unsupervised learning technique for grouping a set
of data points [35]. In contrast, this paper deals with the
distributed clustering problem of a group of networked
agents running individual optimization tasks [16], [18],
[20], [36]. In such methods, agents perform local tasks
while simultaneously learning which neighbors they should
cooperate with by measuring their relatedness. Compared to
traditional clustering, distributed clustering is more challeng-
ing since any clustering error could lead an agent towards an
undesired model. Measuring the Euclidean distance between
the model parameters of agents is a principle method used in
distributed clustering. For example, in [16], if the Euclidean
distance is less than a pre-defined threshold, the two agents
will be clustered into the same group. Similarly, in [20], an
accumulated Euclidean distance within a time-based sliding
window is used. Adaptive weights based on Euclidean
distance are used in [18] and [36] for distributed clustering.
As we discuss in Section 4.1, measuring similarities relying
on comparing the Euclidean distance between two model
parameters could lead agents to converge to a wrong cluster,
as illustrated in our evaluation (Section 5) as well. In con-
trast, the proposed method can capture accurate clustering
information and guarantee that agents cooperate only with
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the neighbors sharing the same task. This, in turn, ensures
that agents converge to their global minimizers resulting
in an improved overall learning performance than without
cooperation.

3 CLUSTERED MULTI-TASK NETWORK

Notation. In this paper, |A| denotes the cardinality of a set A,
‖·‖ denotes the 2−norm, col{x1, . . . , xn} denotes the column
vector with entries x1, . . . , xn and diag{x1, . . . , xn} denotes
the diagonal matrix with entries x1, . . . , xn; E[·|ξ] denotes
the expected value of a random variable ξ. If the context
is clear, E[·] is used. In addition, (·)> denotes transposition,
Tr(·) is the trace of a matrix, (M)−1 is the inverse of a matrix
M , and ⊗ denotes Kronecker product of two matrices.

We consider a network of N agents modeled by an
undirected graph G = (V,E), where V represents agents and
E represents interactions between agents. A bi-directional
edge (l, k) ∈ E means that agents k and l can exchange
information with each other. Note that (k, k) ∈ E,∀k ∈ V .
The neighborhood of k is the set Nk = {l ∈ V |(l, k) ∈ E}.
Every agent is associated with a loss function rk(θ) : Rd → R,
of a vector parameter θ. It is assumed that each rk(θ) is
strongly-convex and is minimized at the unique point θ∗k.
Agents can then be categorized into Q ∈ [1, N ] mutually-
exclusive clusters {Cq; q = 1, 2, . . . , Q}, such that agents
in the same cluster share the same minimizer for their
individual loss functions. Denote the unique minimizer
for cluster Cq as θoq , then θ∗k = θoq for all k ∈ Cq . We also
assume that the underlying network topology is connected
and clusters are inter-connected so that agents may have
neighbors from different clusters. Note that agents do not
know which of the neighbors belong to the same cluster as
themselves. Agents are interested in solving the following
optimization problem:

min
{θq}Qq=1

Q∑
q=1

∑
k∈Cq

rk(θq). (1)

To solve (1) in a distributed and cooperative way, we use
the adapt-then-combine (ATC) diffusion algorithm [30] with
a clustering step in-between, which takes the following
iterative steps for an agent k at iteration i:

θ̂k,i = θk,i−1 − µk∇̂rk(θk,i−1), (adaptation) (2)

Obtain N+
k,i by clustering, (clustering) (3)

θk,i =
∑
l∈N+

k,i

alk(i)θ̂l,i, (combination) (4)

where µk is the step-size, N+
k,i is the set of neighbors belong-

ing to the same cluster as agent k at iteration i, ∇̂rk(θk,i−1)
is the stochastic gradient of the loss function rk(·) at θk,i−1,
and alk(i) denotes the weight assigned by agent k to l at
iteration i that satisfies the following constraints:∑

l∈N+
k,i

alk(i) = 1, alk(i) ≥ 0, alk(i) = 0 if l 6∈ N+
k,i. (5)

The ATC algorithm indicates that at each iteration i, agent
k minimizes the individual loss function using stochastic
gradient descent (SGD) given local data followed by a

combination step that aggregates the model parameters of
the neighbors in the same cluster according to the weights
assigned to them.

