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Abstract— In this paper, we demonstrate a conflicting
relationship between two crucial properties—controllability
and robustness—in linear dynamical networks of diffu-
sively coupled agents. In particular, for any given number
of nodes N and diameter D, we identify networks that are
maximally robust using the notion of Kirchhoff index and
then analyze their strong structural controllability. For this,
we compute the minimum number of leaders, which are the
nodes directly receiving external control inputs, needed to
make such networks controllable under all feasible cou-
pling weights between agents. Then, for any N and D, we
obtain a sharp upper bound on the minimum number of
leaders needed to design strong structurally controllable
networks with N nodes and D diameter. We also discuss
that the bound is best possible for arbitrary N and D.
Moreover, we construct a family of graphs for any N and
D such that the graphs have maximal edge sets (maximal
robustness) while being strong structurally controllable
with the number of leaders in the proposed sharp bound.
We then analyze the robustness of this graph family. The
results suggest that optimizing robustness increases the
number of leaders needed for strong structural controllabil-
ity. Our analysis is based on graph-theoretic methods and
can be applied to exploit network structure to co-optimize
robustness and controllability in networks.

Index Terms— Network controllability, network robust-
ness, network structure.

I. INTRODUCTION

IN a networked control system, controllability and robust-
ness to noise and structural changes in the network are

crucial. Controllability describes the ability to manipulate
and drive the network to the desired state through external
inputs, whereas network robustness expresses the ability of
the network to maintain its structure in the event of device
or link failures. Another aspect of robustness is the ability
to function correctly in the presence of noisy information.
Network controllability and robustness are both needed to
design networks that achieve desired goals and objectives in
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practical scenarios. However, it is often observed that networks
easier to control exhibit lesser robustness and vice versa, for
instance, see [2]. Thus, exploiting trade-offs between network
controllability and robustness can have a far-reaching impact
on the overall network design.

In this paper, we study the relationship between control-
lability and robustness in diffusively coupled leader-follower
networks represented by undirected graphs. A weighted edge
between nodes corresponds to interaction and information
exchange between nodes. We consider graphs without self
loops. Our focus is on finding extremal networks for the
above two properties. In particular, for given parameters such
as the number of nodes N and diameter D, we consider
networks with maximal robustness and then analyze their
controllability. Similarly, we design extremal networks that
are strong structurally controllable with minimal leaders (input
nodes) and then evaluate their robustness. We observe that
networks with maximum robustness to noise and structural
changes require a large number of control inputs to become
controllable, whereas networks that can be controlled through
minimum inputs exhibit diminished robustness. In particular,
for any given N and D extremal networks for controllability
and robustness properties manifest this conflicting behavior.

To characterize network robustness, we utilize a widely
used metric Kirchhoff index (Kf ), that captures both aspects
of robustness, that is the effect of structural changes in the
network as well as the effect of noise on the overall dynamics
(for instance, see [3]–[5]). To quantify control performance,
we consider the minimum number of inputs (leaders) needed
to make the network strong structurally controllable, that is,
completely controllable irrespective of the coupling weights
between nodes (e.g., see [6]–[8]). Accordingly, a network that
requires fewer leaders for strong structural controllability is
preferred over the one requiring many leaders.

Our approach relies on graph-theoretic methods to exploit
the relationship between network controllability and robust-
ness. In [5], it is shown that for any given number of nodes N
and diameter D, networks with maximum robustness belong
to a particular class of graphs known as clique chains. Our
main contributions are:

1) For any given N and D, we analyze the strong structural
controllability of maximally robust graphs, that is, clique
chains, and obtain the number of leaders needed for
the strong structural controllability of such networks
(Section IV). Consequently, we show that for fixed N
and D, networks with maximal robustness require a
large number of control inputs for controllability.
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2) For any N and D, we obtain a sharp upper bound
on the minimum number of leaders that are needed to
design strong structurally controllable networks with N
nodes and diameter D (Section V-A). For this, we utilize
the relationship between the dimension of controllable
subspace and distances between nodes in a graph, and
also discuss that the bound cannot be improved further.

3) We then construct a family of graphs for any N and D
such that the graphs are strong structurally controllable
with the number of leaders specified in the sharp bound
(in point (2) above) and also have the maximal edge sets
to achieve the best possible robustness (Section V-A).

4) Next, we analyze the robustness of such strong struc-
turally controllable networks. In particular, we provide
various upper and lower bounds on Kirchhoff indices of
such graphs (Section V-B).

5) Finally, we numerically evaluate our results (Section
VI). Our simulations also indicate that maximally con-
trollable networks are much less robust as compared to
clique chains (maximally robust) with the same N and
D (Section VI-B).

A. Related Work
Kirchhoff index or equivalently effective graph resistance

based measures have been instrumental in quantifying the
effect of noise on the expected steady state dispersion in
linear dynamical networks, particularly in the ones with the
consensus dynamics, for instance, see [3], [9]–[11]. Further-
more, limits on robustness measures that quantify expected
steady-state dispersion due to external stochastic disturbances
in linear dynamical networks are also studied in [12], [13].
To maximize robustness in networks by minimizing their
Kirchhoff indices, various optimization approaches (e.g., [14],
[15]) including graph-theoretic ones [5] have been proposed.
The main objective there is to determine crucial edges that
need to be added or maintained to maximize robustness under
given constraints [16].

To quantify network controllability, several approaches have
been adapted, including determining the minimum number of
inputs (leader nodes) needed to (structurally or strong struc-
turally) control a network, determining the worst-case control
energy, and metrics based on controllability Gramians (e.g.,
see [17]–[19]). Since strong structural controllability does not
depend on coupling weights between nodes, it is a generalized
notion of controllability with practical implications. There
have been recent studies providing graph-theoretic character-
izations of this concept [6]–[8], [20]. There are numerous
other studies regarding leader selection to optimize various
network performance measures under constraints, such as, to
minimize the deviation from consensus in a noisy environment
[21], [22], and to maximize various controllability measures
[23]–[27]. Recently, optimization methods are also presented
to select leader nodes that exploit submodularity properties of
performance measures for network robustness and structural
controllability [18], [28].

Recently in [2], [29], trade-off between controllability and
fragility in complex networks is investigated. Fragility mea-
sures the smallest perturbation in edge weights to make the

network unstable. Pasqualetti et al. [2] show that networks
that require small control energy, as measured by the eigen
values of the controllability Gramian, to move from one state
to another are more fragile and vice versa. In our work, for
control performance, we consider minimum leaders for strong
structural controllability, which is independent of coupling
weights; and for robustness, we utilize the Kirchhoff index,
which measures robustness to noise as well as to structural
changes in the underlying network graph. Moreover, in this
work, we focus on designing and comparing extremal net-
works for these properties.

