
VarScreen
A program for screening predictor and/or target
variables that will be employed in model building

Version 2.5, containing:

! Univariate mutual information, with p-values compensated for
selection bias, and probability of the best in-sample selection
underperforming others out-of-sample

! Bivariate mutual information and uncertainty reduction, with p-values
compensated for selection bias

! Indicator selection based on the best long or short profit factor
obtained by finding optimal long and short thresholds, with p-values
compensated for selection bias.  This includes the option for ordered
indicator selection with strongly controlled familywise error.

! Optimal predictor sets defined by Relevance minus Redundancy,
including solo and group p-values

! Hidden Markov models chosen according to their multivariate
correlation with a target, including p-values compensated for selection
bias

! Detecting change in the mean of a time series (such as deterioration
of performance of a market trading system), compensated for multiple
series as well as multiple comparisons across time

! Ensemble FREL (Feature Weighting as Regularized Energy-based
Learning) for high-dimensionality, small-sample applications

! FSCA (Forward Selection Component Analysis) for forward and
optional backward refinement of maximum-variance-capture
components from a subset of a large group of variables



! LFS (Local Feature Selection) for identifying predictors that are
optimal in localized areas of the feature space but may not be globally
optimal.  Such predictors can be effectively used by nonlinear models
but are neglected by many other feature selection algorithms.

! Enhanced stepwise selection combined with a quadratic model trained
by singular value decomposition and with complexity control via
internal cross validation.  This is an extremely effective way to find
subsets of a large set of predictor candidates in a situation in which
variables have predictive power only in combination with other
variables, and little or no predictive power alone.

! Nominal-to-Ordinal conversion intelligently transforms nominal
variables to ordinal scale for efficient use as input to a predictive
model.

! Plot time series, histogram, and bivariate densities (and relatives).
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About the VarScreen Program

VarScreen contains in one easy-to-use program a variety of software tools useful for the

developer of predictive models.  These tools screen and evaluate candidates for

predictors and targets.  More on this later.  But first, we need to issue a vitally important

disclaimer:

This program is an experimental work in progress.  It is

provided free of charge to interested users for educational

purposes only.  In all likelihood this program contains errors

and omissions.  If you use this program for a purpose in which

loss is possible, then you are fully responsible for any and all

losses associated with use of this program.  The developer of

this program disclaims all responsibility for losses which the

user may incur.

Okay, enough of that.  You’ve been warned.  The VarScreen program is being developed

with two major goals in mind:

1) The program should be exceptionally easy to learn and use.  Results should be

obtainable with no more than a few intuitive mouse clicks and key presses. 

Detailed study of an exhaustive manual should not be required.

2) The software should provide cutting-edge statistical information, employing tests

and algorithms not readily available in any standard analysis software.

I believe that these goals have been and will continue to be obtained.

Finally, understand that VarScreen is a work in progress.  New screening algorithms will

likely be added on a regular basis.  Stay tuned.  Updates will be reported on the author’s

website: TimothyMasters.info.
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Features of the program

In keeping with the goals of simplicity plus mathematical sophistication, the following

items are noteworthy:

! Most operations involve just two quick steps: read the data and select the test to be

performed.  Program-supplied defaults are often satisfactory, and adjusting them

is easy.  The next section will describe reading the data, and subsequent sections

will describe the tests that can be performed.

! The program is fully multi-threaded, enabling it to take maximum advantage of

modern multiple-core processors.  As of this writing, many over-the-counter

computers contain a CPU with six cores, each of which is hyperthreaded to

perform two sets of operation streams simultaneously.  VarScreen keeps all twelve

of these threads busy as much as possible, which tremendously speeds operation

compared to single-threaded programs.

! The most massively compute-intensive algorithms make use of any CUDA-

enabled nVidia card in the user’s computer.  These widely available video cards

(standard hardware on many computers) turn an ordinary desktop computer into

a super-computer, accelerating computations by several orders of magnitude. 

Enormously complex algorithms that would require days of compute time on an

ordinary computer with ordinary software can execute in several minutes using

the VarScreen program on a computer with a modern nVidia display card.

! Rather than printing results on the screen, the program writes a log file called

VARSCREEN.LOG.  This way a ‘permanent’ copy of all results is available for

optional printing and archiving.
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About CUDA Processing

CUDA stands for Compute Unified Device Architecture.  It is the interface system by

which nVidia makes the massive parallel processing hardware of its video display cards

available to applications.  The power of this hardware is breathtaking; the GTX Titan

video card contains nearly 3000 processors that can execute programs simultaneously. 

VarScreen makes use of this capability for especially time-consuming tasks.

There is an annoying quirk, however, which users of VarScreen should be aware of. 

Microsoft, in its infinite wisdom, forbids any Windows program from executing a CUDA

application for longer than two seconds.  Moreover, Windows makes it almost

impossible for most users to increase or disable this limit; doing so involves tampering

with the Registry, a frightening endeavor.  Unfortunately, some large problems can

require far more than two seconds of CUDA time.

In order to get around this issue, VarScreen breaks up large tasks into multiple small

tasks.  Each such task is called a Launch.  An ugly tradeoff is involved in this breakup. 

Each launch incurs a significant overhead, so one should minimize the number of

launches.  On the other hand, increasing the workload of each launch increases the

probability that the deadly two-second limit will be reached, with the result that

Windows terminates the program, and somewhere, behind some closed door, a Microsoft

programmer snickers.  Due to the large variety of CUDA hardware available, it is not

practical to predict in advance how long a launch will tie up the CUDA processing, so

one must be conservative.

The reason I am making such an issue of this is to allow the user of VarScreen to

understand a bit of output written to the screen.  Whenever a large test involving CUDA

computations is running, a progress bar is displayed.  This bar also includes text similar

to the following:

Max CUDA time = 23 ms in 2 launches

What this means is that each task had to be broken up into two launches, and the

maximum CUDA processing time for those two launches was 23 milliseconds.  There is

one reason why this may be important to the user: if the time approaches 2000 (two

seconds) you are near crashing (a brief black screen followed by a message that the video

card has been reset).  I would be grateful if you contacted me at my email:

tim@TimothyMasters.info and reported this so I can continue to tweak the program.

mailto:tim@TimothyMasters.info
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Reading a Dataset

VarScreen reads data files that are in a common data format: the first record names the

fields, and each subsequent record is a single case.  For example, the first few lines of a

dataset might look like this:

X1 X2 X3 Y
3.14 0.21 -5.33 4.01
-1.02 -0.45 2.12 -7.02
...

Variable names may be at most 15 characters long.  Spaces, commas, and tabs may be

used as delimiters.  One implication of this fact is that variable names must not contain

spaces.  In place of a space, the underscore character (_) may be used.  Numeric values

must be strictly numeric; scientific notation (i.e. 3.14e-9) is illegal in the current version of

the program.  If users scream loudly enough, this feature may be added later.

Files exported from Microsoft Excel as comma-delimited (.CSV) files are generally

readable by VarScreen, although if dates with slashes appear, or other text fields appear,

trouble may be encountered.  (Text variables or otherwise non-numeric fields will

typically be assigned the value 0.0.)  If exporting from Excel, also beware of column

headers that contain spaces.  CSV files strictly use commas as delimiters, so spaces in

column names are legal in Excel, but since VarScreen treats spaces as delimiters, the single

variable name in Excel will be mistakenly treated as two or more variables in VarScreen if

the name contains spaces.

Missing data is not allowed; every data record must have a numeric value present for

every field.  Note that if a file exported from Excel contains missing data, this will be

represented in the file as contiguous commas, which will cause problems for VarScreen.

After the file is read, the log file VARSCREEN.LOG will contain a table of the mean and

standard deviation of every variable in the file.  Users should get in the habit of

skimming this table as a quick sanity check of the validity of the data; a wild value in the

table may indicate an unexpected flaw in the data file.

One additional variable is computed: _SEQNUM_.  For each case this is the sequence

number of the case within the dataset.  The value of _SEQNUM_ is 1 for the first case, 2

for the second, and so forth.  One interesting use for this variable arises when the data is

a time series.  A relationship such as mutual information between _SEQNUM_ and a

variable indicates that the variable is probably nonstationary.
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Univariate Mutual Information

The Univariate Mutual Information test computes the mutual information between a

specified target variable and each of a specified set of predictor candidates.  The

predictors are then listed in the VARSCREEN.LOG file in descending order of mutual

information.  Along with each candidate, a specialized probability described later, as well

as the Solo pval and Unbiased pval, are printed if Monte-Carlo replications are requested. 

These algorithms, with source code, are in my book “Data Mining Algorithms in C++”.

The Solo pval is the probability that a candidate that has a strictly random (no predictive

power) relationship with the target could have, by sheer good luck, had a mutual

information at least as high as that obtained.  If this quantity is not small, the developer

should strongly suspect that the candidate is worthless for predicting the target.  Of

course, this logic is, in a sense, accepting a null hypothesis, which is well known to be a

dangerous practice.  However, if a reasonable number of cases are present and a

reasonable number of Monte-Carlo replications have been done, this test is powerful

enough that failure to achieve a small p-value can be interpreted as the candidate having

little or no predictive power.

The problem with the Solo pval is that if more than one candidate is tested (the usual

situation!), then there is a large probability that some truly worthless candidate will be

lucky enough to achieve a high level of mutual information, and hence achieve a very

small Solo pval.  In fact, if all candidates are worthless, the Solo pvals will follow a uniform

distribution, frequently obtaining small values by random chance.  This situation can be

remedied by conducting a more advanced test which accounts for this selection bias.  The

Unbiased pval for the best performer in the candidate set is the probability that this best

performer could have attained its exalted level of performance by sheer luck if all

candidates were truly worthless.

The Unbiased pval is printed for all candidates, not just the best.  For those other, lesser

candidates, the Unbiased pval is an upper bound (a conservative measure) for the true

unbiased p-value of the candidate.  Thus, a very small Unbiased pval for any candidate is a

strong indication that the candidate has true predictive power.  Unfortunately, unlike the

Solo pval, large values of the Unbiased pval are not necessarily evidence that the candidate

is worthless.  Large values, especially near the bottom of the sorted list, may be due to

over-estimation of the true p-value.  The author is not aware of any algorithm for

computing correct unbiased p-values for any candidate other than the best.  However,

because this measure is conservative, it does have great utility in selecting promising

predictors.
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The user must be aware of a vital caveat to this procedure:  The Solo pval and Unbiased

pval computations fall apart if there is significant serial correlation (or any other

dependency) among both the target variable as well as one or more of the predictor

candidates.  In most practical applications, the predictor candidates are hopelessly

dependent, so the key is the target variable.  If it has anything beyond tiny dependency

(typically serial correlation), the test will become anti-conservative: the computed

p-values will be smaller than the correct values.  This is dangerous.  VarScreen contains an

option that somewhat helps in this situation, but it is not a complete cure.

The final column printed is inspired by a research report titled “The Probability of

Backtest Overfitting” by David Bailey, Jonathan Borwein, Marcos Lopez de Prado, and

Jim Zhu.  Like the permutation test, it assumes that there is no significant serial

correlation among both the target variable and one or more predictor candidates,

although it tends to be fairly robust in this regard.  I heavily modified their clever

algorithm to apply to mutual information.

When one examines a pool of candidates and selects a predictor based on its having the

maximum value of some criterion such as mutual information, one hopes that this

superiority will carry over to data not yet seen (out-of-sample or OOS data).  In

particular, consider the (unknown at test time) median OOS performance of all predictor

candidates.  At a minimum, one would hope that the OOS performance of the candidate

selected based on its having maximum in-sample performance would exceed the median

OOS performance of all candidates.  If not, the selection process is useless; no superiority

is obtained by choosing the best in-sample performer.

The rightmost figure printed for the first row (the best candidate) is the estimated

probability that the OOS mutual information of this selected candidate will be less than

or equal to the median OOS performance of all of the other candidates.  Obviously, we

want this probability to be small.

The figures printed for subsequent rows are the equivalent probabilities for lower rank

orders.  For example, the figure for the second row is the probability that the second best

in-sample candidate will have OOS performance less than or equal to the median.  This is

subtly different from the probability for the particular candidate that was selected; it’s a

more theoretical figure.  Nonetheless, equating the two should not be unreasonable.