The goal of this paper is to solve the optimization problem
(1) in a distributed and cooperative way using the ATC
diffusion algorithm in (2)-(4) by designing the clustering
and combination weights (5) that agents use for cooperation.
Cooperation among agents can improve learning if they
share common objectives. However, when agents pursue
different objectives, indiscriminate cooperation leads to
undesired outcomes [37]. Therefore, the agents need to use
an accurate clustering method to learn which neighbors
share similar objectives. By doing so, agents only cooperate
with the neighbors in the same cluster and stop cooperating
with those from different clusters, thus ensuring that the
cooperation is beneficial.

4 ADAPTIVE CLUSTERING

In this section, we first propose a distributed clustering
method that allows agents to learn which neighbors are in
the same cluster. Next, we analyze the convergence and
learning performance using the proposed clustering method.
Finally, we propose a method of computing combination
weights to aggregate the model parameters of the neighbors
belonging to the same cluster that approximately optimizes
(1).

4.1 Clustering hypothesis

Distributed clustering methods are based on measuring
similarities among agents. Existing methods rely on com-
paring the Euclidean distance between two agents’ model
parameters to determine whether they belong to the same
cluster [16], [18], [19], [20], [36]. For example, in [16], the
following hypothesis test is used for agent k to determine
whether a neighbor l belongs to the same cluster:

‖θ̂l,i − θ̂k,i‖2
H0
<
>
H1

d2k,l, (6)

where H0 denotes the hypothesis that l ∈ N+
k,i and H1

denotes the hypothesis that l /∈ N+
k,i, and dk,l > 0 is a

predefined threshold.
We find that methods based on Euclidean distance

between model parameters may lead agents to cooperate
with neighbors from another cluster which could prevent
agents from converging. Consider the example shown in
Figure 1. Assume that k has only one neighbor l, and at
iteration i, agent k identifies l to be in the same cluster as
‖θ̂l,i− θ̂k,i‖2 < d2k,l. If ‖θ̂l,i− θ̂∗k‖2 > ‖θ̂k,i−θ∗k‖2, then θk,i as
a combination of θ̂k,i and θ̂l,i (given (4)) will move away from
θ∗k rendering rk(θk,i) > rk(θ̂k,i). If l is from another cluster
that moves away from θ∗k yet keeps falling into hypothesis
H0 for agent k, then k will continue to cooperate with l and
will fail to converge to θ∗k.

To ensure that agents converge to their global minimizers
using clustering-based cooperation, we propose an alterna-
tive hypothesis test as follows:

r̂k(θ̂l,i)− r̂k(θ̂k,i)
H0
≤
>
H1

0, (7)
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(a) (b)

Fig. 1: Example of an undesired outcome due to clustering
using hypothesis testing (6): (a) k identifies l to be in the
same cluster; (b) θk,i as a combination of θ̂k,i and θ̂l,i moves
away from θ∗k,i rendering rk(θk,i) > rk(θ̂k,i).

where H0 denotes the hypothesis that l ∈ N+
k,i and H1

denotes the hypothesis that l /∈ N+
k,i, and r̂k(·) is the approxi-

mation of rk(·) with E [r̂k(θ)] = E [rk(θ)]. The approximation
r̂k(·) can be performed using stacked data received in the
previous iterations. Alternatively, if we use (mini-) batch
gradient descent in the adaptation step, then the batch loss
can be used as r̂k(·).

The hypothesis test (7) indicates that the clustering is
based on measuring the loss by fitting the neighbor’s model
to an agent’s data distribution and comparing the loss with
its own loss. Therefore, we have

E [r̂k(θk,i)] = E

r̂k
 ∑
l∈N+

k,i

alk(i)θ̂l,i




≤E

 ∑
l∈N+

k,i

alk(i)r̂k(θ̂l,i)

 ≤ E
[
r̂k(θ̂k,i)

]
,

(8)

where the first inequality follows by Jensen’s inequality
assuming r̂k(·) is convex, and the second inequality follows
by the proposed clustering hypothesis test (7). Since we
assume that E [r̂k(θ)] = E [rk(θ)], it follows from (8) that

E [rk(θk,i)] ≤ E
[
rk(θ̂k,i)

]
. (9)

Thus, clustering using the hypothesis test (7) results in a
reduced loss in expectation. Later in Theorem 1, we will
show that this results in the convergence of every agent
towards their objectives.