The rest of the paper is organized as follows: Section II
describes preliminaries, network measures, and also outlines
the main problems. Section III overviews strong structural
controllability bounds in leader-follower networks. Section IV
analyzes the controllability of maximally robust networks for
given N and D. Section V provides a design of maximally
controllable networks and evaluates the robustness of such
networks. Section VI numerically evaluates these results, and
finally, Section VII concludes the paper.

II. PRELIMINARIES, NETWORK MEASURES AND
PROBLEMS

In this section, we present preliminaries, network controlla-
bility and robustness measures, and define our main problems.

A. Preliminaries
We consider a network of agents modeled by a simple (loop-

free) undirected graph G = (V, E), in which the node set V =
{1, 2, . . . , N} represents agents and the edge set E ⊆ V × V
represents inter-connections between agents. A node u is a
neighbor of v if an edge exists between u and v, which is
denoted by an unordered pair (u, v). The neighborhood of u
is denoted by Nu = {v ∈ V|(u, v) ∈ E}. The degree of node
u is simply the number of nodes in its neighborhood, that is
|Nu|. The distance between nodes u and v, denoted by d(u, v),
is the number of edges in the shortest path between u and v.
The diameter of G, denoted by D, is the maximum distance
between any two nodes in G. A graph is weighted if edges are
assigned weights using a weighting function

w : E −→ R+. (1)

The adjacency matrix of G is defined as

Aij =

{
w(i, j) if (i, j) ∈ E ,

0 otherwise. (2)

Similarly, the degree matrix of G is defined as

∆ij =

{ ∑
k∈Ni

Aik if i = j,

0 otherwise.
(3)

The Laplacian of G is then defined as

L = ∆−A. (4)

We consider that edges in G are assigned weights from the
interval [wmin, wmax], where wmin, wmax > 0. However, we
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assume that the exact values of edge weights are unknown due
to system uncertainty. Accordingly, we investigate the network
structures with optimal robustness and controllability under the
worst-case allocations of edge weights from the feasible set.
We provide the corresponding measures of controllability and
robustness in the following subsections.

B. Network Controllability Measure
For the network controllability analysis, we consider a

network G = (V, E), in which each agent i updates its state
xi ∈ R by the following dynamics

ẋi(t) = −
∑
j∈Ni

w(i, j)(xi(t)− xj(t)), (5)

where w(i, j) is the coupling strength between nodes i and j.
Moreover, to control and drive the network as desired, external
control inputs are injected through a subset of these nodes
called leaders. The dynamics of the leader node i is,

ẋi(t) = −
∑
j∈Ni

w(i, j)(xi(t)− xj(t)) + ui(t). (6)

Let the set of leaders be represented by VL = {`1, . . . , `k} ⊆
V . We call the remaining (V\VL) nodes that follow the simple
consensus dynamics in (5) followers. If the total number
of nodes is N and the number of leader nodes is k, then
the overall system level dynamics can be written using the
underlying graph’s Laplacian as

ẋ(t) = −Lx(t) + Bu(t), (7)

where x(t) =
[
x1(t) x2(t) · · · xN (t)

]T ∈ RN be the
state vector, u(t) ∈ Rk be the control input to the leaders, and
B be an N × k input matrix whose ijth entry is 1 if node i
is also a leader `j , that is

Bij =

{
1 if i = `j
0 otherwise. (8)

A state x ∈ RN is reachable if there exists some input
that can drive the system in (7) from origin to x in a finite
amount of time. A set of all reachable states constitutes
the controllable subspace, which is the range space of the
following matrix.

Γ(G,VL) =
[
B −LB (−L)2B · · · (−L)N−1B

]
(9)

Here, VL ⊆ V is the set of leader nodes (defining the input
matrix B). The dimension of controllable subspace is the rank
of Γ, which needs to be N for complete controllability. The
rank of Γ depends not only on the edge set of the graph, but
also on the edge weights. In fact, a graph that is controllable
for one set of edge weights might not remain controllable if
edge weights are changed.

Definition For a given graph G and leader nodes (inputs), the
minimum rank of Γ for any choice of non-zero edge weights
is the dimension of strong structurally controllable subspace,
or simply the dimension of SSC.

A graph G is said to be strong structurally controllable
(SSC) with a given set of leaders VL, if the resulting con-
trollability matrix Γ(G,VL) is full rank with any choice of

non-zero edge weights. In this case, we say that (G,VL) is a
strong structurally controllable (SSC) pair. Thus, in a strong
structurally controllable network, perturbation in edge weights
has no effect on the dimension of controllable subspace,
which makes the notion of strong structural controllability
particularly useful in situations where precise edge weights
are not known due to uncertainties, numerical inaccuracies,
and inexact system parameters. As a result, we are interested
in finding the minimum number of leaders required to make
a network strong structurally controllable.

C. Network Robustness Measure

To analyze network robustness, we utilize the notion of
Kirchhoff index of a weighted graph, denoted by Kf (G, w),
and defined as

Kf (G, w) = N

N∑
i=2

1

λi
, (10)

where N is the number of nodes and λ2 ≤ λ3 ≤ · · ·λN
are the positive eigenvalues of the weighted Laplacian of the
graph as defined in (4). Our motivation to use Kf (G, w) here
is twofold.

First, it is very useful in characterizing the functional
robustness, which is robustness to noise of linear consensus
dynamics over networks. In a connected network G = (V, E),
if agents follow the consensus dynamics as in (5), then global
consensus is guaranteed, limt→∞ x(t) ∈ span{1}, for any
x(0) ∈ RN . However, in the presence of noise, that is,
if ẋi(t) = −

∑
j∈Ni

w(i, j)(xi(t) − xj(t)) + ξi(t), where
ξ(t) ∈ R is i.i.d. white Gaussian noise with zero mean
and unit covariance, perfect consensus cannot be achieved.
Instead, some finite steady state variance of x(t) is observed on
connected graphs [3], [30]. Accordingly, the robustness of the
network to noise is quantified through the expected population
variance in steady state, i.e.,

H(G, w) := lim
t→∞

1

N

n∑
i=1

E[(xi(t)− x̃(t))2], (11)

where x̃(t) ∈ R denotes the average of xi(t) for all i. It is
shown in [3], [31] that

H(G, w) =
Kf (G, w)

2N2
. (12)

Thus, a higher value of Kf (G, w) means more dispersion
in the steady state, which means the network is less robust
to noise and vice versa. In other words, functional robustness
and Kirchhoff index are inversely proportional to each other.