Ideally, one would see low probabilities near the top (the best in-sample candidates

outperform OOS) and high probabilities near the bottom (the worst underperform).  A

large quantity of worthless candidates will make the distribution more random.
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Specifying the Test Parameters

When the user clicks Tests / Univariate Mutual Information, a dialog similar to that shown

below will appear.  The various parameters are described on the following page.

The leftmost column is used to specify the set of predictor candidates.  Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the

block.  Individual candidates can be toggled on and off by holding the Ctrl key while

clicking on the variable.

The Target column is used to select a single target variable.
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Three methods for computing mutual information are available, and the method to use is

chosen by selecting one of the three buttons in the Predictor bin definition block:

Predictors and target continuous uses the Darbellay-Vajda algorithm (fully described in

“Assessing and Improving Prediction and Classification” by Timothy Masters) to

compute continuous mutual information.  This method is appropriate (and almost

always the preferred approach) when all variables are continuous or nearly so. 

It’s main disadvantage is that it is much slower to compute than the bin methods. 

Also, candidates that have tiny mutual information with the target will have their

computed mutual information reduced to exactly zero by the algorithm.  This will

produce a sudden discontinuity in p-values, which may appear unusual but which

in fact is perfectly reasonable.

Use all cases partitions each predictor into bins that are as equal in size as possible.  The

user must specify the number of bins to employ, and unless the dataset is huge the

default of three bins is frequently appropriate.

Use tails only computes mutual information based on only the maximum and minimum

collection of values of each predictor.  The tail fraction specified by the user is the

fraction of cases in each tail.  So, for example, the default tail fraction of 0.1 would

use the cases having the smallest ten percent and the largest ten percent of

predictor values.  The 80 percent of cases having intermediate values of the

predictor candidate would be completely ignored in the mutual information

calculation.  This method is especially useful in high-noise situations, such as

prediction of financial markets.  The probability that superior mutual information

will hold up out-of-sample cannot be computed when this option is selected.

Target bins must be specified if Use all cases or Use tails only is chosen.  This is the number

of approximately equal-size bins into which the target variable is distributed.  The

default value of 3 is appropriate for a wide variety of applications.  This field is

ignored if the Predictors and target continuous option is selected.

Replications defaults to zero, in which case no Monte-Carlo Permutation Test is

performed.  However, it is usually best to set this to at least 100, and perhaps as

much as 1000, so that solo and unbiased p-values will be computed.  Note that the

minimum possible p-value is the reciprocal of the number of permutations.  So, for

example, if the user specifies 100 permutations, the minimum p-value that can

appear is 0.01.  Run time of this test is linearly related to the number of

permutations.
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The user must choose either Complete or Cyclic permutations.  If the user is confident that

there is no dependency as described earlier, then Complete should be used; it is the

traditional approach which does a complete random shuffle for each permutation. 

However, if there is dependency, this type of shuffling will produce underestimation of

p-values, a very dangerous situation.  If the dependency is serial (the data is a time series

and the dependency is among samples close in time) then a slight improvement in the

situation can be obtained by using Cyclic permutation.  In this type of shuffle, the time

order of the target is kept intact except at the ends by rotating the targets with end-point

wraparound.  Shuffling this way preserves most of the serial dependency in the

permutated targets, which makes the algorithm more accurate.  The p-values computed

this way will generally be larger than those computed with complete shuffling, and

hence less likely to lead to false rejection of the null hypothesis of no predictive power. 

But be warned that the cure is far from complete; computed p-values will still

underestimate the true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency.  However, if the dataset is small, Cyclic permutation will limit

the number of unique permutations and hence increase the random error inherent in the

process.  As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy.  Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation.  Relying

on Cyclic permutation to take care of dependency problems is living dangerously.  And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.
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Examples of Univariate Mutual Information

This section demonstrates three situations, all using synthetic data to clarify the

presentation.  The variables in the dataset are as follows:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series.

DEP_RAND0 - DEP_RAND9 are derived from RAND0 - RAND9 by introducing strong

serial correlation up to a lag of nine observations.  They are independent of one another.

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

The first test run attempts to predict SUM1234 from RAND0 - RAND9, SUM12, and

SUM34.  The output looks like this:

***********************************************************************
*                                                                     *
* Computing univariate mutual information (one predictor, one target) *
*    12 predictor candidates                                          *
*     5 predictor bins                                                *
*     5 target bins                                                   *
* 10000 replications of complete Monte-Carlo Permutation Test         *
*                                                                     *
***********************************************************************

The bounds that define bins are now shown

Target bounds are based on the entire dataset...
    -0.97362      -0.27795       0.31417       1.00879

       Variable  Bounds...

          RAND0      -0.59427      -0.18805       0.20723       0.60549
          RAND1      -0.58905      -0.18795       0.22570       0.62047
          RAND2      -0.59430      -0.18090       0.21697       0.61045
          RAND3      -0.62008      -0.20843       0.19894       0.59159
          RAND4      -0.59696      -0.18753       0.21087       0.61077
          RAND5      -0.59819      -0.21468       0.18130       0.56676
          RAND6      -0.61150      -0.21273       0.19102       0.59680
          RAND7      -0.61383      -0.22039       0.18521       0.58843
          RAND8      -0.59055      -0.19032       0.20591       0.59859
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          RAND9      -0.60422      -0.19932       0.20315       0.58792
          SUM12      -0.67798      -0.17129       0.22588       0.74242
          SUM34      -0.73810      -0.21209       0.21164       0.74363

The marginal distributions are now shown.
If the data is continuous, the marginals will be nearly equal.
Widely unequal marginals indicate potentially problematic ties.

Target marginals are based on the entire dataset...
     0.19987       0.20003       0.20003       0.20003       0.20003

       Variable    Marginal...

          RAND0    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND1    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND2    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND3    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND4    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND5    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND6    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND7    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND8    0.19987    0.20003    0.20003    0.20003    0.20003
          RAND9    0.19987    0.20003    0.20003    0.20003    0.20003
          SUM12    0.19987    0.20003    0.20003    0.20003    0.20003
          SUM34    0.19987    0.20003    0.20003    0.20003    0.20003

------------------> Mutual Information with SUM1234 <------------------

       Variable         MI      Solo pval  Unbiased pval  P(<=median)

          SUM34       0.2877       0.0001       0.0001 0.0000
          SUM12       0.2610       0.0001       0.0001 0.0000
          RAND3       0.1307       0.0001       0.0001 0.0000
          RAND4       0.1263       0.0001       0.0001 0.0000
          RAND1       0.1129       0.0001       0.0001 0.0000
          RAND2       0.1085       0.0001       0.0001 0.0000
          RAND8       0.0015       0.2994       0.9828 1.0000
          RAND5       0.0014       0.3673       0.9950 1.0000
          RAND6       0.0012       0.5303       1.0000 1.0000
          RAND7       0.0010       0.7384       1.0000 1.0000
          RAND0       0.0008       0.8332       1.0000 1.0000
          RAND9       0.0006       0.9605       1.0000 1.0000

The bounds that define the target and predictor bins are shown, along with the marginal

probabilities.  If any marginal is far from being equal, that variable has significant ties

and the situation should be investigated.

As expected, the best predictors of SUM1234 are SUM12 and SUM34.  RAND1 - RAND4

are the next best.  All other predictors are obviously worthless.  Note how dramatically

the unbiased p-value delineates the break.
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The next example shows what happens when worthless and serially correlated predictors

are tested with a serially correlated target.  We use DEP_RAND1 - DEP_RAND9 to

predict DEP_RAND0, a situation which should demonstrate no predictive power

whatsoever.  The mutual information table is as follows:

-----------------> Mutual Information with DEP_RAND0 <-----------------

       Variable         MI      Solo pval  Unbiased pval   P(<=median)

      DEP_RAND2       0.0044       0.0001       0.0002 0.6944
      DEP_RAND4       0.0030       0.0018       0.0175 0.6190
      DEP_RAND3       0.0025       0.0110       0.0881 0.6270
      DEP_RAND6       0.0023       0.0249       0.2004 0.5516
      DEP_RAND9       0.0023       0.0242       0.2062 0.5397
      DEP_RAND8       0.0023       0.0287       0.2284 0.5079
      DEP_RAND1       0.0022       0.0317       0.2494 0.4960
      DEP_RAND5       0.0019       0.0883       0.5509 0.4325
      DEP_RAND7       0.0008       0.8682       1.0000 0.5317

The mutual information figures are all tiny, yet the p-values show extreme significance. 

The careless user would surely be fooled by this, because not only are the solo p-values

mostly small, but even the unbiased p-value has been fooled for one or two of the

candidates.

It should be emphasized that this phenomenon is not an artifact of just the Monte-Carlo

Permutation Test.  This is a universal phenomenon, which is why Statistics 101 courses

always emphasize the importance of independent observations.  The simple explanation

of why this occurs is that any sort of dependence reduces the effective degrees of

freedom of the test.  The testing procedure looks at the number of cases and proceeds

accordingly, but the dependence in the data increases the variance of the test statistic

beyond what would be expected from a sample of the given size.  Thus we are more

likely to falsely reject the null hypothesis.

Observe that in this ‘no predictive power’ case, despite the serial correlation, the

probabilities in the final column are distributed around 0.5, which would be expected

when none of the candidates has predictive power.  This is because the best in-sample

candidate is random, and hence its associated out-of-sample performance has about a 50-

50 chance of lying above or below the median.  This is the pattern usually seen when all

candidates are worthless.
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The final example shows how the cyclic modification of the Monte-Carlo Permutation

Test can at least partially remedy the situation.  We repeat the same test as that just

shown, except that instead of using Complete permutation we use Cyclic permutation. 

The results are shown below:

-----------------> Mutual Information with DEP_RAND0 <-----------------

       Variable         MI      Solo pval  Unbiased pval   P(<=median)

      DEP_RAND2       0.0044       0.0513       0.3529 0.6944
      DEP_RAND4       0.0030       0.2408       0.9316 0.6190
      DEP_RAND3       0.0025       0.3976       0.9918 0.6270
      DEP_RAND6       0.0023       0.5007       0.9976 0.5516
      DEP_RAND9       0.0023       0.5237       0.9982 0.5397
      DEP_RAND8       0.0023       0.4719       0.9988 0.5079
      DEP_RAND1       0.0022       0.5344       0.9990 0.4960
      DEP_RAND5       0.0019       0.6643       1.0000 0.4325
      DEP_RAND7       0.0008       0.9920       1.0000 0.5317

Now observe that even the largest random relationship is not significant at the 0.05 level

on a solo basis, and the unbiased p-value is far from significant.
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Bivariate Mutual Information / Uncertainty Reduction

Sometimes a single variable acting alone has little or no predictive power, but in

conjunction with another it becomes useful.  The classic example is the height and weight

of an individual, predicting coronary health.  Either predictor alone has relatively little

predictive power, but the two taken together can have great power.

Also, sometimes we have several equally useful candidates for the target variable, and

we are not sure which will be most predictable.  One example of this situation is when

the application is predicting future movement of a financial market with the goal of

taking a position and then hopefully closing the position with a profit.  Should we

employ a tight stop to discourage severe losses?  Or should we use a loose stop to avoid

being closed out by random noise?  We might test multiple targets corresponding to

various degrees of stop positioning, and then determine which of the competitors is most

predictable.

The Bivariate Mutual Information test handles both of these situations.  It computes the

mutual information or uncertainty reduction between each of one or more specified

target variables and each possible pair of predictors taken from a specified set of

predictor candidates.  The predictor pairs and associated targets are then listed in the

VARSCREEN.LOG file in descending order of mutual information.  Along with each

such set, the Solo pval and Unbiased pval are printed if Monte-Carlo replications are

requested.

The Solo pval is the probability that a pair of candidates that has a strictly random (no

predictive power) relationship with the target could have, by sheer good luck, had a

relationship at least as high as that obtained.  If this quantity is not small, the developer

should strongly suspect that the candidate is worthless for predicting the target.  Of

course, this logic is, in a sense, accepting a null hypothesis, which is well known to be a

dangerous practice.  However, if a reasonable number of cases are present and a

reasonable number of Monte-Carlo replications have been done, this test is powerful

enough that failure to achieve a small p-value can be interpreted as the candidate having

little or no predictive power.