4.2 Convergence and learning performance
We first prove the convergence of every agent k towards its
objective θ∗k using the clustering hypothesis test (7), which
ensures that agent k converges to the true cluster. Next, we
analyze the learning performance over the network using
(7). Below, we list the necessary assumptions for the loss
functions and gradient noise used in our results that are
standard in the literature [10], [16], [38].

Assumption 1. (Loss functions)
(a) Different clusters have distinct minimizers θoq 6= θor if q 6=

r. Further, the difference between every two minimizers
of two distinct clusters are sufficiently large such that
rk(θoq) < rk(θor) if k ∈ Cq and k /∈ Cr .

(b) The sequence {θk,i} for every agent k is contained in an
open set over which rk(·) is always upper-bounded by a
scalar rinf .

(c) Each individual loss function rk(θ) is strongly convex,
twice-differentiable, and has bounded Hessian matrix
function, which also implies that it has a Lipschitz
continuous gradient, i.e.,

rk(θ2) ≥ rk(θ1) + 〈∇rk(θ1), θ2 − θ1〉+
m

2
‖θ2 − θ1‖2,

∀θ1, θ2, for some m > 0.

LId ≤ ∇2rk(θ) ≤ UId,∀θ, for some 0 ≤ L ≤ U <∞.

‖∇rk(θ1)−∇rk(θ2)‖ ≤ U‖θ1 − θ2‖,∀θ1, θ2.

(d) Denote the network Hessian function

∇2R(Θ) , diag{r1(θ1), . . . , rN (θN )},

where Θ , col{θ1, . . . , θN} ∈ RNd×1. It is assumed that
∇2R(Θ) satisfies the Lipschitz condition:∥∥∇2R(Θ1)−∇2R(Θ2)

∥∥ ≤ κ ‖Θ1 −Θ2‖ ,

for any Θ1, Θ2 ∈ RNd×1 and some κ ≥ 0.

Let’s denote the stochastic gradient noise as

sk,i(θk,i−1) , ∇̂rk(θk,i−1)−∇rk(θk,i−1). (10)

We stack the noise of every agent into a vector and obtain
the network noise denoted by

Si(Θi−1) , col{s1,i(θ1,i−1), . . . , sN,i(θN,i−1)}.

We use the filtration {Fi; i ≥ 0} to represent the information
flow that is available up to the i-th iteration of the learning
process. Then, the conditional covariance of Si(Θi−1) is
denoted by

Vs,i(Θi−1) , E
[
Si(Θi−1)S>i (Θi−1)|Fi−1

]
. (11)

Assumption 2. (Gradient noise) The gradient noise satisfies
the following properties:

(a) The stochastic approximations are unbiased estimates of
gradients such that

E [Si(Θi−1)|Fi−1] = 0.

(b) The second-order moment of the stochastic gradient
process satisfies:

E
[∥∥∥∇̂rk(θi−1)

∥∥∥2 ∣∣∣∣Fi−1] ≤ α‖∇rk(θi−1)‖2 + σ2
k.

for some α ≥ 1, σs > 0.
(c) The conditional covariance function satisfies the Lips-

chitz condition:

‖Vs,i(Θ∗)− Vs,i(Θi−1)‖ ≤ β ‖Θ∗ −Θi−1‖γ , (12)

for some β ≥ 0, 0 < γ ≤ 4, with

Θ∗ , col{θ∗1 , . . . , θ∗N} = col{1|Cq| ⊗ θ
o
q ; q = 1, . . . , Q}.

(d) The conditional covariance matrix at convergence Vs ,
limi→∞ Vs,i(Θ∗) > 0 is symmetric and positive definite.
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Theorem 1. Under Assumptions 1-2, given sufficiently small step-
sizes µk ∈ (0, 1

Uα ], every normal agent k using the hypothesis
test (7) for clustering converges towards θ∗k with

lim
i→∞

supE [rk (θk,i)− rk(θ∗k)] = O(µk). (13)

Proof. Let δk(θk,i) = E [rk(θk,i)− rk(θ∗k)]. By recursion (2)-
(4) and Assumptions 1-2, using constant step-size µk ∈
(0, 1

Uα ], it follows from [38](Theorem 4.6) that the following
error recursion holds for the SGD step (2):

δk(θ̂k,i)−
µkUσ

2
k

2m
≤ (1− µkm)

(
δk(θk,i−1)− µkUσ

2
k

2m

)
.