Second, from a structural viewpoint, Kirchhoff index of
a network also captures its structural robustness—ability of
the network to retain its structural attributes in the case of
edge (link) or node deletions. It assimilates the effect of
not only the number of paths between nodes, but also their
quality as determined by the lengths of paths [5]. For a
detailed discussion, we refer the readers to [4], [5], [14]. For
a higher robustness to noise and structural changes, we desire
a network to have a smaller Kf (G, w). Note that for a given
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G, Kf (G, w) is a function of weights assigned to edges. In
this work, we assess the network robustness based on the
largest possible value of Kf (G, w) attained when the edge
weights are assigned independently from a bounded interval
[wmin, wmax] by an adversary, that is,

K(G) := max
w(i,j)∈[wmin, wmax],

∀(i,j)∈E

Kf (G, w). (13)

In other words, we consider the robustness of network G in
the worst case with edge weights selected from the interval
[wmin, wmax], where wmin, wmax > 0. Since minimizing
K(G) means maximizing the worst-case robustness, our goal
for the network design purpose will be to minimize K(G) and
design a network with the maximum worst-case robustness.

Remark 2.1: We note that the Kirchhoff index of a
weighted graph strictly decreases when edge weights are
increased [5, Theorem 2.7]. An immediate consequence is
that the solution to the problem in (13) is to assign wmin
to all edges in G (as also discussed in [31]). At the same
time, we observe that if all edges in G are multiplied by a
constant α > 0, then Kf (G, αw) = Kf (G, w)/α [31]. Thus,
if we define Kf (G) to be the Kirchhoff index of G in which
all edges have unit weights (G is unweighted), then using the
above observations, we can write (13) as

K(G) =
Kf (G)

wmin
. (14)

Since wmin is some constant, it suffices to consider the
Kirchhoff index of the graph with unit weights, that is Kf (G),
to analyze the network robustness as defined in (13).

Thus, from here on, we use Kf (G) (Kirchhoff index of the
graph with unit edge weights) as the robustness measure of
G. We simply use Kf instead of Kf (G) when the context is
clear.

D. Problems

We are interested in exploring relationships between ro-
bustness and controllability (as defined above) in diffusively
coupled systems (7). In particular, we focus on extremal cases,
and look at the following problems.

1. For given number of nodes N and diameter D, maximally
robust graphs are clique chains. How many leaders are
necessary and sufficient for the strong structural control-
lability of clique chains?

2. For any N and D, what is the minimum number of
leaders needed to design strong structurally controllable
networks with N nodes and D diameter?

3. Construct a family of graphs for any N and D such that
graphs have maximal edge sets (for maximal robustness)
while being strong structurally controllable with the num-
ber of leaders obtained above (in point (2)).

4. What are the upper and lower bounds on the Kirchhoff
index of graphs obtained in point (3)?

III. BACKGROUND ON STRONG STRUCTURAL
CONTROLLABILITY AND MAXIMALLY ROBUST NETWORKS

In this section, first, we review tight lower and upper
bounds on the dimension of SSC that we will use to compute
leaders that are necessary and sufficient for strong structural
controllability. Second, we describe networks that are known
to have maximum robustness among all networks with N
nodes and D diameter.

A. Lower Bound on the Dimension of SSC based on
Distances in Graphs

Here, we present a tight lower bound on the dimension of
SSC that is based on distances between nodes in a graph [7].
Let G(V, E) be a leader-follower graph with k leader nodes
VL = {`1, `2, · · · , `k}. For each node i ∈ V , we define a
distance-to-leader vector Si ∈ Zk+ such that the jth entry of
Si, denoted by Si,j , is the distance of node i with the leader
j, that is,

Si =
[
d(i, `1) d(i, `2) · · · d(i, `k)

]T
.

An illustration of the distance-to-leader vectors is shown in
Figure 1. Next, we construct a sequence of such vectors
satisfying some monotonicity conditions.

Definition (PMI Sequence) A sequence of distance-to-leader
vectors, denoted by S =

[
S1 S2 · · · SN

]
, is called a

pseudo-monotonically increasing (PMI) sequence if for each
Si ∈ S, there exists an index α(i) ∈ {1, 2, · · · , k} such that

Si,α(i) < Sj,α(i), ∀j > i.

Here, each Si ∈ Zk+ where k is the number of leaders
in the network. We are particularly interested in finding a
PMI sequence of distance-to-leader vectors with the maximum
length. An example of such a sequence for the network in
Figure 1 is,

S =

[ [
0©
2

]
,

[
2
0©

]
,

[
1©
1

]
,

[
2©
1

]
,

[
3
1©

] ]
.

Note that for each vector, there is an index—of the circled
value—such that values of all the subsequent vectors at the
corresponding index are strictly greater than the circled value.
For instance, the value at the first index is circled in the vector[

0
2

]
, and values at the first indices of all the subsequent

vectors are greater than 0.

`1

`2

[
0
2

]

[
1
1

]

[
1
1

]

[
2
0

]

[
2
1

] [
3
1

]

[
3
1

]

Fig. 1: A graph with two leaders `1, `2 and distance-to-leader
vectors of all nodes.

We have shown in [7] that PMI sequences of distance-
to-leader vectors in leader-follower networks are particularly
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useful in studying their strong structural controllability. In this
work, we use the following result:

Theorem 3.1: [7] In leader-follower networks, the dimen-
sion of SSC is lower bounded by the maximum possible length
of any PMI sequence of distance-to-leader vectors of nodes.

If the maximum length of a PMI sequence of distance-to-
leader vectors in a graph is equal to the number of nodes in a
graph, we say that the graph has a full PMI sequence. Hence,
if G has a full PMI sequence with a set of leaders VL, then
(G,VL) is a strong structurally controllable pair.

B. Upper Bound based on the Dimension of SSC based
on the Maximal Leader-Invariant External Equitable
Partition

Here, we discuss an upper bound on the dimension of SSC
that is based on a particular partitioning of nodes described as
follows: let G(V, E) be a leader-follower network, whose nodes
are partitioned into cells C1, · · · , Ck such that ∪ki=1Ci = V .
Let Ci, Cj be two distinct cells and i ∈ Ci, then the node
to cell degree of i to Cj is |Ni ∩ Cj |, and is denoted by
δ(i, Cj). A partition is a leader-invariant external equitable
partition (LIEEP), denoted by Π, if the following conditions
are satisfied.