The problem with the Solo pval is that if more than one candidate set (a set being two

predictors and a target) is tested (the usual situation!), then there is a large probability

that some truly worthless candidate set will be lucky enough to achieve a high level of

the relationship criterion, and hence achieve a very small Solo pval.  In fact, if all

candidate sets are worthless, the Solo pvals will follow a uniform distribution, frequently
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obtaining small values by random chance.  This situation can be remedied by conducting

a more advanced test which accounts for this selection bias.  The Unbiased pval for the best

performing candidate set is the probability that this best performer could have attained

its exalted level of performance by sheer luck if all candidate sets were truly worthless.

The Unbiased pval is printed for all candidate sets, not just the best.  For those other, lesser

candidates, the Unbiased pval is an upper bound (a conservative measure) for the true

unbiased p-value of the candidate set.  Thus, a very small Unbiased pval for any candidate

set is a strong indication that the pair of predictors has true predictive power for the

target.  Unfortunately, unlike the Solo pval, large values of the Unbiased pval are not

necessarily evidence that the candidate set is worthless.  Large values, especially near the

bottom of the sorted list, may be due to over-estimation of the true p-value.  The author is

not aware of any algorithm for computing correct unbiased p-values for any candidate

set other than the best.  However, because this measure is conservative, it does have great

utility in selecting promising predictors.

The user must be aware of a vital caveat to this procedure:  The Solo pval and Unbiased

pval computations fall apart if there is significant serial correlation (or any other

dependency) among one or more target variables as well as one or more of the predictor

candidates.  In most practical applications, the predictor candidates are hopelessly

dependent, so the key is the target variable.  If it has anything beyond tiny dependency

(typically serial correlation), the test will become anti-conservative: the computed

p-values will be smaller than the correct values.  This is dangerous.  VarScreen contains an

option that somewhat helps in this situation, but it is not a complete cure.
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Specifying the Test Parameters

When the user clicks Tests / Bivariate Mutual Information, a dialog similar to that shown

below will appear.  The various parameters are described after the dialog.

The leftmost column is used to specify the set of predictor candidates.  Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the

block.  Individual candidates can be toggled on and off by holding the Ctrl key while

clicking on the variable.

The Target column is used to select one or more target variables, with multiple selections

obtained as described for predictors.
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The predictors and the targets are partitioned into bins that are as equal in size as

possible.  The user must specify the number of bins to employ for each, and unless the

dataset is huge the default of three bins is frequently appropriate.

There can be an annoying problem when using mutual information as a measure of

relationship when more than one target is in competition.  Mutual information is highly

related to the entropy of the predictor and target.  If there is only one target in play, the

mutual information between it and each predictor candidate will have the same rank

order as the uncertainty reduction.  But if there are several targets in competition and

they have widely disparate entropies, then mutual information is not a good measure of

their relationship because the target entropies can confound the rank ordering.

What you are really interested in is the degree to which uncertainty about a target is

reduced by having knowledge of a predictor.  It can be thought of as their mutual

information divided by the entropy of the target.  Equivalently, it is the fraction of the

target’s entropy which is mutual information.  For example, if they have zero mutual

information, there will be zero uncertainty reduction (about the target) by knowing the

predictor.  At the other extreme, if their mutual information equals the target entropy,

then knowing the predictor will provide perfect (1.0) uncertainty reduction regarding the

target.

Thus, a target with high entropy will need high mutual information in order to have a

high relationship score.  For this reason, uncertainty reduction is the default for this test. 

Much more detail on this important concept can be found in “Assessing and Improving

Prediction and Classification” by Timothy Masters.

Replications defaults to zero, in which case no Monte-Carlo Permutation Test is

performed.  However, it is usually best to set this to at least 100, and perhaps as much as

1000, so that solo and unbiased p-values will be computed.  Note that the minimum

possible p-value is the reciprocal of the number of permutations.  So, for example, if the

user specifies 100 permutations, the minimum p-value that can appear is 0.01.  Run time

of this test is linearly related to the number of permutations.

The user must choose either Complete or Cyclic permutations.  If the user is confident that

there is no dependency as described earlier, then Complete should be used; it is the

traditional approach which does a complete random shuffle for each permutation. 

However, if there is dependency, this type of shuffling will produce underestimation of

p-values, a very dangerous situation.  If the dependency is serial (the data is a time series

and the dependency is among samples close in time) then a slight improvement in the

situation can be obtained by using Cyclic permutation.  In this type of shuffle, the time
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order of the target is kept intact except at the ends by rotating the targets with end-point

wraparound.  Shuffling this way preserves most of the serial dependency in the

permutated targets, which makes the algorithm more accurate.  The p-values computed

this way will generally be larger than those computed with complete shuffling, and

hence less likely to lead to false rejection of the null hypothesis of no predictive power. 

But be warned that the cure is far from complete; computed p-values will still

underestimate the true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency.  However, if the dataset is small, Cyclic permutation will limit

the number of unique permutations and hence increase the random error inherent in the

process.  As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy.  Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation.  Relying

on Cyclic permutation to take care of dependency problems is living dangerously.  And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.
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Examples of Bivariate Mutual Information

This section demonstrates three situations, all using synthetic data to clarify the

presentation.  The variables in the dataset are as follows:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series.

DEP_RAND0 - DEP_RAND9 are derived from RAND0 - RAND9 by introducing strong

serial correlation up to a lag of nine observations.  They are independent of one another.

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

The first test run attempts to predict SUM1234 from RAND0 - RAND9, SUM12, and

SUM34.  Two predictors at a time will be used.  The output is shown below.  For bin

boundaries and marginals, the predictor candidates are shown first, followed by a single

blank line, and then the target candidates (just one in this example) appear.

***********************************************************************
*                                                                     *
* Computing bivariate mutual information (two predictors, one target) *
*      12 predictor candidates                                        *
*       1 target candidates                                           *
*      66 predictor/target combinations to test                       *
*     100 best combinations will be printed                           *
*       5 predictor bins                                              *
*       5 target bins                                                 *
*   10000 replications of complete Monte-Carlo Permutation Test       *
*                                                                     *
***********************************************************************

The bounds that define bins are now shown

          RAND0      -0.59427      -0.18805       0.20723       0.60549
          RAND1      -0.58905      -0.18795       0.22570       0.62047
          RAND2      -0.59430      -0.18090       0.21697       0.61045
          RAND3      -0.62008      -0.20843       0.19894       0.59159
          RAND4      -0.59696      -0.18753       0.21087       0.61077
          RAND5      -0.59819      -0.21468       0.18130       0.56676
          RAND6      -0.61150      -0.21273       0.19102       0.59680
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          RAND7      -0.61383      -0.22039       0.18521       0.58843
          RAND8      -0.59055      -0.19032       0.20591       0.59859
          RAND9      -0.60422      -0.19932       0.20315       0.58792
          SUM12      -0.67798      -0.17129       0.22588       0.74242
          SUM34      -0.73810      -0.21209       0.21164       0.74363

        SUM1234      -0.97362      -0.27795       0.31417       1.00879

The marginal distributions are now shown.
If the data is continuous, the marginals will be nearly equal.
Widely unequal marginals indicate potentially problematic ties.

   RAND0   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND1   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND2   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND3   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND4   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND5   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND6   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND7   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND8   0.19987   0.20003   0.20003   0.20003   0.20003
   RAND9   0.19987   0.20003   0.20003   0.20003   0.20003
   SUM12   0.19987   0.20003   0.20003   0.20003   0.20003
   SUM34   0.19987   0.20003   0.20003   0.20003   0.20003

 SUM1234   0.19987   0.20003   0.20003   0.20003   0.20003

------------------> Mutual Information <-----------------

    Predictor 1 Predictor 2    Target      MI  Solo pval  Unbiased pval

       SUM12        SUM34      SUM1234   1.0781   0.0001   0.0001
       RAND1        SUM34      SUM1234   0.5363   0.0001   0.0001
       RAND3        SUM12      SUM1234   0.5356   0.0001   0.0001
       RAND2        SUM34      SUM1234   0.5333   0.0001   0.0001
       RAND4        SUM12      SUM1234   0.5242   0.0001   0.0001
       RAND3        RAND4      SUM1234   0.3094   0.0001   0.0001
       RAND3        SUM34      SUM1234   0.2994   0.0001   0.0001
       RAND4        SUM34      SUM1234   0.2985   0.0001   0.0001
       RAND6        SUM34      SUM1234   0.2947   0.0001   0.0001
       RAND9        SUM34      SUM1234   0.2946   0.0001   0.0001
       RAND8        SUM34      SUM1234   0.2944   0.0001   0.0001
       RAND5        SUM34      SUM1234   0.2939   0.0001   0.0001
       RAND0        SUM34      SUM1234   0.2937   0.0001   0.0001
       RAND7        SUM34      SUM1234   0.2925   0.0001   0.0001
       RAND2        RAND3      SUM1234   0.2881   0.0001   0.0001
       RAND1        RAND3      SUM1234   0.2879   0.0001   0.0001
       RAND1        RAND4      SUM1234   0.2861   0.0001   0.0001
       RAND2        RAND4      SUM1234   0.2811   0.0001   0.0001
       RAND1        RAND2      SUM1234   0.2755   0.0001   0.0001
       RAND2        SUM12      SUM1234   0.2709   0.0001   0.0001
       RAND1        SUM12      SUM1234   0.2705   0.0001   0.0001
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       RAND5        SUM12      SUM1234   0.2697   0.0001   0.0001
       RAND6        SUM12      SUM1234   0.2692   0.0001   0.0001
       RAND0        SUM12      SUM1234   0.2673   0.0001   0.0001
       RAND8        SUM12      SUM1234   0.2664   0.0001   0.0001
       RAND7        SUM12      SUM1234   0.2661   0.0001   0.0001
       RAND9        SUM12      SUM1234   0.2656   0.0001   0.0001
       RAND3        RAND7      SUM1234   0.1371   0.0001   0.0001
       RAND3        RAND5      SUM1234   0.1369   0.0001   0.0001
       RAND3        RAND9      SUM1234   0.1363   0.0001   0.0001
       RAND0        RAND3      SUM1234   0.1362   0.0001   0.0001
       RAND3        RAND6      SUM1234   0.1361   0.0001   0.0001
       RAND3        RAND8      SUM1234   0.1358   0.0001   0.0001
       RAND4        RAND6      SUM1234   0.1344   0.0001   0.0001
       RAND0        RAND4      SUM1234   0.1341   0.0001   0.0001
       RAND4        RAND5      SUM1234   0.1328   0.0001   0.0001
       RAND4        RAND9      SUM1234   0.1322   0.0001   0.0001
       RAND4        RAND7      SUM1234   0.1321   0.0001   0.0001
       RAND4        RAND8      SUM1234   0.1313   0.0001   0.0001
       RAND1        RAND6      SUM1234   0.1207   0.0001   0.0001
       RAND1        RAND5      SUM1234   0.1205   0.0001   0.0001
       RAND1        RAND7      SUM1234   0.1191   0.0001   0.0001
       RAND1        RAND9      SUM1234   0.1185   0.0001   0.0001
       RAND1        RAND8      SUM1234   0.1183   0.0001   0.0001
       RAND0        RAND1      SUM1234   0.1180   0.0001   0.0001
       RAND2        RAND5      SUM1234   0.1162   0.0001   0.0001
       RAND2        RAND8      SUM1234   0.1154   0.0001   0.0001
       RAND2        RAND6      SUM1234   0.1153   0.0001   0.0001
       RAND2        RAND7      SUM1234   0.1150   0.0001   0.0001
       RAND2        RAND9      SUM1234   0.1144   0.0001   0.0001
       RAND0        RAND2      SUM1234   0.1131   0.0001   0.0001
       RAND6        RAND7      SUM1234   0.0091   0.0952   0.9775
       RAND7        RAND8      SUM1234   0.0090   0.1081   0.9905
       RAND0        RAND8      SUM1234   0.0088   0.1563   0.9982
       RAND5        RAND9      SUM1234   0.0086   0.1904   0.9994
       RAND0        RAND9      SUM1234   0.0084   0.2327   0.9997
       RAND5        RAND6      SUM1234   0.0083   0.2549   0.9998
       RAND0        RAND5      SUM1234   0.0080   0.3693   1.0000
       RAND8        RAND9      SUM1234   0.0079   0.3949   1.0000
       RAND0        RAND6      SUM1234   0.0074   0.5647   1.0000
       RAND5        RAND8      SUM1234   0.0074   0.5734   1.0000
       RAND7        RAND9      SUM1234   0.0074   0.5830   1.0000
       RAND0        RAND7      SUM1234   0.0069   0.7550   1.0000
       RAND6        RAND8      SUM1234   0.0065   0.8598   1.0000
       RAND5        RAND7      SUM1234   0.0064   0.8652   1.0000
       RAND6        RAND9      SUM1234   0.0058   0.9657   1.0000