The hypothesis test (7) requires that k cooperates only with
the neighbors incurring a loss r̂k

(
θ̂l,i
)
≤ r̂k

(
θ̂k,i
)

, which

results in (9). Thus, it follows that δk(θk,i) ≤ δk(θ̂k,i). Thus,

δk(θk,i)−
µkUσ

2
k

2m
≤ (1− µkm)

(
δk(θk,i−1)− µkUσ

2
k

2m

)
.

(14)
Given µk ∈ (0, 1

Uα ], with α ≥ 1, m ≤ U (given the property
of m-strongly convex and U -Lipschitz continuous gradient),
it holds that (1 − µkm) ∈ [0, 1). Applying (14) repeatedly
through iteration i ∈ N, we obtain

δk(θk,i) ≤
µkUσ

2
k

2m
+ (1− µkm)i

(
δk(θk,0)− µkUσ

2
k

2m

)
i→∞−→ µkUσ

2
k

2m
,

(15)

and (13) holds accordingly.

Theorem 1 indicates that every agent converges to the
objective of its cluster θoq = θ∗k if k ∈ Cq . Given Assumption
1(a), at convergence, rk(θoq) < rk(θor) if k ∈ Cq and k /∈ Cr
for any r 6= q. For any agent l /∈ Cq , suppose l ∈ Cr, then
it holds that rk(θ∗k) < rk(θ∗l ). Then, following hypothesis
test (7), at convergence, agent k will not cooperate with any
neighbor l from a different cluster. Therefore, the network
is separated into distinct connected sub-networks (groups)
where agents in the same group are from the same cluster.

Assume that there are G ∈ [Q,N ] groups, with Ng agents
in group Gg such that

∑G
g=1Ng = N . Then, the clustered

multi-task network can be reduced to multiple single-task
networks (groups). In each group, let Ag be the Ng × Ng
weight matrix with Ag , [limi→∞ alk(i); l, k ∈ Gg]. Since
agents have non-trivial self-loops (akk(i) > 0), it follows
that every weight matrix Ag is a left-stochastic and primitive
matrix [39]. Then, by the Perron-Frobenius theorem [10], [40],
such matrix has a simple eigenvalue at one and all other
eigenvalues have magnitude strictly less than one. Moreover,
let pg denote the right eigenvector of Ag that is associated
with the eigenvalue at one and normalize its entries to add
up to one. Then, the entries of pg are positive and smaller
than one, such that

Agpg = pg, p
>
g 1 = 1, 0 < pg,k < 1,

with pg = [pg,k; k = 1, 2, . . . , |pg|] .
(16)

We can then obtain the average learning performance over
the network as described in the following theorem.

Theorem 2. Under Assumptions 1-2, given sufficiently small
step-sizes µk ∈ (0, 1

Uα ] and the clustering hypothesis test (7),
the average learning performance of the network measured by the
mean-squared-deviation (MSD) of the estimated parameters is
given by

lim
i→∞

sup
1

N
E
∥∥∥Θ̃i

∥∥∥2
=

1

2N

G∑
g=1

NgTr


∑
k∈Gg

pg,kµkHk

−1∑
k∈Gg

p2g,kµ
2
kVk


 ,

(17)

where pg,k subjects to (16), and

Θ̃i , Θ∗ −Θi = col{θ̃1,i, . . . , θ̃N,i},

Hk , ∇2rk(θ∗k), Vk , lim
i→∞

E
[
sk,i(θ

∗
k)sk,i(θ

∗
k)>|Fi−1

]
.

Proof. The average MSD over the network is an average of
the MSD of each groups. Then, (17) can be easily derived
from the results of [10] (Theorem 11.3).