1. Each leader node is in a singleton cell, that is, if ` is a
leader and it is in a cell C`, then C` = {`}.

2. For any cell Ci, let u, v ∈ Ci, then

δ(u,Cj) = δ(v, Cj), ∀Cj 6= Ci.

A partition is maximal LIEEP, denoted by Π∗, if it is LIEEP
and has the minimum number of cells among all LIEEPs. We
note that the maximal LIEEP of a graph is unique [32]. An
important result that relates the notion of maximal LIEEP to
controllability in leader-follower networks is as follows:

Theorem 3.2: [32], [33] In an undirected leader-follower
network in which each edge has a unit weight, the dimension
of controllable subspace is upper bounded by the number of
cells in the maximal LIEEP.

A direct consequence of the above theorem is that the
dimension of SSC in an undirected leader-follower network is
upper bounded by the number of cells in the maximal LIEEP.
Similarly, we obtain the following corollary.

Corollary 3.3: If (G,VL) is a strong structurally control-
lable pair, then the maximal LIEEP of G consists of only
singleton cells.

C1

C2

C3

C4 C5

`1

`2

Fig. 2: Maximal LIEEP of the graph consisting of five cells.
`1 and `2 are leader nodes and are in singleton cells.

C. Maximally Robust Networks
Next, we describe maximally robust graphs for any fixed N

and D. These graphs belong to a special class known as the
clique chain, and have minimum Kf among all graphs with
N nodes and D diameter.

Definition (Clique chain [5]) Let n1, n2, · · · , nD, nD+1 be a
set of positive integers and N =

∑D+1
i=1 ni, then a clique chain

of N nodes and diameter D is a graph obtained from a path
graph of diameter D, that is PD+1, by replacing each node
with a clique of size ni such that the vertices in distinct cliques
are adjacent if and only if the corresponding original vertices
in the path graph are adjacent. We denote such a clique chain
by GD(n1, · · · , nD+1).

An example is illustrated in Figure 3.

Kn1

Kn2 Kn3

Kn4

Fig. 3: A clique chain G3(1, 2, 2, 1) with 6 nodes and diameter
3 with n1 = 1, n2 = 2, n3 = 2, and n4 = 1.

It is shown in [5] that for given N and D, graphs that
achieve the minimum Kf are necessarily clique chains of
the form GD(n1 = 1, n2, · · · , nD, nD+1 = 1) where N =∑D+1
i=1 ni. Note that the n1 and nD+1 are always 1 in optimal

clique chains.

IV. CONTROLLABILITY OF MAXIMALLY ROBUST
NETWORKS

In this section, we analyze the strong structural controlla-
bility of maximally robust graphs, that is, clique chains. We
show that such networks require a large number of leaders for
strong structural controllability. The main result of this section
is stated below.

Theorem 4.1: Let GD(n1, · · · , nD+1) be a clique chain
with diameter D > 2, and k be the number of leaders needed
for the strong structural controllability of GD, then

N − (D + 1) ≤ k ≤ N −D. (15)
We prove this result in Section IV-A by the graph-theoretic

tools for the controllability of networked systems. In particular,
we utilize the notions of
• maximal leader invariant external equitable partitions

(LIEEP) [32], [33] to get the lower bound, and
• the notion of distance-to-leader vectors and pseudo-

monotonically increasing sequences (PMI) that we intro-
duced in [7] to get the upper bound.

We have explained these concepts with examples and relevant
results in Section III for completeness and clarity.

To obtain the lower bound in (15), we first note that
the maximal LIEEP consisting of only singleton cells is a
necessary condition for controllability (Theorem 3.2). Next,
we determine the minimum number of leaders to have such
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a maximal LIEEP, which directly gives the minimum number
of leaders for strong structural controllability. For the upper
bound in (15), we determine the minimum number of leaders
such that the graph has a full PMI sequence, which in turn
would imply that the network is strong structurally controllable
with that many leaders (Theorem 3.1). A detailed proof is
given below.

A. Proof of Theorem 4.1
We first prove the lower, and then the upper bound in (15).
1) Lower Bound: The following result simply states that in

the maximal LIEEP of a clique chain, all the non-leader nodes
of a clique Kni

will be in the same cell.
Lemma 4.2: Let GD(n1, · · · , nD+1) be a clique chain and

Π∗ be its maximal LIEEP. If u, v are non-leader nodes in the
same clique Kni , then they belong to the same cell C of Π∗.
Proof – Assume u, v ∈ Kni

belong to two different cells C1

and C2 of Π∗. Since u and v belong to the same clique, their
neighborhoods are exactly the same, which implies δ(v, Cx) =
δ(u,Cx), ∀Cx /∈ {C1, C2}. This means, we can combine C1

and C2 into one cell, and have a LIEEP with one lesser cell,
which contradicts that Π∗ is optimal.

Next, we show that in the maximal LIEEP of clique chain, a
cell that contains non-leader nodes of a clique with a leader(s),
contains the non-leader nodes of that clique only.

Lemma 4.3: Consider a clique chain GD(n1, · · · , nD+1)
with D > 2. Let `, v be respectively, a leader and a non-
leader node in some clique Kni

. Also let Cv be the cell of v
in the maximal LIEEP Π∗ of G. For any other node u ∈ Cv ,
u lies in the same clique Kni .
Proof – Proof is by contradiction. Let C` be the singleton
cell containing `. Clearly nodes u, v must be neighbors in GD
as otherwise δ(v, C`) 6= δ(u,C`). Assume, without loss of
generality, that u ∈ Kni+1

. Note that i+ 1 is at most D + 1.
If i + 1 < D + 1, let node w belongs to Kni+2 , and be

included in a cell Cw. Note that Cw cannot contain any node
that is adjacent to `. Since all nodes in the neighborhood of
v are adjacent to `, Cw does not contain any neighbor of v.
This means that δ(v, Cw) = 0. However, u that is in the same
cell as v, is adjacent to w, and thus has δ(u,Cw) > 0, which
is not possible in Π∗. Thus u and v are not in the same cell
in this case.

If i+1 = D+1, consider a node u′ ∈ Kni−1 . Since a node
w ∈ Kni−2

(such a node exists because D > 2) is adjacent
to u′ and not adjacent to v, Cu′ 6= Cv . By Lemma 4.2 all
non-leader nodes in Kni−1

are in Cu′ and none of the non-
leader nodes in Kni

⋃
Kni+1 are in Cu′ . Clearly δ(u,Cu′) <

δ(v, Cu′). Hence, u and v cannot be in the same cell, which
is a contradiction.