It should be no surprise that the best pair of predictors for SUM1234 are SUM12 and

SUM34.  Mutual information trails off according to how many components of the sum

are present.  Note the sharp transition in the unbiased p-value when we reach the point

of having no component present!
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The next example shows what happens when worthless and serially correlated predictors

are tested with a serially correlated target.  We use DEP_RAND1 - DEP_RAND9 to

predict DEP_RAND0, a situation which should demonstrate no predictive power

whatsoever.  The mutual information table is as follows:

-----------------> Mutual Information with DEP_RAND0 <-----------------

  Predictor 1  Predictor 2      Target      MI   Solo pval Unbiased pval

   DEP_RAND2     DEP_RAND7     DEP_RAND0   0.0159   0.0001   0.0001
   DEP_RAND2     DEP_RAND3     DEP_RAND0   0.0145   0.0001   0.0001
   DEP_RAND2     DEP_RAND9     DEP_RAND0   0.0138   0.0001   0.0001
   DEP_RAND2     DEP_RAND6     DEP_RAND0   0.0132   0.0001   0.0005
   DEP_RAND4     DEP_RAND8     DEP_RAND0   0.0132   0.0001   0.0005
   DEP_RAND3     DEP_RAND4     DEP_RAND0   0.0132   0.0001   0.0005
   DEP_RAND2     DEP_RAND4     DEP_RAND0   0.0132   0.0001   0.0005
   DEP_RAND5     DEP_RAND7     DEP_RAND0   0.0131   0.0001   0.0005
   DEP_RAND1     DEP_RAND2     DEP_RAND0   0.0131   0.0001   0.0005
   DEP_RAND2     DEP_RAND5     DEP_RAND0   0.0129   0.0001   0.0011
   DEP_RAND2     DEP_RAND8     DEP_RAND0   0.0129   0.0001   0.0011
   DEP_RAND4     DEP_RAND9     DEP_RAND0   0.0127   0.0002   0.0016
   DEP_RAND1     DEP_RAND3     DEP_RAND0   0.0125   0.0001   0.0020
   DEP_RAND3     DEP_RAND6     DEP_RAND0   0.0125   0.0001   0.0022
   DEP_RAND1     DEP_RAND5     DEP_RAND0   0.0123   0.0001   0.0038
   DEP_RAND3     DEP_RAND5     DEP_RAND0   0.0122   0.0002   0.0056
   DEP_RAND6     DEP_RAND8     DEP_RAND0   0.0121   0.0003   0.0074
   DEP_RAND1     DEP_RAND6     DEP_RAND0   0.0117   0.0010   0.0213
   DEP_RAND6     DEP_RAND9     DEP_RAND0   0.0115   0.0006   0.0323
   DEP_RAND4     DEP_RAND6     DEP_RAND0   0.0110   0.0021   0.0893
   DEP_RAND1     DEP_RAND4     DEP_RAND0   0.0110   0.0027   0.0904
   DEP_RAND5     DEP_RAND8     DEP_RAND0   0.0110   0.0032   0.0906
   DEP_RAND5     DEP_RAND9     DEP_RAND0   0.0108   0.0044   0.1298
   DEP_RAND7     DEP_RAND9     DEP_RAND0   0.0108   0.0051   0.1442
   DEP_RAND7     DEP_RAND8     DEP_RAND0   0.0107   0.0060   0.1584
   DEP_RAND4     DEP_RAND5     DEP_RAND0   0.0107   0.0063   0.1610
   DEP_RAND3     DEP_RAND9     DEP_RAND0   0.0107   0.0051   0.1620
   DEP_RAND1     DEP_RAND9     DEP_RAND0   0.0104   0.0096   0.2819
   DEP_RAND6     DEP_RAND7     DEP_RAND0   0.0103   0.0132   0.3179
   DEP_RAND8     DEP_RAND9     DEP_RAND0   0.0102   0.0147   0.3827
   DEP_RAND3     DEP_RAND7     DEP_RAND0   0.0101   0.0181   0.4380
   DEP_RAND5     DEP_RAND6     DEP_RAND0   0.0099   0.0249   0.5409
   DEP_RAND1     DEP_RAND8     DEP_RAND0   0.0098   0.0294   0.5901
   DEP_RAND3     DEP_RAND8     DEP_RAND0   0.0097   0.0347   0.6486
   DEP_RAND4     DEP_RAND7     DEP_RAND0   0.0087   0.1757   0.9908
   DEP_RAND1     DEP_RAND7     DEP_RAND0   0.0084   0.2498   0.9983

Notice how many truly worthless predictive pairs have tiny p-values, even in the

unbiased case.  This is a severe problem that affects all common statistical tests, not just

Monte-Carlo Permutation Tests.
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The final example shows how the cyclic modification of the Monte-Carlo Permutation

Test can at least partially remedy the situation.  We repeat the same test as that just

shown, except that instead of using Complete permutation we use Cyclic permutation. 

The results are shown below:

-----------------> Mutual Information with DEP_RAND0 <-----------------

  Predictor 1  Predictor 2      Target      MI   Solo pval Unbiased pval

   DEP_RAND2     DEP_RAND7     DEP_RAND0   0.0159   0.0261   0.4007
   DEP_RAND2     DEP_RAND3     DEP_RAND0   0.0145   0.0813   0.8015
   DEP_RAND2     DEP_RAND9     DEP_RAND0   0.0138   0.1404   0.9240
   DEP_RAND2     DEP_RAND6     DEP_RAND0   0.0132   0.1968   0.9761
   DEP_RAND4     DEP_RAND8     DEP_RAND0   0.0132   0.1660   0.9776
   DEP_RAND3     DEP_RAND4     DEP_RAND0   0.0132   0.1859   0.9792
   DEP_RAND2     DEP_RAND4     DEP_RAND0   0.0132   0.1768   0.9804
   DEP_RAND5     DEP_RAND7     DEP_RAND0   0.0131   0.2354   0.9837
   DEP_RAND1     DEP_RAND2     DEP_RAND0   0.0131   0.2077   0.9858
   DEP_RAND2     DEP_RAND5     DEP_RAND0   0.0129   0.2329   0.9915
   DEP_RAND2     DEP_RAND8     DEP_RAND0   0.0129   0.2162   0.9925
   DEP_RAND4     DEP_RAND9     DEP_RAND0   0.0127   0.2594   0.9949
   DEP_RAND1     DEP_RAND3     DEP_RAND0   0.0125   0.3104   0.9972
   DEP_RAND3     DEP_RAND6     DEP_RAND0   0.0125   0.3243   0.9977
   DEP_RAND1     DEP_RAND5     DEP_RAND0   0.0123   0.3545   0.9978
   DEP_RAND3     DEP_RAND5     DEP_RAND0   0.0122   0.3621   0.9982
   DEP_RAND6     DEP_RAND8     DEP_RAND0   0.0121   0.3613   0.9984
   DEP_RAND1     DEP_RAND6     DEP_RAND0   0.0117   0.4874   0.9998
   DEP_RAND6     DEP_RAND9     DEP_RAND0   0.0115   0.5108   0.9998
   DEP_RAND4     DEP_RAND6     DEP_RAND0   0.0110   0.6064   1.0000
   DEP_RAND1     DEP_RAND4     DEP_RAND0   0.0110   0.5907   1.0000
   DEP_RAND5     DEP_RAND8     DEP_RAND0   0.0110   0.5737   1.0000
   DEP_RAND5     DEP_RAND9     DEP_RAND0   0.0108   0.6308   1.0000
   DEP_RAND7     DEP_RAND9     DEP_RAND0   0.0108   0.6902   1.0000
   DEP_RAND7     DEP_RAND8     DEP_RAND0   0.0107   0.6681   1.0000
   DEP_RAND4     DEP_RAND5     DEP_RAND0   0.0107   0.6274   1.0000
   DEP_RAND3     DEP_RAND9     DEP_RAND0   0.0107   0.6552   1.0000
   DEP_RAND1     DEP_RAND9     DEP_RAND0   0.0104   0.7349   1.0000
   DEP_RAND6     DEP_RAND7     DEP_RAND0   0.0103   0.7587   1.0000
   DEP_RAND8     DEP_RAND9     DEP_RAND0   0.0102   0.7330   1.0000
   DEP_RAND3     DEP_RAND7     DEP_RAND0   0.0101   0.7944   1.0000
   DEP_RAND5     DEP_RAND6     DEP_RAND0   0.0099   0.8103   1.0000
   DEP_RAND1     DEP_RAND8     DEP_RAND0   0.0098   0.8036   1.0000
   DEP_RAND3     DEP_RAND8     DEP_RAND0   0.0097   0.8085   1.0000
   DEP_RAND4     DEP_RAND7     DEP_RAND0   0.0087   0.9581   1.0000
   DEP_RAND1     DEP_RAND7     DEP_RAND0   0.0084   0.9731   1.0000

This time, the unbiased p-values are not fooled at all by the serial correlation, and even

the solo p-values behave well.
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Indicator Selection Based On Optimal Profit Factor

The prior sections, as well as several upcoming sections, present very general predictor

selection algorithms based on mutual information or similar measures.  In this section we

examine a more specialized performance criterion, one that is ideal for indicators used in

prediction of financial markets.  As is done for most algorithms in VarScreen, not only are

indicator candidates ranked in order of performance, but solo and unbiased p-values are

computed and printed for each candidate.  Please see either of the two prior sections for a

more detailed explanation of these two types of p-values.  Also, as explained in those

sections, it is crucial that the target variable have negligible serial correlation.  If it is

serially correlated, the cyclic permutation option will help compensate for this problem,

but all computed p-values will still be somewhat anti-conservative, a very serious

problem.

When the Optimal profit factor test is selected, a dialog similar to that shown below

appears.
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Please see either of the prior sections for details on selecting predictor candidates, a

target, and choosing the Monte-Carlo permutation test.  The Min fraction kept parameter

is a smallish value, usually around 0.1 or so, which plays an important role in

computation of the performance criterion.

This performance criterion is computed as follows for each indicator.  First, the

nonparametric correlation Spearman rho is computed for the indicator with the target.  If

the correlation is negative the sign of the indicator is flipped, resulting in a modified

indicator that  has positive (or, rarely, zero) correlation with the target and that contains

exactly the same predictive information.  Then an upper threshold for the indicator is

computed, with an important optimality property: of all possible thresholds such that at

least the min fraction kept of cases have an indicator value that equals or exceeds this

threshold, those cases that satisfy the threshold have the maximum profit factor.  These

would correspond to long trades taken in response to large indicator values.  A lower

threshold is similarly computed, and those indicator values that are strictly below this

lower threshold would define short trades, and the threshold is chosen such that the

profit factor from these short trades is maximized, subject to the same restriction that at

least the specified minimum fraction of potential trades satisfy the short threshold.  The

final performance criterion is the greater of the long or short optimal profit factors.

Note that there is a tradeoff involved in the specification of the minimum fraction. 

Nearly always, the best predictability appears in the extreme values of an indicator,

meaning that there will be a strong tendency for the threshold optimizer to drive the

upper (long) and lower (short) thresholds to extreme values.  This is why the user must

set a floor under the number of ‘trades’ executed.  If there were no minimum fraction

enforced, it would often be possible for the optimizer to drive the threshold to such an

extreme value that almost no trades are taken, and the resulting profit factor would be

huge or even infinite, yet be a poor, unstable measure of real-life performance.  My own

rule-of-thumb is to set the minimum fraction such that at least 100 trades are taken, and

usually many more.  In other words, the minimum fraction should be (in my opinion) at

least 100 divided by the number of cases.  And I find that anything under 0.05 leads to

instability too often.  My default is 0.1, which is usually excellent.
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I computed a set of indicators and a target for OEX from early 1988 through the end of

2019.  The test was performed with the ‘Use stepwise’ box not checked.  The stepwise

option is discussed after this example.  The indicators are as follows:

DAY_RETURN - Next-day log return divided by 252-day average true range for

volatility normalization.