4.3 The proposed combination weights

Next, we consider how to optimize the weights alk(i) in
order to optimize (1), which equivalently optimize each
individual loss function. Given the clustering hypothesis
test (7), at each iteration i, an agent k clusters neighbors in
H0 as N+

k,i and cooperates only with agents in N+
k,i. Using

(4), we get an equivalent problem:

min
Ak

∥∥∥∥∥∥∥
∑
l∈N+

k,i

alk(i)θ̂l,i − θ∗k

∥∥∥∥∥∥∥
2

, subject to (5),

where Ak = [a1k(i), . . . , a|N+
k,i|k(i)] ∈ R1×|N+

k,i|. As in a
typical approximation approach [18], we consider∥∥∥∥∥∥∥

∑
l∈N+

k,i

alk(i)θ̂l,i − θ∗k

∥∥∥∥∥∥∥
2

≈
∑
l∈N+

k,i

alk(i)2
∥∥∥θ̂l,i − θ∗k∥∥∥2 . (18)

Since the loss functions rk are assumed to be m-strongly
convex, it follows that

‖θ̂l,i − θ∗k‖2 ≤
2

m

(
rk(θ̂l,i)− rk(θ∗k)

)
. (19)

Instead of directly minimizing the right side of (18),
we consider minimizing its upper bound given in
(19). Hence, by combining (18) and (19), we obtain:
minAk

∑
l∈N+

k,i
a2lk(i)

(
rk(θ̂l,i)− rk(θ∗k)

)
. Since rk(θ∗k) is

small compared to rk(θl,i), we consider the following mini-
mization problem:

min
Ak

∑
l∈N+

k,i

a2lk(i)rk(θ̂l,i), subject to (5). (20)

Using the Lagrangian relaxation and the approximation
value r̂k(·) to replace rk(·), we obtain the optimal solution
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of (20) as an approximate optimization of (1) as

alk(i) =
r̂k(θ̂l,i)

−1∑
p∈N+

k,i
r̂k(θ̂p,i)

−1 . (21)

Combined with (7), we conclude the algorithm for the
learning and clustering over networks in Algorithm 1.

Algorithm 1: Distributed learning and clustering
over networks

Input: Initialize wk,−1 for k ∈ Cq and q = 1, 2, . . . , Q.
1 for i ≥ 0 do
2 for every agent k do
3 Update θ̂k,i according to (2).
4 Send θ̂k,i and receive θ̂l,i from neighbors.
5 Cluster neighbors using (7) and obtain N+

k,i.
6 Assign weights to neighbors in N+

k,i according
to (21).

7 Aggregate neighbors’ model parameters
according to (4).

5 EVALUATION

In this section, we evaluate the proposed distributed cluster-
ing method with the weights computed using Algorithm 1
and compare the results with the case where the agents (1)
do not cooperate with each other (non-cooperative case), (2)
cooperate using the average weights (alk = 1

|Nk| ), and (3) co-
operate using the quadratic distance-based clustering hypoth-
esis test1. To avoid the selection of the user-defined parameter

dk,l in (6), we instead use ‖θ̂l,i − θk,i−1‖2
H0
≤
>
H1

‖θ̂k,i − θk,i−1‖2

as proposed in [36]. Note that the most recent work applying
the distance-based method in distributed clustering problem
is in [19].

We consider two distributed learning examples: (1) target
localization and (2) digit classification. For the classification
problem, we use convolutional neural networks (CNNs)
that are non-convex models. We show empirically that
Algorithm 1 results in better learning performance than
the other methods with correct clustering structure being
learned, for both convex and non-convex models (such
as CNNs). Note that given the setup of the distributed
clustering network, agents need to transfer their model
parameters to neighbors, a model with millions of parameters
will lead to high latency and cost, which is prohibited from a
frequent model exchange. As a result, the models and tasks
we consider in the paper are lightweight. We note that there
is considerable work addressing the multi-task clustering
problem in a single server with powerful computational
resources [41], [42]. However, these works are different from
the distributed setting considered in this paper, making them
unsuitable for comparison with ours. Detailed discussion can
be found in Section 2.

1Simulation code can be found in https://github.com/JianiLi/
DistributedClustering.

(a)

(b)

(c)

Fig. 2: Target localization (nodes in the same color share
the same target): (a) Initial network; (b) Final network
by Algorithm 1; (c) Final network by the distance-based
clustering method.