Next we state the following result that directly gives a lower
bound in (15).

Proposition 4.4: Let GD(n1, n2, · · · , nD+1) be a clique
chain with D > 2, then the number of leaders needed to
have the maximal LIEEP of GD in which each node is in a
singleton cell, is at least N − (D + 1).

Proof – Let Π∗ be the maximal LIEEP with all nodes in
singleton cells. From Lemma 4.2, we know that all the non

leader nodes of a clique Kni
will be in the same cell in Π∗.

Moreover, from Lemma 4.3, we deduce that if Kni is a clique
with a leader node(s), then all the non-leader nodes of Kni

will be in the same cell and that cell does not contain a node
of any other clique. Thus, we need at least (ni− 1) leaders in
the clique Kni

to have all of its nodes in singleton cells in Π∗.

Thus, the minimum number of leaders in Π∗ is
D+1∑
i=1

(ni−1) =

N − (D + 1).

For strong structural controllability, maximal LIEEP in
which each node is in a singleton cell, is a necessary condition
(Theorem 3.2). By Proposition 4.4, we need at least N−(D+
1) leaders to have such a maximal LIEEP, which gives us a
lower bound on the number of leaders as in Theorem 4.1.

2) Upper Bound: We first state the following result that uses
the notion of PMI sequence explained in Section III-A.

Lemma 4.5: Let GD(n1, n2, · · · , nD+1) be a clique chain
with D > 2, then N − D leaders are enough to have a full
PMI sequence in GD.

Proof – If we add a node u from the first clique to the
leader set, then there are at least D nodes (not including u)
that are at distinct distances from u. Save these D nodes, and
include all the remaining nodes in the graph to the leader set.
With such a set of leader nodes, we get a full PMI sequence
of distance-to-leader vectors.

The above lemma implies that N −D leaders are sufficient
for the strong structural controllability of clique chains.

V. MAXIMALLY CONTROLLABLE NETWORKS AND THEIR
ROBUSTNESS

In the previous section, we looked at maximally robust
networks, and analyzed their controllability. Here, we obtain
graphs that are strong structurally controllable with the mini-
mum leaders and evaluate their robustness.

A. Maximally Controllable Networks
For given positive integers N and D, let G(N,D) be the

set of all graphs with N nodes and diameter D. Moreover, for
a given G, we define L(G) to be the family of all leader sets
as follows:

L(G) := {VL ⊆ V : (G,VL) is an SSC pair.} (16)

Then, we define kmin(G) to be the minimum number of
leaders to make G strong structurally controllable, that is,

kmin(G) := min
VL∈L(G)

|VL|. (17)

We are interested in the minimum value of kmin(G) among
all graphs in G(N,D). Thus, we define

kmin(N,D) := min
G∈G(N,D)

kmin(G). (18)

Here, our goal will be
• to compute a sharp upper bound on kmin(N,D) (Theo-

rem 5.7), and



ABBAS et al.: TRADE-OFF BETWEEN CONTROLLABILITY AND ROBUSTNESS IN DIFFUSIVELY COUPLED NETWORKS) 7

• to construct graphs with N nodes and D diameter that
are strong structurally controllable with the number of
leaders specified in the bound.

To compute a kmin(N,D) bound, we again use the notion
of PMI sequences of distance-to-leader vectors. Note that if
G has a full PMI sequence of distance-to-leader vectors with
VL leaders, then (G,VL) is an SSC pair.

For a given G, we define L′(G) to be the family of all leader
sets VL ⊆ V as follows:

L′(G) := {VL ⊆ V : G has a full PMI sequence with VL}
(19)

Note that L′(G) ⊆ L(G). Then, we define

k′min(G) := min
VL∈L′(G)

|VL|, (20)

and also let

k′min(N,D) := min
G∈G(N,D)

k′min(G). (21)

Here, we observe that kmin(G) ≤ k′min(G), and thus, for
any N and D

kmin(N,D) ≤ k′min(N,D). (22)

Next, we focus on computing the exact value of
k′min(N,D). For this, we first compute an upper bound on
k′min(G) for any G. Recall that eccentricity ev of a node v
is defined as the maximum distance of a node from v, i.e.,
ev = maxu∈V d(v, u). We have the following general result
for minimum number of leaders required to have a full PMI
sequence:

Theorem 5.1: Let G be a graph with N nodes, and k
leaders such that G has a full PMI sequence, then

N ≤ 1 +

k∑
i=1

ei

where ei is the eccentricity of leader `i.
Proof – Without loss of generality, let [v1, v2, . . . , vN ] be

a sequence of nodes whose corresponding distance-to-leader
vectors constitute a full PMI sequence in that order. We will
construct a sequence of integers (i.e. defined as s(i,N)) whose
length is same as the full PMI sequence defined above. A
bound on length of this sequence will imply the claim of
the theorem. Let `1 . . . , `k be the leader nodes. For a pair
of nonnegative integers 1 ≤ a < b ≤ N , we observe that for
all leader nodes `i,

min
a≤j≤N

d(`i, vj) ≤ min
b≤j≤N

d(`i, vj) (23)

Further, by the definition of PMI sequence, there always exists
at least one leader `i′ for which

min
a≤j≤N

d(`i′ , vj) < min
b≤j≤N

d(`i′ , vj). (24)

Next, consider the following sequence of integers,[
s(1,N) s(2,N) · · · s(N,N)

]
, (25)

where,

s(a,N) ,
k∑
i=1

min
a≤j≤N

d(`i, vj). (26)

Now, (23) and (24) directly imply that the above sequence is
a strictly increasing integer sequence with all possible values in
the set {1, 2, · · · ,

∑k
i=1 ei}∪{0}, and hence, N ≤ 1+

∑k
i=1 ei

by the pigeonhole-principle.

Since the maximum eccentricity of a node in a graph is at
most the diameter of the graph, Theorem 5.1 provides us the
following main result.

Corollary 5.2: If G ∈ G(N,D) and k′min(G) is the mini-
mum number of leaders needed to have a full PMI sequence
of distance-to-leader vectors in G, then

k′min(G) ≥
⌈
N − 1

D

⌉
. (27)

Next, we show that for any N and D, there always exist
graphs in G(N,D) that have full PMI sequences of distance-
to-leader vectors (and hence are strong structurally control-
lable) with exactly dN−1D e leaders. A direct consequence of
this and (27) would be k′min(N,D) = dN−1D e, and then using
(22), we would get kmin(N,D) ≤ dN−1D e. To construct such
graphs, our approach is as follows:

• First, for given positive integers k and D, we construct
a sequence of N = kD + 1 vectors satisfying the PMI
property. Each vector in the sequence is k-dimensional
and contains values from the set {0, 1, · · · , D}.