CMMA_N - Current close minus N-day moving average, scaled and normalized.

LIN_ATR_N - Linear trend over the prior N days, normalized by 252-day average true

range.

RSI_N - Ordinary RSI with N-day lookback

LINDEV_N - Current close's deviation from its value predicted by linear projection over

the prior N days, suitably normalized.

PVFIT_N - Price-volume fit over the prior N days.

RTVY_N - Reactivity computed over the prior N days.

If you are interested in exactly how these indicators were computed, they are discussed

in detail in my book "Statistically Sound Indicators for Financial Market Prediction".

I ran this test using the DAY_RETURN target and these indicators computed with several

lookbacks, and with 1000 replications.  The optimal thresholds and profit factors are as

follows:

  Variable       Rho   Long thr  Long pf  Short thr Short pf
    CMMA_5 (-) -0.050    7.7419    1.423   -6.5944    1.017
   CMMA_10 (-) -0.054    9.1368    1.597   -3.9037    0.981
   CMMA_20 (-) -0.043   12.3398    1.397   -5.5540    0.982
 LIN_ATR_5 (-) -0.036   24.7723    1.303  -19.7236    0.988
 LIN_ATR_7 (-) -0.045   21.4862    1.394  -17.3554    1.026
LIN_ATR_15 (-) -0.021   15.1428    1.244  -18.2686    0.945
     RSI_5 (-) -0.052  -28.8175    1.544  -71.5579    0.989
    RSI_10 (-) -0.046  -36.1751    1.475  -57.0598    0.978
    RSI_20 (-) -0.036  -41.4523    1.419  -65.5329    1.012
  LINDEV_5 (-) -0.008   26.2327    1.185  -26.9793    0.993
 LINDEV_10 (-) -0.016   33.3522    1.168   -6.8519    0.920
 LINDEV_20 (-) -0.039   32.9259    1.387  -16.3927    0.983
   PVFIT_7 (+)  0.001   14.3582    1.279  -17.2509    1.022
  PVFIT_15 (-) -0.010   21.7791    1.178    5.0897    0.924
    RTVY_6 (-) -0.049   16.0264    1.462   -7.1658    0.994
   RTVY_12 (-) -0.029   15.1335    1.228  -13.7269    0.955
   RTVY_25 (-) -0.028   18.7179    1.259  -20.7411    1.027



Indicator Selection Based On Optimal Profit Factor 27

It's worth noting that all but one of these indicators was negatively correlated with the

target and hence had its sign flipped, as shown by the (-) after the variable name.  That's

all the more interesting because these are all, to some degree, traditionally known as

momentum indicators.  So it appears that, at least for these relatively short lookbacks and

looking ahead just one day, they are signaling counter-trend situations.  This is less

surprising when one notes that the thresholds are rather extreme.  For example, with

RSI_5 we take a long position when RSI is less than 28.8 (negative RSI greater than -28.8),

a clearly oversold condition.

The solo and unbiased p-values for these indicators, sorted from largest criterion to

smallest, are as shown below.  Interpretation of these values is discussed in the prior two

sections and will not be repeated here.

       Variable  profit factor  solo pval  unbiased pval
        CMMA_10      1.597        0.000        0.006
          RSI_5      1.544        0.001        0.020
         RSI_10      1.475        0.006        0.093
         RTVY_6      1.462        0.009        0.119
         CMMA_5      1.423        0.022        0.230
         RSI_20      1.419        0.021        0.245
        CMMA_20      1.397        0.036        0.338
      LIN_ATR_7      1.394        0.037        0.356
      LINDEV_20      1.387        0.047        0.390
      LIN_ATR_5      1.303        0.179        0.843
        PVFIT_7      1.279        0.252        0.926
        RTVY_25      1.259        0.329        0.969
     LIN_ATR_15      1.244        0.414        0.987
        RTVY_12      1.228        0.495        0.996
       LINDEV_5      1.185        0.768        1.000
       PVFIT_15      1.178        0.806        1.000
      LINDEV_10      1.168        0.874        1.000

The unbiased p-values for the two best indicators, CMMA_10 and RSI_5, are clearly

outstanding.  For CMMA_10, 0.006 is the probability that, if all of our competitors were

worthless, the best profit factor among them could have been at least the 1.597 that we

observed.  I'll hang my hat on that any day.  Recall from our earlier discussion that once

we go below the single best indicator, all subsequent unbiased p-values are upper

bounds for the true unbiased p-values.  So even the third and possibly the fourth

competitors are in contention for being useful.  This is reinforced by the fact that their

solo p-values, while not taking into account selection bias, are under 0.01.
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The Stepwise Option

I’ll begin by saying that the stepwise option implemented for this optimal-profit-factor

test is (to the best of my knowledge) my own semi-rigorous development.  It is based on

my own seemingly sound intuition, but not rigorously proved at this time.  I have,

however, run many numerical simulations of many experimental conditions, and in

every case the simulation results were completely in accord with the expected theoretical

results.  Thus, I am reasonably confident that this algorithm is mathematically correct. 

Also, understand that this option could be made available for any ‘best-of’ MCPT.  It’s

just that the programming is more complex than the traditional algorithm, and it runs

much more slowly, so I chose this particular screening algorithm for my first

implementation.  I may implement it for other screening algorithms later.

Why implement this stepwise option?  For all its utility, the traditional ‘best-of’ algorithm

suffers from two annoying weaknesses:

1)  The null hypothesis is that all competitors are unrelated to the target.  This is a

significant restriction, at least theoretically.  In practice, this restriction seems to have no

apparent ill effect when violated, but it makes me uncomfortable.

2) The computed probability is strictly correct only for whichever competitor has the

greatest relationship with the target.  All other best-of probabilities are upper bounds on

the true probabilities.  This fact is discussed in the prior two sections.

The second problem is not devastating as long as we can be sure that the ‘less-than-best’

probabilities are truly upper bounds, which I am quite sure of but not absolutely positive. 

If this is the case, then all competitors for which the computed probability is less than or

equal to the desired alpha level for the test can be considered to be related to the target. 

That joint statement should satisfy the alpha level because if the least of those that satisfy

alpha does so, then certainly all those superior to it do as well.  This statement again is

rather heuristic and could use some rigor, though I am quite confident in its truth.

On the other hand, even this result is not ideal because we could easily miss some

competitors that are truly related to the target.  If their computed probabilities

overestimate the true probabilities under the null hypothesis to a degree that causes the

computed probability to exceed alpha, despite there being a relationship with the target,

then we have missed this competitor.  This is a significant problem, and the stepwise

algorithm largely or completely solves it.
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The stepwise procedure is almost certainly much better than the traditional one-shot

best-of method, which pools all candidates into a single batch with the null hypothesis

that they are all unrelated to the target.  This method is to test each null hypothesis

individually, but with the familywise error rate (FWE) controlled by our desired alpha. 

The FWE is the probability of rejecting one or more of the true individual null hypotheses. 

More loosely speaking, FWE is the probability of making even one mistake in identifying

individual null hypotheses to reject.

FWE comes in two forms.  An FWE with weak control is one that requires that all null

hypotheses be true.  This is what we have in the traditional best-of test.  Far more

desirable is an FWE with strong control, which means that it holds regardless of which or

how many of the null hypotheses are true.  This, of course, corresponds better to real life. 

In my own professional work I have always acted as if the traditional best-of test has

strong control even though it does not, and it’s never come back to bite me.  Much

heuristic evidence supports that use.  Still, a method with strong control would be better

if it could be achieved.

An even more desirable property of a best-of test is that it have as much power as

possible.  In the case of multiple null hypotheses there are many possible definitions of

power.  At one extreme we might want to maximize the probability of rejecting at least

one false null hypothesis.  At the other extreme we might want to maximize the

probability of rejecting all false null hypotheses.  Those are both too extreme, one with

too little demanded and one with too much.  More reasonably we might want to

maximize some measure of average rejection probability.  This intermediate goal,

perhaps maximizing the average probability of rejecting false null hypotheses, is

doubtless the best, and is a property that I believe is possessed by my stepwise algorithm.

It’s important to understand this property of maximum power, because it is very

important in practice.  Recall that the traditional best-of algorithm provides only upper

bounds for the p-values for all competitors except the best.  This makes it possible that it

will fail to reject null hypotheses (decide that there is a relationship) for competitors that

truly have a relationship with the target.  That’s the beauty of this new stepwise

algorithm: it can often flag competitors that would have been missed by the traditional

algorithm due to overestimation of p-values, while still maintaining a user-specified

familywise error rate.

In summary, we want to be able to test each individual competitor’s null hypothesis

while having strong control of the FWE and maximizing average power.  The traditional

best-of algorithm has only weak control of the FWE and it has excellent power only for

whichever competitor is the best (maximum relationship with the target).
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I believe that my stepwise algorithm provides these superior properties.  The algorithm is

shown on the next page.  But first I want to discuss the general philosophy of the

procedure so as to make the algorithm more clear.

This is a stepwise procedure, with hypotheses being rejected one at a time, in order

starting with the best competitor (largest target relationship) and working downward

until no more null hypotheses can be rejected at the user-specified FWE, alpha.  As each

null hypothesis is tested, we approximate the null hypothesis distribution of that

relationship statistic by permuting the target as in the traditional algorithm but finding

the maximum of only the populations that have not yet been rejected.  This is the critical

difference between this improved algorithm and the traditional ‘best-of’ algorithm.  If, for

each step, we were to approximate the null hypothesis distribution by finding the

maximum relationship statistic of all permuted populations we would have an algorithm

that is essentially identical to the prior algorithm, just re-ordered as stepwise instead of

all at once.  However, in the stepwise algorithm, the number of populations that go into

the computation of the maximum relationship statistic is reduced by one for each step,

thus shrinking the null distribution.  (For more details on the traditional algorithm, see

my book “Permutation and Randomization Tests for Trading System Development.”)

In summary, this algorithm is almost identical to the traditional algorithm, except that

instead of testing all null hypotheses at once we test them one at a time, and as we do

successive tests we keep shrinking the number of competing distributions that go into

approximating the null distribution.

I’ll now walk through the algorithm listed on the next page, and continue the

walkthrough after the listing.  The user has specified that there are n competing

populations (indicators here), and the test will employ m permutations (thousands) to

estimate the null hypothesis distributions.  A desired alpha level (maximum FWE that the

user can accept) for the test has also been specified.

The first step is to compute the relationship statistic for each competitor and store them in

the original array.  We’ll also need to sort them so that the stepwise procedure can

proceed from best (largest) to smallest.  But we must not disturb the order of original,

so we copy that array to a work array and sort it ascending.  We also initialize

sort_indices to an identity array, and when we do the sorting we simultaneously

move the elements of this array.  Thus, after sorting, sort_indices[0] will be the

index of the competitor having the smallest relationship, sort_indices[1] the next

smallest, and so forth.  Later, the stepwise procedure will work backwards through this

array to test the populations in order from best to worst.
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Compute the relationship for each competitor and sort

For i from 0 through n-1
   sort_indices[i] = i ;
   original[i] = relationship of competitor i with Y
   work[i] = original[i] ;

Sort work ascending, moving sort_indices simultaneously

Initialize that no competitors have yet passed (null rejected)

For i from 0 through n-1
   passed[i] = FALSE ;

The stepwise accumulation loop begins here

For step from n-1 through 0, working backwards (best to worst)
   this_i = sort_indices[step] Index of best remaining competitor
   count[this_i] = 1 ;  Counts right-tail probability

   Permutation loop estimates null distribution of population

   For irep from 1 through m   Do all random replications
      Shuffle Y

      max_f = number smaller than smallest possible relationship
      For i from 0 through n-1
         if (NOT passed[i]) Do only those without null rejected
            this_f = relationship of competitor i with Y
            if (this_f > max_f) Keep track of maximum
               max_f = this_f ;

      If (max_f >= original[this_i])
         ++count[this_i] ;  Count right-tail probability
      } // For irep

   See if this new competitor passed (NULL rejected).

   If count[this_i] / (m+1) <= alpha
      passed[this_i] = TRUE

   Else
      Break out of step loop; we are done



32 Indicator Selection Based On Optimal Profit Factor

As competitors have their null hypotheses rejected, we keep track of which have been

rejected via the passed array, where a TRUE value means that its null hypothesis has

been rejected; it passed the test for having a relationship with the target.  Prepare for the

stepwise accumulation loop by initializing passed to FALSE for all competitors.