5.1 Target localization

Target localization is a linear regression problem in which the
objective is to estimate the location of a target by minimizing
the squared error loss of noisy streaming sensor data [17].
We consider a network of 100 agents randomly distributed
in a planar region W = [0, 10] × [0, 10] ∈ R2 as shown in
Figure 2a. An edge between two agents means that they
are neighbors. Agents with index numbers from 0-24, 25-
49, 50-75, 75-99 share the same target, which are indicated
using the same color. However, the agents do not know
this clustering information beforehand. The four target loca-
tions in R2 are: (100, 200), (200, 100), (100, 100), (200, 200)
respectively. At each iteration, every agent k has a noisy
observation (streaming data) of the distance dk(i) and the
unit direction vector uk,i pointing from xk to its target
based on built-in sensors. Let θk ∈ R2 denote the esti-
mation of the target location for agent k, then the loss
is given by rk(θk,i) = E

[
‖dk(i)− (θk,i − xk)>uk,i‖2

]
. The

approximation r̂k(θk,i) is computed by the last 10 stacked
streaming datapoints. The distance measurement data has
noise variance σ2

d,k ∈ [0.1, 1], and the unit direction vector
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Fig. 3: Target localization: average weight matrix over time
1

T+1

∑T
i=0 alk(i): (a) Loss-based; (b) Distance-based

has additive white Guassian noise with diagnonal covariance
matrices Ru,k = σ2

u,kI2, with σ2
u,k ∈ [0.01, 0.1] for different

k. The step-size is set to be µ = 0.1 for every agent.
The results are given in Figure 2 - Figure 5. From

Figure 2, the loss-based clustering method (Algorithm 1)
results in a clustered network at the end of the simulation
(Figure 2(b)), and no agents in two different clusters end
up being neighbors of each other. On the other hand,
the distance-based method fails to correctly capture the
clustering information (Figure 2(c)). Further, as shown in
Figure 3, in the proposed method agents cooperate only
with neighbors in the same cluster. Using distance-based
clustering, the agents failed to identify those belonging to the
same cluster. Figure 4 shows the learning loss using different
clustering methods, where solid lines are the average losses
over the network and the shadow area is the range between
the minimum and the maximum loss of the networked
agents. Our method achieves the minimum average loss and
the learning performance is better than the non-cooperative
case. Figure 5 shows the target’s estimation as a function of
time. It can be found that our method achieves smoother
and more accurate estimations than the non-cooperative case,
whereas the average and distance-based methods fail to learn
the correct targets.

5.2 Digit classification
We consider a network of twenty agents performing digit
classification tasks. We use a complete graph to model the
network topology such that every agent is connected to
all the other agents. An agent does not know which of its
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Fig. 4: Target localization: learning losses for different meth-
ods.
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Fig. 5: Target localization: estimation θk,i (1st dimension) of
every agent k (each line represents an agent) for different
methods.

neighbors are performing the same task as the agent itself.
Agents indexed by 0-9 have access to the MNIST dataset2

[43] and agents indexed by 10-19 have access to the synthetic
dataset3 that is composed by the generated images of digits
embedded on random backgrounds [44]. All the images are
preprocessed to be 28× 28 grayscale images. We use a CNN
model of the same architecture for each agent and cross-
entropy-loss. The CNN architecture we use is the same as
in [31] and is listed in Table 1. We consider that agents have
access to uneven sizes of training data such that each agent
receives 100− 1000 training data and 200 testing data from
the corresponding dataset for each iteration, similar to the
real-world examples. We use mini-batch gradient descent
with batch size of 64. The approximation r̂k(·) is computed
using the mini-batch loss. The step-size µ = 0.001 is set for
every agent.

The results are given in Figure 6 - Figure 7. From Figure 6,
using the proposed method, the clustering structure is
correctly learned and agents cooperate only with neighbors

2http://yann.lecun.com/exdb/mnist
3https://www.kaggle.com/prasunroy/synthetic-digits
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in the same cluster and stop cooperating with the agents from
the other cluster. In the case of distance-based clustering,
agents do not cooperate with any neighbors and task is
reduced to the non-cooperative case. Figure 7 shows the
training and testing loss using different clustering methods,
where solid lines are the average losses over the network
and the shadow area is the range between the minimum and
the maximum loss of the networked agents. The proposed
method achieves the minimum average training and testing
loss, and the learning performance is better than the non-
cooperative case.