• Second, we construct a graph with N nodes and k
leaders such that the distance-to-leader vectors of nodes
are exactly the same as the vectors obtained in the
above step. Thus, the constructed graph has a full PMI
sequence of distance-to-leader vectors. The maximum
distance between any leader and non-leader node in such
a graph will be D.

• Third, we densify the above graph, that is, maximally
add edges to the graph while ensuring that the distance-
to-leader vectors of nodes do not change. Consequently,
we get graphs with N nodes, D diameter and k leaders.
Adding edges always reduces Kf and hence, improves
robustness [5]. The graphs obtained have full PMI se-
quences of distance-to-leader vectors, and are strong
structurally controllable.

To construct sequences, we state the following proposition.
Proposition 5.3: Let S(i, k) define the following set of k

vectors in Zk:

S(i, k) =


i i+ 1 . . . i+ 1
i i . . . i+ 1
...

...
. . .

...
i i . . . i

 ,
then the following sequence of kD + 1 vectors in Zk defines
a PMI sequence for any positive integers k and D.

0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

S(1, k) S(2, k) . . . S(D − 1, k)

D
D
D
...
D


(28)
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Graph Construction: Next, we construct a graph M with
k leaders and N = kD + 1 nodes whose distance-to-leader
vectors are same as in (28). To do so, consider a vertex set

V = {`i} ∪ {x} ∪ {ui,j} ,

where i ∈ {1, 2 · · · , k} and j ∈ {1, 2, · · · , D − 1}. Nodes
in {`1, `2, · · · , `k} are leaders. We connect these vertices as
follows:
• All leader nodes `i are pair-wise adjacent and induce a

clique.
• x is adjacent to each `i and ui,1, ∀i ∈ {1, · · · , k}.
• For each i ∈ {2, · · · , k}, ui,1 is adjacent to leaders `p,
∀p ∈ {i, i+ 1, · · · , k}.

• For each i ∈ {1, · · · , k}, ui,j is adjacent to ui,j+1, where
j ∈ {1, · · · , D − 1}.

The above construction is illustrated in Figure 4.

...
...

· · ·

· · ·

· · ·

`1

`2

`k−1

`k

u1,1

u2,1

uk,1

u1,2

u2,2

uk−1,2

uk,2

x

uk,D−1

uk−1,D−1

u2,D−1

u1,D−1

uk−1,1

...
...

· · ·

Fig. 4: Graph M with N = kD + 1 nodes, where k is the
number of leaders and D is the maximum distance between a
leader `i and some other node. Here, d(`i, u1,D−1) = D,∀i.

Next, we compute the distance-to-leader vectors of nodes
in M as follows:
• For all i ∈ {1, · · · , k}, the distance-to-leader vector of `i

is a vector of all 1’s except at the ith index , where it is
0. For the node x, it is a vector of all 1’s.

• For node u1,j , where j ∈ {1, · · · , D − 1}, it is a vector
in which all entries are j + 1.

• For node ui,j , where i ∈ {2, · · · , k} and j ∈ {1, · · · , D−
1}, the distance-to-leader vector has first (i − 1) entries
equal to (j + 1) and the remaining entries are j, that is,[

j + 1 · · · j + 1 j j · · · j
]T
. (29)

Here, j is the ith element of the vector.
Next, we consider the following sequence of nodes,

[`1, `2, · · · , `k, x, u2,1, u3,1, · · · , uk,1, u1,1,
u2,2, u3,2, · · · , uk,2, u1,2, u2,3, u3,3, · · · , uk,3, u1,3,

· · · , u2,D−1, u3,D−1, · · · , uk,D−1, u1,D−1]. (30)

If the distance-to-leader vectors of nodes inM are arranged
in the same order as in (30), we get the same sequence as in
(28), which is a PMI sequence of length N . Hence, M has a
full PMI sequence, and is strong structurally controllable.

Example: Consider the graph in Figure 5, with N = 21
nodes and k = 4 leaders. For any leader `i, the maximum
distance between `i and any other node is D = 5. A full
PMI sequence of distance-to-leader vectors is given below.

Note that for each vector, there is an index (row index of the
circled value) such that the corresponding row value of all the
subsequent vectors in the sequence is strictly larger than the
circled value, thus constituting a full PMI sequence.


`1 `2 `3 `4 x u2,1 u3,1 · · · u3,4 u4,4 u1,4

0© 1 1 1 1© 2 2 5 5 5©
1 0© 1 1 1 1© 2 · · · 5 5 5
1 1 0© 1 1 1 1© · · · 4© 5 5
1 1 1 0© 1 1 1 4 4© 5



`2

`3

`1

x
u1,1 u1,2 u1,3 u1,4

`4 u4,1 u4,2 u4,3 u4,4

Fig. 5: A graph M with 21 nodes and 4 leaders.

Adding Edges to GraphM: We note that removing an edge
fromM could change the distance-to-leader vectors of nodes.
However, we can add edges to M to improve its robustness
by lowering the Kirchhoff index. Next, we construct a new
graph M̄ by maximally adding edges to M while preserving
distances between leaders and all other nodes. Consequently,
all distance-to-leader vectors and resulting PMI sequence of
M and M̄ are same. We describe the addition of new edges
below.
• For a fixed j, all the nodes in ui,j , where i ∈ {i, · · · , k}

induce a clique.
• Each ui,j is adjacent to u1,j−1.
• For a fixed j > 1, each ui,j , where i > 1, is adjacent to
up,j−1, ∀p ∈ {i+ 1, · · · , k}.

An example of M̄ obtained from M for N = 21, D = 5,
and k = 4 is shown in Figure 6.

`2

`3

`1

x

u1,1 u1,2 u1,3 u1,4

`4 u4,1 u4,2 u4,3 u4,4

Fig. 6: Construction of M̄ by adding a maximal edge set (red
edges) to M. Here N = 21, k = 4 and D = 5.

Proposition 5.4: For a fixed k and D, the graph M̄ is
maximal in the sense that adding any new edge would change
the distance-to-leader vector of some node.
Proof – We classify edges that can be added to M̄ into four
types, and will rule them out one by one.

1) Edge (x, ui,j) where i > 1: such an edge would reduce
the distance d(`1, ui,j).