The stepwise accumulation loop now begins.  It moves backwards through the

competing indicators because they have been sorted ascending and we want to begin

with the best.  Recall that sort_indices contains the indices of the sorted competitors,

so we place in this_i the index of the competitor that is about to be tested for inclusion

in the set of rejected null hypotheses.  As we did in the prior two algorithms, we initialize

the counter of right-tail probability to 1 before performing the loop that approximates the

null hypothesis distribution of the relationship statistic.

The permutation loop is now executed.  Shuffle the target and initialize max_f to any

number that is smaller than the smallest possible relationship statistic.  This variable will

keep track of the maximum relationship statistic in this replication.  We now come to the

part of the algorithm that distinguishes it from the traditional best-of algorithm.  In that

prior algorithm we found the maximum relationship statistic across all competing

populations.  But in this algorithm we exclude those competitors whose null hypotheses

have already been rejected.  So inside the loop that passes through all populations we

process only those for which passed is FALSE.  After we find the maximum we compare

it to the original value of the competitor being tested and increment the right-tail

probability counter if this null hypothesis value equals or exceeds the original value.

After all permutation replications are complete we have an estimate of the right-tail

probability of the relationship statistic for competitor this_i.  All we need to do at this

point is compare this probability to the user-specified alpha.  If it is is less than or equal to

alpha we add it to the accumulated collection of passing competitors (those that we

conclude have a relationship with the target).  But if it did not pass we are done, so break

out of the accumulation loop.

Here is a rough overview of my intuition for why this algorithm has an FWE of alpha

with strong control, and also maximizes the average probability of rejecting false null

hypotheses.  My hope is that someone will make this more rigorous.  I could have done

this myself 40 years ago when I had my freshly minted statistics PhD, and I might still be

able to do it, but at this point in my life I have too many other interests to bother.

Consider the best competitor, the one having the greatest relationship statistic and hence

the one that we test first.  Suppose its null hypothesis is true.  By implication its

relationship statistic will have the same distribution as that for all permutations (under
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the usual assumption that the target values are independent and identically distributed). 

Thus we will erroneously reject this null hypothesis with probability alpha.  If we do so,

it does not matter what errors we may subsequently make for other populations, because

the definition of FWE is the probability that we will make one or more rejection errors.  On

the other hand, if we do not reject this null hypothesis, we are finished testing

populations, so there is no more opportunity to make an error.

Now suppose the first null hypothesis is false.  I claim (without proof) that the

permutation test as described is the most powerful possible test for detecting this false

null hypothesis.  This should be a no-brainer, because we are testing the observed statistic

against an asymptotically exact estimate of its actual distribution.  If we declare this null

hypothesis true (incorrectly, but not affecting FWE), we are finished testing populations

for inclusion, so there is no more opportunity to make an error.  If we declare it to be

false we are correct and we advance to the next candidate.

When we advance to the next candidate, we are in exactly the same situation we were in

with the first candidate, but now that first candidate is entirely removed from further

computation.  Its relationship statistic is no longer referenced, and that population no

longer takes part in estimating the null hypothesis distribution of this next candidate.  So

if this second candidate’s null hypothesis is true, we have probability alpha of incorrectly

rejecting it.  All other logic is exactly as it was for the first candidate.

This repeats until eventually we do not reject a null hypothesis, at which point we stop. 

We have alpha probability of having erroneously rejected a true null hypothesis at least

once along the way, and thus we have a FWE of alpha, as desired.  This fact holds

regardless of how many null hypotheses are true, so thus our FWE has strong control, as

desired.  Finally, each time we encounter a false null hypothesis we employ the most

powerful test possible to test that hypothesis, and so we have maximum average

probability of correctly rejecting false null hypotheses.

These assertions are distressingly heuristic, with little or nothing in the way of rigor to

back them up.  However, the intuition seems sound to me.  Moreover, I have run massive

quantities of Monte-Carlo simulations, using multiple alpha levels, multiple numbers of

cases, multiple numbers of candidate populations, and various proportions of the

candidates (from 0 to most)  having false null hypotheses.  In every case, the FWE came

in at almost exactly the specified alpha level, well within normal variation tolerances. 

And this test has amazing apparent power to detect even minuscule degrees of

relationship between X candidates and Y.  So I am confident enough in its practical utility

to use it in my own work and recommend it to others.
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Demonstrating the Stepwise Option

On Page 26 we saw a demonstration of indicator selection by optimal profit factor, using

the traditional Monte-Carlo permutation test.  Please keep handy the table of final results

from that test.  We now run exactly the same test, except using the stepwise option just

described and with alpha=0.1.  Here are those results:

       Variable  profit factor  unbiased pval
        CMMA_10      1.597        0.005
          RSI_5      1.544        0.019
         RSI_10      1.475        0.078
         RTVY_6      1.462        0.098

Best remaining p-value=0.1960, so quitting

For the best two indicators the p-values are almost the same in both tests.  (Theoretically,

the first should be the same, because the two versions of the test are identical for the best

performer.  But these tests use random numbers, so small variation is likely.  This is why

it’s important to use a large number of MCPT replications.)  By the third, the p-value has

dropped from 0.093 for the traditional test (which is an upper bound for the true value)

to the true value of 0.078.  For the fourth it drops from 0.119 to 0.098.  This makes it just

under my specified alpha of 0.1 so we pick up one more indicator at this alpha level, a

clear demonstration of the increased power of the stepwise version.  The fifth p-value,

0.1960, blows far past my alpha, so inclusion ceases.

It would be legitimate to use a larger alpha in order to see more computed p-values, but

there is a serious potential problem with this.  You must stop considering candidates as

soon as the p-value passes your preset alpha.  This is because p-values may actually

decrease later.  These are not legitimate if they are beyond a p-value that exceeds your tolerance

for error.  For example, suppose you want to be guaranteed that there is at most a

probability of 0.1 that you will err by accepting an indicator that is truly worthless.  Then

as soon as an indicator appears with p-value greater than your 0.1, that indicator and all

subsequent indicators must be ignored, no matter how small their printed p-values.

Note that these p-values are computed using random numbers, so if you do not perform

a large number of replications (thousands) you may occasionally find that the stepwise

test produces a p-value greater than that of the traditional test, which in theory should

never happen.  This is just random variation, easily fixed by using more replications.
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Accelerating the Stepwise Algorithm

The algorithm shown on Page 31 is the best way to present the stepwise method, because

it is a straightforward implementation of the mathematical statement.  However, it is

unnecessarily slow.  This is because the block of permutations does not need to be

repeated each time a new competitor is tested for inclusion.  We need to do it only once,

estimating all null hypothesis distributions simultaneously.  Then we can do the stepwise

inclusion after the permutations are complete.  To collect all distributions at once, we

work from worst to best, updating the ‘maximum so far’ as each increasingly good

competitor is added to the mix.  Here is the fast but mathematically identical algorithm.

For i from 0 through n-1
   sort_indices[i] = i ;
   original[i] = relationship of competitor i with Y
   work[i] = original[i] ;

Sort work ascending, moving sort_indices simultaneously

Step 1 of 2: do the random replications and count right tail

For i from 0 through n-1
   count[i] = 1 ;  Counts right-tail probability

For irep from 1 through m
   Shuffle Y

   max_f = number smaller than smallest possible relationship
   For i from 0 through n-1    Work from worst to best
      this_i = sort_indices[i]
      this_f = relationship between this_i and Y
      if (this_f > max_f) Keep track of maximum
         max_f = this_f

      If (max_f >= original[this_i])
         ++count[this_i] ;  Count right-tail probability
      } // For irep

Step 2 of 2: Do the stepwise inclusion

   For i from n-1 through 0    Work from best to worst
      this_i = sort_indices[i] Index of best remaining competitor
      If count[this_i] / (m+1) <= alpha
         Accept this competitor
      Else
         Break out of step loop; we are done
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Predictors having Max Relevance, Min Redundancy

Selection of predictors by examining individual or even pairwise performance is useful

for quickly identifying the most promising candidates.  However, this simplistic

approach suffers from redundancy.  If two predictor candidates are nicely related to a

target, chances are good that they are also closely related to each other; they may provide

similar if not identical predictive information. Thus, if one examines a large number of

candidates and chooses a subset of predictors that are all good at predicting the target,

this subset will in most cases be unnecessarily large; many of them will provide nearly or

exactly the same predictive information as other candidates in the subset.  A much more

efficient approach to selecting a good subset of predictor candidates would be to consider

not only the relevance of the members at predicting the target, but also their redundancy

with other members of the subset.

Peng, Long and Ding (2005) provide a fabulous algorithm for handling this redundancy

problem in their paper “Feature Selection Based on Mutual Information: Criteria of Max-

Dependency, Max-Relevance, and Min Redundancy”.  An intuitive summary of the

algorithm, along with C++ code, appears in my book “Assessing and Improving

Prediction and Classification,” so details will be omitted here.  However, it must be

stressed that this algorithm has a powerful optimality property: suppose one were to

consider the mutual information between a set of predictors (taken as a group) and a

target.  This is called joint dependency.  A reasonable method for choosing an optimal

subset of predictors is to use forward stepwise selection to maximize the joint

dependency of the subset with the target.  Unfortunately, this quantity is difficult if not

impossible to compute in practical applications.  But the Pen, Long, and Ding algorithm

is an elegant work-around that produces the same subset of predictors as stepwise

selection based on maximizing joint dependency, but it does so in a computationally

feasible way.

At each step, the algorithm considers the relevance of a candidate for predicting the

target, as well as the redundancy of the candidate with predictors already in the chosen

subset.  These quantities are subtracted to provide a selection criterion.  The candidate

with the maximum relevance-minus-redundancy criterion is chosen.
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Specifying the Test Parameters

When the user clicks Tests / Relevance minus Redundancy, a dialog similar to that shown

will appear.  The various parameters are described below.

The leftmost column is used to specify the set of predictor candidates.  Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the

block.  Individual candidates can be toggled on and off by holding the Ctrl key while

clicking on the variable.

The Target column is used to select the target variable.

The predictors and the target are partitioned into bins that are as equal in size as possible. 

The user must specify the number of bins to employ for each, and unless the dataset is

huge the default of three bins is frequently appropriate.
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Replications defaults to zero, in which case no Monte-Carlo Permutation Test is

performed.  However, it is usually best to set this to at least 100, and perhaps as much as

1000, so that solo and group p-values will be computed.  Note that the minimum possible

p-value is the reciprocal of the number of permutations.  So, for example, if the user

specifies 100 permutations, the minimum p-value that can appear is 0.01.  Run time of

this test is linearly related to the number of permutations.

The user must choose either Complete or Cyclic permutations.  If the user is confident that

there is no dependency as described earlier in this document, then Complete should be

used; it is the traditional approach which does a complete random shuffle for each

permutation.  However, if there is dependency, this type of shuffling will produce

underestimation of p-values, a very dangerous situation.  If the dependency is serial (the

data is a time series and the dependency is among samples close in time) then a

considerable improvement in the situation can be obtained by using Cyclic permutation. 

In this type of shuffle, the time order of the target is kept intact except at the ends by

rotating the target with end-point wraparound.  Shuffling this way preserves most of the

serial dependency in the permutated target, which makes the algorithm more accurate. 

The p-values computed this way will generally be larger than those computed with

complete shuffling, and hence less likely to lead to false rejection of the null hypothesis of

no predictive power.  But be warned that the cure is far from complete; computed p-

values will still underestimate the true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency.  However, if the dataset is small, Cyclic permutation will limit

the number of unique permutations and hence increase the random error inherent in the

process.  As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy.  Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation.  Relying

on Cyclic permutation to take care of dependency problems is living dangerously.  And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.

Max kept is the maximum size of the selected subset.  Execution time is approximately

linearly related to this quantity, so it should be kept as small as possible if run time is

critical.

Note that this algorithm employs CUDA processing if available.  However, unless there

are many hundreds of predictor candidates, its overhead may actually slow execution.
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An Example of Relevance Minus Redundancy

This section demonstrates a revealing example of the algorithm using synthetic data to

clarify the presentation.  The variables in the dataset are as follows:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series.

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

The test run attempts to predict SUM1234 from RAND0 - RAND9, SUM12, and SUM34. 

The output is shown below.  Brief explanatory comments are interspersed.