Table 2 lists the final learning losses for different methods
for the two tasks. It is clear from the table that the proposed
loss-based method achieves the best learning results, as
measured by the final learning loss, for both tasks. In Table
3, we present the average precision, recall, and F1-scores for
digit classification across multiple agents. These scores are
calculated using micro averaging, a method that averages
the true positives, false negatives, and false positives for each
class in the multi-class classification problem run by each
agent. We found that the proposed method outperforms the
other methods in terms of precision, recall, and F1-scores for
the digit classification task.

TABLE 1: CNN architecture for digit classification.

Layer (type) Output Shape Param #

Conv2d-1 [-1, 32, 28, 28] 320
ReLU-2 [-1, 32, 28, 28] 0

MaxPool2d-3 [-1, 32, 14, 14] 0
Conv2d-4 [-1, 64, 14, 14] 18,496
ReLU-5 [-1, 64, 14, 14] 0

MaxPool2d-6 [-1, 64, 7, 7] 0
Conv2d-7 [-1, 64, 7, 7] 36,928
ReLU-8 [-1, 64, 7, 7] 0

MaxPool2d-9 [-1, 64, 3, 3] 0
Linear-10 [-1, 128] 73,856
ReLU-11 [-1, 128] 0
Linear-12 [-1, 10] 1,290

TABLE 2: Final learning losses for different methods.

Method Target Localization Digit Classification

No-coop 8.431e0 9.396e-4
Average 8.906e3 2.702e-3

Distance-based 2.584e3 1.003e-3
Loss-based (ours) 2.226e-1 7.911e-4

TABLE 3: Final average precision, recall, and F1-scores for
different methods for digit classification.

Method Average Precision Average Recall Average F1-score

No-coop 0.8674 0.8653 0.8627
Average 0.8367 0.8251 0.8213

Distance-based 0.8721 0.8701 0.8678
Loss-based (ours) 0.9227 0.9226 0.9190

6 CONCLUSION

Accurately capturing the clustering structure in a distributed
multi-task learning network has great significance in practice.
For example, advertising companies can use such informa-
tion to target clusters of potential customers who may be
interested in a particular product. This paper proposes an

Fig. 6: Digit classification: average weight matrix over time
1

T+1

∑T
i=0 alk(i): (a) Loss-based; (b) Distance-based
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Fig. 7: Digit classification: learning performance for different
methods.

adaptive clustering method for distributed clustered multi-
task learning network with fully decentralized agents. We
prove the convergence of agents using the proposed method
for clustering towards their objectives and analyze the learn-
ing performance. We also present a method of computing
combination weights for aggregating the neighbors’ model
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parameters to approximately optimizes network learning
performance. In the evaluation, we show that existing clus-
tering methods fail to capture the correct clustering structure
and result in worse learning performance. In contrast, the
proposed method accurately learns the clustering structure
and cooperation within such clusters improves the network
learning performance compared to the case where agents do
not cooperate with each other.
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Ananda Theertha Suresh, and Dave Bacon. Federated learn-
ing: Strategies for improving communication efficiency. CoRR,
abs/1610.05492, 2016.

[7] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S.
Talwalkar. Federated multi-task learning. In Advances in Neural
Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach,
CA, USA, pages 4424–4434, 2017.

[8] Ali H. Sayed, Sheng-Yuan Tu, Jianshu Chen, Xiaochuan Zhao, and
Zaid J. Towfic. Diffusion strategies for adaptation and learning over
networks: An examination of distributed strategies and network
behavior. IEEE Signal Processing Magazine, 30(3):155–171, 2013.

[9] Muhammed O. Sayin, N. Denizcan Vanli, Suleyman Serdar Kozat,
and Tamer Basar. Stochastic subgradient algorithms for strongly
convex optimization over distributed networks. IEEE Transactions
on Network Science and Engineering, 4(4):248–260, 2017.

[10] Ali H. Sayed. Adaptation, learning, and optimization over
networks. Foundations and Trends in Machine Learning, 7(4-5):311–
801, 2014.

[11] H. Brendan McMahan, Eider Moore, Daniel Ramage, and
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