2) Edge (`j , ui,j′) where ui,j′ /∈ N`j : such an edge would
reduce the distance d(`j , ui,j′).
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3) Edge (u1,j , ui,j′) where i > 1, j > j′: such an edge
would reduce the distance d(`i, u1,j).

4) Edge (ui,j , ui′,j′) where i < i′, j < j′: such an edge
would reduce the distance d(`i, ui′,j′).

There is only one other edge (`1, u1,1), and clearly we cannot
add it without changing the distance between `1 and u1,1.

Next, we state the following:
Proposition 5.5: If D is the maximum distance between

a leader node `i and some other node in M, then D is the
diameter of M̄ constructed from M.

Proof – Nodes u1,j , u2,j , . . . , uk,j make a clique for all
1 ≤ j ≤ D − 1, and ui,1, ui,2, . . . , ui,D−1 is a path of length
D−2. Therefore d(ui,j , ui′,j′) ≤ D for all such pairs of nodes.
Since all distance-to-leader vectors are preserved in M̄ due
to Proposition 5.4, farthest node from each leader is still at
distance D. Thus the graph M̄ has diameter D.

Remark 1 – So far, we have assumed that N = kD +
1 for some integer k. However, we can obtain the de-
sired graph for any N by modifying M̄. Let Na be the
actual number of nodes, and D be the desired diameter,
then we construct a graph M̄ with N = kD + 1 nodes
where k = dNa−1

D e. We need at least that many leaders
to have a graph with a full PMI sequence (Theorem 5.2).
Since Na < N , we need to delete (N − Na) nodes from
M̄. We delete the required number of nodes in the fol-
lowing order: first, we delete the nodes (in the same or-
der) u1,D−1, uk,D−1, uk−1,D−1, uk−2,D−1, · · · , u3,D−1, then
u1,D−2, uk,D−2, uk−1,D−2, uk−2,D−2, · · · , u3,D−2, and so on
until the total number of nodes in the remaining graph is Na.
Note that the nodes u2,D−i, where i ∈ {1, 2, · · · } are not
deleted to preserve the diameter D. In fact, it is easy to verify
that as a result of nodes deletion, the distance-to-leader vectors
of nodes in the remaining graph remain the same as in the
original graph, and hence the maxium length PMI sequence
of distance-to-leader vectors of nodes in the remaining graph
has length Na (full PMI sequence). Thus, we can state the
following proposition.

Proposition 5.6: For any N and D, there exist graphs in
G(N,D) that have full PMI sequences of distance-to-leader
vectors with k = dN−1D e leaders.

Now, we can state one of the main results of this section.
Theorem 5.7: For any positive integers N and D,

kmin(N,D) ≤
⌈
N − 1

D

⌉
. (31)

Proof – Since having full PMI sequences is a sufficient
condition for strong structural controllability (Theorem 3.1),
and since we can construct graphs with full PMI sequences of
distance-to-leader vectors for any N and D with k = dN−1D e
leaders (Proposition 5.6), we get the desired result as a direct
consequence.

Remark 2 – The above bound on the number of leaders
is tight and cannot be improved for arbitrary N and D. In
other words, there are graph classes for which we need at least
dN−1D e leaders for strong structural controllability, for instance
path graphs (D = N−1 and k = 1), cycle graphs (D = dN/2e
and k = 2), complete graphs (D = 1 and k = N − 1).

Remark 3 – For any N and D, we explicitly define a family
of graphs M̄ using the above construction that achieve the
bound in Theorem 5.7 and have the maximal edge set. Whether
there exist other families of graphs that achieve the bound in
Theorem 5.7 and possibly have better Kirchoff index than the
graphs in M̄ remains as an open problem.

B. Robustness of Maximally Controllable Networks
In this subsection, we analyze the robustness of maximally

controllable graphs M̄ by providing bounds on their Kf . In
the next section, we compare the robustness of M̄ and clique
chains with the same N and D. We provide a pair of lower
bounds on Kf (M̄) in Lemmas 5.8 and 5.9, and an upper
bound on Kf (M̄) in Lemma 5.10.

Lemma 5.8: Let k > 2 be a positive integer, D be the
diameter, and N = kD+ 1 be the total number of nodes in a
maximally controllable graph M̄ in Section V-A, then

Kf (M̄) >
D3

6
+

(k − 1)

3
D2 +

(k − 2)

3
D. (32)

Proof – We observe that for a given D, k and N , the graph
M̄ is a subgraph of a clique chain of the form GD−1(k +
1, k, k · · · , k) (as illustrated through an example in Figure 7).
The diameter of this clique chain is D−1. Since the Kirchhoff
index of a graph is strictly lesser than the Kirchhoff index of
any of its proper subgraph,

Kf (M̄) > Kf (GD−1(k + 1, k, k · · · , k)) .

From a closed form expression for Kirchhoff Index for a clique
chain in [5, eq. (13)], we have,

Kf (GD−1(k + 1, k, k · · · , k)) = D3

6
+

(
k2 − k + 3/2

3k

)
D2

+

(
12k4 − (15k3 + 75k2 + 55k + 11)

6k(3k + 1)(2k + 1)
+

2

3

)
D

+

(
10k3 + 18k2 + 13k + 3

2k(3k + 1)(2k + 1)
− 1

2

)
.

After simplification and ignoring lower order terms, we have
the following:

Kf (M̄) > Kf (GD−1(k + 1, k, k · · · , k))

>
D3

6
+

(k − 1)

3
D2 +

(k − 2)

3
D.

As an example, consider k = 3, D = 5, and N = 16.
A clique chain G4(4, 3, 3, 3, 3) of diameter 4 is shown in
Figure 7. Note that M̄ with a diameter 5 and consisting of 16
nodes is a subgraph of G4(4, 3, 3, 3, 3).

Lemma 5.9: Let k be a positive integer, and M̄ be the
maximally controllable graph with diameter D and N = kD+
1 nodes, then

Kf (M̄) >
D2k(Dk + 1)

2Dk − k + 1
. (33)

Proof – Let deg(v) denote the degree of node v in G.
It is shown in [31], [34] that the Kirchhoff index of any
connected graph G with N nodes is lower bounded by
(N − 1)2/degav(G), where degav(G) = (1/|V|)

∑
v∈V

deg(v)

is the average degree. It can be shown that the average degree
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K4 K3 K3 K3 K3

Fig. 7: A clique chain G4(4, 3, 3, 3, 3) that contains a maxi-
mally controllable graph M̄ with 16 nodes and diameter 5 as
a subgraph. Edges in M̄ are highlighted in green.

of a maximally controllable graph M̄ with diameter D and
N = kD + 1 nodes is

degav(M̄) =
k2(2D − 1) + k

kD + 1
.