*********************************************************************
*                                                                   *
* Computing relevance minus redundancy for optimal predictor subset *
*      12 predictor candidates                                      *
*      12 best predictors will be printed                           *
*       5 predictor bins                                            *
*       5 target bins                                               *
*     100 replications of complete Monte-Carlo Permutation Test     *
*                                                                   *
*********************************************************************

Initial candidates, in order of decreasing mutual information with
SUM1234

       Variable         MI

          SUM34       0.2877
          SUM12       0.2610
          RAND3       0.1307
          RAND4       0.1263
          RAND1       0.1129
          RAND2       0.1085
          RAND8       0.0015
          RAND5       0.0014
          RAND6       0.0012
          RAND7       0.0010
          RAND0       0.0008
          RAND9       0.0006
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Predictors so far   Relevance   Redundancy   Criterion

          SUM34       0.2877       0.0000       0.2877

We see from the table above that the first candidate chosen is the one which has

maximum mutual information with the target.  Naturally this would be either SUM12 or

SUM34, and it happens to be the latter.  Then, in the table below we see that SUM12 has

the largest relevance (its mutual information with the target) and essentially no

redundancy with SUM34 (again, no surprise).  This gives it the highest selection criterion

and it is chosen.

Additional candidates, in order of decreasing relevance minus redundancy

       Variable     Relevance   Redundancy   Criterion

          SUM12       0.2610       0.0014       0.2596
          RAND1       0.1129       0.0016       0.1112
          RAND2       0.1085       0.0009       0.1076
          RAND6       0.0012       0.0007       0.0005
          RAND0       0.0008       0.0009      -0.0000
          RAND8       0.0015       0.0017      -0.0002
          RAND5       0.0014       0.0016      -0.0002
          RAND9       0.0006       0.0008      -0.0002
          RAND7       0.0010       0.0012      -0.0003
          RAND3       0.1307       0.3154      -0.1847
          RAND4       0.1263       0.3158      -0.1895

Predictors so far   Relevance   Redundancy   Criterion

          SUM34       0.2877       0.0000       0.2877
          SUM12       0.2610       0.0014       0.2596

Now we come to an important observation.  One might think that the next candidate

selected would be either RAND1, RAND2, RAND3, or RAND4, the four components of

the SUM1234 target.  However, the table on the next page shows that these four

candidates actually fall at the bottom of the list!  This is because they have so much

redundancy with SUM12 and SUM34 (taken as a group) that they will not be chosen

next.  In fact, RAND6, which has no relationship whatsoever with any of the other

variables, is chosen based only on its tiny random relevance and slightly smaller random

redundancy.
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Additional candidates, in order of decreasing relevance minus redundancy

       Variable     Relevance   Redundancy   Criterion

          RAND6       0.0012       0.0009       0.0003
          RAND0       0.0008       0.0008       0.0000
          RAND8       0.0015       0.0015       0.0000
          RAND9       0.0006       0.0008      -0.0002
          RAND5       0.0014       0.0017      -0.0003
          RAND7       0.0010       0.0013      -0.0004
          RAND3       0.1307       0.1581      -0.0274
          RAND4       0.1263       0.1585      -0.0322
          RAND1       0.1129       0.1527      -0.0398
          RAND2       0.1085       0.1485      -0.0399

Predictors so far   Relevance   Redundancy   Criterion

          SUM34       0.2877       0.0000       0.2877
          SUM12       0.2610       0.0014       0.2596
          RAND6       0.0012       0.0009       0.0003

But now that the selected set’s redundancy with the remaining candidates has been

‘diluted’ by the inclusion of the unrelated RAND6, RAND1-RAND4 jump to the top of

the list due to their relatively large relevance but lessened redundancy.

Additional candidates, in order of decreasing relevance minus redundancy

       Variable     Relevance   Redundancy   Criterion

          RAND3       0.1307       0.1058       0.0249
          RAND4       0.1263       0.1061       0.0202
          RAND1       0.1129       0.1021       0.0107
          RAND2       0.1085       0.0995       0.0090
          RAND0       0.0008       0.0010      -0.0002
          RAND9       0.0006       0.0009      -0.0003
          RAND5       0.0014       0.0017      -0.0003
          RAND8       0.0015       0.0018      -0.0004
          RAND7       0.0010       0.0015      -0.0006

Predictors so far   Relevance   Redundancy   Criterion

          SUM34       0.2877       0.0000       0.2877
          SUM12       0.2610       0.0014       0.2596
          RAND6       0.0012       0.0009       0.0003
          RAND3       0.1307       0.1058       0.0249



42 Predictors having Max Relevance, Min Redundancy

There is little point in continuing to show the inclusion steps.  We now jump to the final

table that lists all candidates in the order in which they were selected, along with

associated p-values.

----------> Final results predicting SUM1234 <----------

Final predictors Relevance Redundancy Criterion  Solo pval  Group pval

          SUM34    0.2877    0.0000     0.2877      0.010      0.010
          SUM12    0.2610    0.0014     0.2596      0.010      0.010
          RAND6    0.0012    0.0009     0.0003      0.570      0.010
          RAND3    0.1307    0.1058     0.0249      0.010      0.010
          RAND4    0.1263    0.0797     0.0465      0.010      0.010
          RAND1    0.1129    0.0617     0.0511      0.010      0.010
          RAND2    0.1085    0.0505     0.0581      0.010      0.010
          RAND8    0.0015    0.0014     0.0001      0.320      0.010
          RAND5    0.0014    0.0014    -0.0001      0.340      0.010
          RAND7    0.0010    0.0014    -0.0004      0.650      0.010
          RAND0    0.0008    0.0013    -0.0004      0.850      0.010
          RAND9    0.0006    0.0012    -0.0006      0.980      0.010

Two different p-values are printed for each predictor candidate.  The Solo pval is the same

quantity printed in the Univariate test.  This is the probability that, if the predictor has no

actual mutual information with the target, a mutual information (Relevance here) as large

as that obtained could have occurred.  Understand that this quantity considers each

candidate in isolation, not involving any other candidates.  Note how nicely this reveals

the uselessness of the third candidate chosen, RAND6.

The Group pval considers the associated candidate along with every prior candidate.  It

tests the null hypothesis that the group of candidates selected so far, on average, has no

mutual information with the target.

Regrettably, I am not aware of any way of computing what would be an especially useful

p-value, that which tests the null hypothesis that selecting the candidate provides no

additional (non-redundant) relevance.  Such a p-value would be valuable for determining

when to stop including additional candidates in the selected subset.  The problem

appears to be that the test statistic at any step is strongly dependent on the relevance of

those predictors already selected.  If anyone knows of a way around this problem, I

would love to hear about it.
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Hidden Markov Models with Target Correlation

When working with time series data, the developer need not assume a direct relationship

between predictors and a target.  Sometimes it is better to posit an underlying condition,

the state of the process under study, which impacts both the predictors and the target. 

This process is assumed to exist at all times in exactly one of two or more possible states. 

The state at any given time impacts the distribution of associated variables.  Some of

these variables may be observable at the present time (predictors), while others may be

unknown at the present time but be of great interest (targets).  Our goal is to use

measured values of the observable variables to determine (or make an educated guess at)

the state of the process, and then use this knowledge to estimate the value of an

unobservable variable which interests us.

It is vital to distinguish this application from ordinary classification methods which are

not restricted to time series data.  In simple classification, one measures some predictor

variable(s) and makes a class decision, which in turn may imply likely values of other

(probably unmeasurable) variables.  But a hidden Markov model assumes a sequential

process with an important property: the probability of being in a given state at an

observed time depends on the process’s state at the prior observed time.  In other words,

a hidden Markov model has memory, while ordinary classification does not.

This memory is immensely useful in some applications.  For example, it may prevent

whipsaws.  Suppose a certain state tends to be persistent in real life.  Ordinary

classification will suffer if there is large random noise in the observed variables, which

may snap the decision back and forth at the whim of chance.  But the memory inherent in

a hidden Markov model will tend to hold its decision in a persistent state even as noise in

the measured variables tries to whip the decision back and forth.  Of course, the

downside of this memory is a tendency toward delayed decisions; the model may need

several observed values to confirm a state change.  But this is often a price well worth

paying, especially in high-noise situations.

One application of a hidden Markov model is the prediction of a financial market. 

Perhaps the developer assumes that it is always in either a bull market (a long-term up-

trend), a bear market (a long-term down-trend) or a flat market (no long-term trend).  By

definition, bull and bear markets cover an extended time period; one does not go from a

bull to a bear market in one day, and then return to a bull market the next day.  Such

direction changes are just short-term fluctuations in a more extensive move.  If one were

to use frequent observations to make daily predictions of whether the market is in a bull
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or bear state, these decisions could reverse ridiculously often.  One is better off taking

advantage of the memory of a hidden Markov model to stabilize behavior.

Specifying the Test Parameters

When the user clicks Tests / Hidden Markov model, a dialog similar to that shown will

appear.  The various parameters are described below.

The leftmost column is used to specify the set of predictor candidates.  Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the

block.  Individual candidates can be toggled on and off by holding the Ctrl key while

clicking on the variable.
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The Target column is used to specify the target variable.  This variable is ignored when

the models are computed; rather it plays a role in selecting the ‘best’ model.

The Dimension must be 1, 2, or 3.  This is the number of predictor variables that will be

used by the hidden Markov model.

The Number of states is exactly that, the number of states in which the process can exist.  It

must be at least two, and it typically is small, rarely more than four.  Execution time

blows up rapidly as the number of states increases.

The user must choose either Complete or Cyclic permutations and the number of

replications to perform.  Please refer to the discussions of this issue earlier in this

document.  However, because hidden Markov models virtually always are applied to

serially correlated data, cyclic permutation is the default.

Max printed is the maximum number of models printed in the log file.

WARNING... This test can be extremely slow.  While threads are being initialized for the

first set of models, the ESCape key is ignored.  After that, ESCape is polled only at widely

spaced intervals.  Then, when waiting for the final threads to complete, ESCape is again

ignored.  For a few thousand cases, 2 dimensions, and 2 states, the complete test should

run in a few minutes or less on modern computers.  But if there are many thousands of

cases, 3 dimensions, and 4 or more states, the test could require several hours to

complete.  If you get in over your head, you may need to use Task Manger to force a

shutdown of the program.  Sorry about that, but as of yet I have not been able to figure

out an efficient way to interrupt threads that are in the middle of extensive computation

without inducing significant overhead, which just makes the situation worse.
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Operation of This Test

The Hidden Markov Model test operates in two completely separate steps.  In the first step,

every possible combination of predictor candidates is used to fit a hidden Markov model. 

Let N be the number of candidates specified by the user (selected from the list in the left

column of the dialog).  If the dimension is specified to be 1, then each candidate is used

alone, resulting in N models, one for each candidate.  If the dimension is 2, then there are

N*(N-1)/2 models, one for each possible pair of candidates.  If the dimension is 3, then

there are N*(N-1)*(N-2)/6 models, one for each possible trio.  It must be emphasized that

these models are optimized without regard to the target variable; the target plays no role

whatsoever in the development of the models.

After this (potentially large!) set of hidden Markov models has been found, the

relationship between each of them and the user-specified target variable is found.  The

relationship between a model and the target is defined as the multiple-R (the multivariate

correlation coefficient) between the vector of state probabilities and the target.  In other

words, for a given model, each case will have associated with it a vector giving the

probability that this observation is in each possible state.  These state probability vectors

are regressed on the target variable using ordinary multiple linear regression.

Details of the best (most highly correlated) model are printed.  Then the models (up to

Max printed of them) are listed in descending order of relationship with the target.  The

multiple-R is printed for each.  If Monte-Carlo replications were specified, solo and

unbiased p-values are printed for each model.  The solo p-value is the probability that, if

there were actually no relationship between the state (as defined by that model) and the

target, we could have obtained a multiple-R at least as large as we did obtain.  The

unbiased p-value for the best model is the probability that if none of the models were

related to the target, the best among them would have a multiple-R at least as large as

that obtained.  Subsequent unbiased p-values are upper bounds on similarly defined

probabilities.  This issue is discussed in detail earlier in this document.