Since Kf (M̄) > (N − 1)2/degav(M̄), the desired result
follows directly.

We note that both lower bounds ((32) and (33)) complement
each other for different values of k and D. We illustrate this
in Figure 8, in which for larger D, the bound in (32) is better,
whereas, for larger k, (33) is better. So, for any D and k, we
can simply select the larger of (32) and (33) as a lower bound
on Kf (M̄).

5 10 15 20 25
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Bound (Lemma 5.9)

(a) k = 5
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800

1000

K
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Bound (Lemma 5.8)

Bound (Lemma 5.9)

(b) D = 8

Fig. 8: Comparison of Kf of the maximally controllable
graphs M̄ and the corresponding optimal clique chains with
the same D and N = kD + 1.

Lemma 5.10: Let k be a positive integer, and M̄ be the
maximally controllable graph with diameter D, and N =
kD + 1 nodes, then

Kf (M̄) < k

(
D

2

)[
1

2
+ k +

(2D − 1)k

6

]
+D

(
k + 1

2

)
.

(34)
Proof – It has been shown in [31] that

Kf (G) ≤ N(N − 1)

2
disav(G), (35)

where disav(G) denotes the average distance in G, that is,

disav(G) =

2

( ∑
1≤i<j≤N

d(i, j)

)
N(N − 1)

, (36)

and equality holds in (35) if and only if G is a tree. Thus,
from (35) and (36), we have

Kf (M̄) <
∑

1≤i<j≤N

d(i, j). (37)

For any given M̄, computation of all pair-wise distances
between nodes and their summation gives the following:∑
1≤i<j≤N

d(i, j) = k

(
D

2

)[
1

2
+ k +

(2D − 1)k

6

]
+D

(
k + 1

2

)
.

(38)
The desired result follows directly from (37) and (38)

.

VI. NUMERICAL EVALUATION

In this section, we numerically evaluate our results by
comparing controllability and robustness of clique chains and
maximally controllable networks with the same N and D.

A. Controllability Comparison

We illustrate the the number of leaders needed for the strong
structural controllability of maximally robust networks, that
is clique chains for given N and D using the lower bound
in (15). Theorem 5.7 states that for given N and D there
always exists a graph that is strong structurally controllable
with dN−1D e leaders, such as the maximally controllable graph
M̄ constructed in Section V-A. For both graphs, the number
of leaders for strong structural controllability are plotted in
Figure 9. It can be seen that clique chains, which are maxi-
mally robust among all graphs with given N and D require
many more leaders as compared to the maximally controllable
graphs.
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Fig. 9: Comparison of the number of leaders for the strong
structural controllability of clique chains and corresponding
maximally controllable graphs as a function of N .

B. Robustness Comparison

In this subsection, we compare Kirchhoff indices of max-
imally controllable graphs (M̄) and the corresponding maxi-
mally robust graphs for given N and D. Although we know
that for given N and D, maximally robust graphs are clique
chains of the form GD(1, n2, · · · , nD, 1) where N = 2 +∑D
i=2 ni; we do not know the exact values of ni’s in general

and compute them numerically. We plot Kf of M̄ and optimal
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TABLE I: Optimal clique chains and their Kf for a given
D and N , where N = kD + 1, along with the Kf of
corresponding maximally controllable graphs M̄.

D k G∗D(n1, · · · , nD+1) Kf (G∗D) Kf (M̄)
3 2 (1 2 3 1) 10.5 16.64

3 (1 4 4 1) 12.73 22.75
2 (1 2 3 2 1) 19.57 32.64

4 3 (1 3 5 3 1) 23.30 43.72
4 (1 4 7 4 1) 27.59 54.19
2 (1 2 2 3 2 1) 33.75 56.56
3 (1 3 4 4 3 1) 38.73 74.63

5 4 (1 3 6 6 4 1) 45.32 91.27
5 (1 4 8 8 4 1) 51.90 107.18
2 (1 2 2 3 2 2 1) 52.96 89.99
3 (1 2 4 4 4 3 1) 59.85 117.40

6 4 (1 3 5 6 6 3 1) 68.62 142.04
5 (1 4 7 7 7 4 1) 78.62 165.27
6 (1 4 8 10 9 4 1) 88.36 187.67
2 (1 2 2 2 3 2 2 1) 79.24 134.54
3 (1 2 4 4 4 4 2 1) 86.42 173.96
4 (1 3 5 5 6 5 3 1) 98.61 208.65

7 5 (1 3 6 8 8 6 3 1) 111.94 240.89
6 (1 4 7 9 9 8 4 1) 125.64 271.72
7 (1 4 9 11 11 9 4 1) 139.37 301.66

clique chains with the same D and N as a function of D
(while fixing k) in Figure 10(a), and as a function of k (while
fixing D) in Figure 10(b). We observe that Kf of maximally
controllable graph is roughly the double of the Kf of the
corresponding clique chain, especially for the larger D values.
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Fig. 10: Comparison of Kf of the maximally controllable
graphs M̄ and the corresponding optimal clique chains with
the same D and N = kD + 1.

In Table I, we select D and the number of leaders k and then
generate optimal clique chains (through exhaustive search)
with N = kD + 1, and also maximally controllable graphs
M̄ (as in Section V-A) with the same D, k, and N . We
again observe that for the same network parameters D and
N , optimal clique chains are significantly more robust than
the corresponding maximally controllable networks.

VII. CONCLUSIONS

Networks that exhibit higher robustness to noise and struc-
tural changes typically require many leader nodes (inputs)
to become controllable. For a fixed number of nodes N ,
complete graphs are maximally robust but require (N − 1)
leaders for complete controllability. At the same time, path
graphs require only one leader for controllability; however,
such graphs are minimally robust. We observed a similar

relationship between controllability and robustness if we also
fix the diameter D of a graph along with the number of nodes
N . Clique chains are optimal from the robustness perspective
for given N and D. However, they require a large number of
leaders, either N − (D + 1) or N −D, for strong structural
controllability. On the other hand, for arbitrary N and D, we
can construct graphs that are strong structurally controllable
with at most dN−1D e leaders, which is a sharp upper bound.
However, such graphs are much less robust than optimal
clique chains with the same N and D. Graph-theoretic tools
for network controllability, including equitable partitions and
distances of nodes to leaders, are particularly useful to exploit
the controllability and robustness trade-off. In the future, we
aim to explore graph operations that maximally improve one
of the two properties while minimally deteriorating the other.
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