Note that exact results will not in general be replicated if runs are repeated.  This is

because training a hidden Markov model relies on random number generation, and

Windows’ scheduling of training threads is rarely consistent.  The competing models will

receive their random numbers in different orders during different runs, resulting in

slightly different solutions being obtained.  In rare cases, a ‘satisfactory’ solution will not

be obtained at all.  But the probability of this happening depends on how well the data is

explained by a hidden Markov model.  Data which is almost entirely random noise will

have the highest probability of leading to disappointing or unstable models.
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A Contrived, Inappropriate Example of Hidden Markov Models

This section demonstrates a revealing example of the algorithm using synthetic data to

clarify the presentation.  The variables in the dataset are as follows:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series.  These are the predictor candidates.

SUM12 = RAND1 + RAND2.  This is the target variable.

I chose to use two predictors and allow four states in the models.  The program fits a

hidden Markov model to each of the (10-9)/2=45 pairs of predictor candidates.  Not

surprisingly, the model based on RAND1 and RAND2 has the highest correlation with

SUM12.  Its means and standard deviations for each state are printed first:

Means (top number) and standard deviations (bottom number)

State           RAND1             RAND2

   1          0.06834          -0.66014
              0.48729           0.21358

   2         -0.73466           0.07687
              0.17187           0.54038

   3         -0.02272           0.35902
              0.39033           0.39555

   4          0.73542           0.08884
              0.17546           0.52133

RAND1 and RAND2 are totally random (they exist in only one state), so attempting to fit

a hidden Markov model to them should be extremely unstable.  Indeed, in ten runs of

this test, twice the program found solutions in which the means of the states were all

nearly zero, indicating no differentiation between states.  But most of the time it came up

with a pattern essentially identical to the one shown above.  This solution is remarkably

similar to a sort of principal components decomposition: RAND1 distinguishes between

State 2 and State 4, while RAND2 distinguishes between State 1 and State 3.  Thus,

knowledge of which of the four states the process is in provides great information about

SUM12.
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Next we see the transition probabilities.  The figure in Row i and Column j is the

probability that the process will transition from State i to State j.  Not surprisingly, they

are almost all identical.  The relatively small discrepancies are just due to random

variation in the data.

Transition probabilities...

         1        2        3        4
  1   0.2638   0.2037   0.3494   0.1830
  2   0.2438   0.1945   0.3638   0.1979
  3   0.2130   0.1682   0.4174   0.2014
  4   0.2404   0.2148   0.3272   0.2176

Further properties of each state are then printed:

Percent is the percentage of cases in which this state has the highest probability.  The sum

of these quantities across all states may not reach 100 percent, because cases in

which there is a tie for the highest probability are not counted.  If the data is

continuous, this should almost never happen.

Correlation is the ordinary correlation coefficient between the target and the membership

probability for this state.  On first consideration it might be thought that the beta

weight in the linear equation predicting the target from the state probabilities

would be the better quantity to print.  But the beta weight is not printed at all due

to the fact that such weights are notoriously unstable and hence uninformative. 

Suppose there is very high correlation between the membership probabilities of

two states, a situation which is especially likely to happen if the user specifies

more states than actually exist in the process.  Then both of these probabilities

could be highly correlated with the target, while they might actually have opposite

signs for their beta weights!

Target mean is the mean of the target when this state has the highest membership

probability.  Cases in which there is a tie for maximum (almost impossible for

continuous data) do not enter into this calculation.

Target StdDev is the standard deviation of the target when this state has the highest

membership probability.  Cases in which there is a tie for maximum (almost

impossible for continuous data) do not enter into this calculation.
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State     Percent    Correlation   Target mean   Target StdDev

  1         23.76      -0.53350      -0.54538        0.45473
  2         21.73      -0.52368      -0.71809        0.56342
  3         34.03       0.38210       0.35674        0.47747
  4         20.48       0.62840       0.92173        0.49069

The reader should look back at the table of RAND1 and RAND2 means for each of the

four states and confirm that the correlations and target means shown in the table above

make sense.  We also see that the state membership probabilities conform with the

transition matrix.  As expected for random series, the target standard deviations are all

about the same.

Last but not least is the list of models, sorted in descending order of their multiple-R with

the target.  As expected (or at least hoped), the models involving either RAND1 or

RAND2 appear first, and they are all extremely significant.  As soon as these two

variables are exhausted, multiple-R plunges and significance is lost.  The remainder of

this table is not shown here, but this situation continues.

------------> Hidden Markov Models correlating with SUM12 <------------

 Predictor 1     Predictor 2     Multiple-R   Solo pval  Unbiased pval

       RAND1           RAND2       0.8896       0.0010       0.0010
       RAND1           RAND3       0.6937       0.0010       0.0010
       RAND1           RAND5       0.6680       0.0010       0.0010
       RAND0           RAND1       0.6619       0.0010       0.0010
       RAND1           RAND9       0.6604       0.0010       0.0010
       RAND1           RAND8       0.6590       0.0010       0.0010
       RAND2           RAND5       0.6579       0.0010       0.0010
       RAND0           RAND2       0.6554       0.0010       0.0010
       RAND2           RAND9       0.6493       0.0010       0.0010
       RAND1           RAND7       0.5870       0.0010       0.0010
       RAND1           RAND4       0.5845       0.0010       0.0010
       RAND2           RAND4       0.5756       0.0010       0.0010
       RAND2           RAND3       0.5721       0.0010       0.0010
       RAND2           RAND7       0.5667       0.0010       0.0010
       RAND2           RAND6       0.5648       0.0010       0.0010
       RAND2           RAND8       0.5623       0.0010       0.0010
       RAND1           RAND6       0.3938       0.0010       0.0010
       RAND3           RAND9       0.0307       0.1110       0.8760
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A More Practical Example of Hidden Markov Models

This section demonstrates an example of hidden Markov models using actual data, in this

case an application that predicts future movement of a financial market.  There are five

candidates for predictor variables and a single target:

CMMA_5 is the current closing price of the market, minus its 5-day moving average. This

shows the degree to which the market just (as of the end of the current day)

departed from its recent price level.

CMMA_10 is a similar quantity, but based on the 10-day moving average.

CMMA_20 is a similar quantity, but based on the 20-day moving average.

LIN_ATR_7 is the slope of the best-fit straight line connecting the prices over the most

recent 7 days, normalized by average true range.  This indicates the short-term

price trend in the market.

LIN_ATR_15 is a similar quantity, but based on the 15-day trend.

DAY_RETURN_1 is the market change over the next day, normalized by average true

range.  This variable serves as the target, as it represents the future change of the

market price.

This example specifies that two predictors will be used by the model, and three states are

possible.  The model that correlates most highly with the target uses CMMA_5 and

CMMA_20 as predictors.  The means and standard deviations of these variables are

shown for each of the three states:

Means (top number) and standard deviations (bottom number)

State         CMMA_20            CMMA_5

   1        -20.81845         -15.87819
              9.42582          16.57821

   2         24.57826          17.83951
              8.25328          15.22672

   3          3.57633           2.36846
              7.27092          17.76842
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The three states are highly distinct in terms of their predictor distributions.  CMMA_20,

in particular, has means that are widely separated relative to their standard deviations. 

We see that State 1 is characterized by today’s price being much lower than recent prices,

State 2 is characterized by today’s price being much higher than recent prices, and State 3

is characterized by today’s price being about the same as recent prices.  This sounds

almost too ‘sensible’ to be believed, but numerous reruns of the test consistently

produced similar results.

The transition probability matrix, shown below, reveals several interesting properties. 

First, we see that states have considerable persistence; there is about a 90 percent

probability that tomorrow will remain in the same state as today.  What is also interesting

is that it is nearly impossible for the market to transition between States 1 and 2 without

going through State 3, and in fact probably staying in State 3 for some time.  In fact, the

probability of going from State 1 to State 2 is zero to at least four digits!

Transition probabilities...

         1        2        3
  1   0.8978   0.0000   0.1022
  2   0.0014   0.9095   0.0890
  3   0.0711   0.0747   0.8542

The table of additional properties shows how these states relate to the target, the price

change of the market the next day.  We see that State 3, that corresponding to prices

remaining fairly constant, is the most common, occurring almost 40 percent of the time. 

We also see at least one-day persistence of price movements into the future, as State 1,

which corresponds to a pattern of today’s closing price being far below recent prices, is

associated with a negative price movement tomorrow.  Similarly, State 1, which

corresponds to a pattern of today’s closing price being far above recent prices, is

associated with an upward price movement tomorrow.  Finally, it is noteworthy that the

standard deviation of the target when in State 1 is almost fifty percent higher than when

in the other two states.  Thus, we can expect unusually large market turbulence when we

have been in a pattern of prices closing far below their recent values.  This agrees well

with intuition, but it is nice to see it corroborated numerically. 

State     Percent    Correlation   Target mean   Target StdDev

  1         27.75      -0.07034      -0.05099        0.86047
  2         32.41       0.06831       0.08906        0.60901
  3         39.84      -0.00049       0.02438        0.64007
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Finally, we have the list of models sorted according to their relationship to the target. 

The major take-away from this list is that the CMMA variables are much more important

to predicting tomorrow’s price movement than the linear trend variables.  Also, the

degree of significance of these relationships is impressive, usually the minimum

obtainable from the 1000 Monte-Carlo replications performed.

 Predictor 1     Predictor 2     Multiple-R   Solo pval  Unbiased pval

     CMMA_20          CMMA_5       0.0807       0.0010       0.0010
      CMMA_5       LIN_ATR_7       0.0762       0.0010       0.0010
     CMMA_10          CMMA_5       0.0689       0.0010       0.0010
     CMMA_10         CMMA_20       0.0686       0.0010       0.0010
     CMMA_20       LIN_ATR_7       0.0650       0.0010       0.0010
     CMMA_20      LIN_ATR_15       0.0442       0.0010       0.0010
     CMMA_10       LIN_ATR_7       0.0408       0.0010       0.0010
     CMMA_10      LIN_ATR_15       0.0330       0.0020       0.0080
      CMMA_5      LIN_ATR_15       0.0227       0.0480       0.1500
  LIN_ATR_15       LIN_ATR_7       0.0168       0.1790       0.4750
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Assessing HMM Memory in a Time Series

The prior section described a test for linking measurable feature variables to an

unmeasurable target variable by means of an underlying hidden Markov model.  But it

makes no sense doing that if our candidate features do not have memory that can be

modeled by a hidden Markov model.  Thus, if we have doubts, our preliminary step

should be to assess whether our feature variables, alone or in small groups, have memory

that can be explained by a hidden Markov model.

Alternatively, and especially if we have an unwieldy quantity of candidate variables, we

may wish to reverse this order: first, perform the linkage test, and then confirm that the

selected features conform satisfactorily to a hidden Markov model explanation.  Of

course, if they do not, the linkage test will often fail, and if they do, the linkage test will

often succeed (if such linkage is actually present!).  However, conflicts do arise and can

be quite revealing.  If the linkage test shows a strong relationship but the memory test

described in this section shows a poor HMM explanation, we should be inclined to

largely disregard the linkage results and focus on more traditional data mining

techniques.  Conversely, if the linkage test fails but the HMM memory test succeeds, we

have pretty good evidence that the features have little predictive power for the target

variable, stronger evidence than what could be obtained by most traditional tests alone. 

Thus, it behooves us to perform both tests, ideally but not necessarily doing the memory

test first.

This memory test gives us a simple Monte-Carlo p-value for the null hypothesis that the

data cannot be explained by a hidden Markov model.  If this null hypothesis is true (the

data has no HMM memory), we would expect that the fitting criterion of the original

data would be about the same as those of the permuted datasets, which by definition

have no HMM memory.  But if the data is well fitted by a hidden Markov model, we

would expect its fitting criterion to be greater than that of most or all of the permuted

datasets, leading to a very small p-value.  In fact, the computed p-value is the probability

that, if the null hypothesis is true (the data has no HMM memory), we could have gotten

a fitting criterion as great as we observed by pure luck.  When we perform this test, we

really want a probability no greater than 0.05, and a cutoff of 0.01 is nicely conservative.
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Specifying the Test Parameters

When we select Hidden Markov Model Memory from the Test menu, a dialog similar to

that shown below appears.

The following items must be specified:

The Predictors column is used to specify the set of predictor variables.  Multiple

candidates can be selected by dragging the mouse cursor across a block, or by clicking

the first candidate in a block, holding the Shift key, and clicking the last candidate in the
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block.  Individual variables can be toggled on and off by holding the Ctrl key while

clicking on the variable.

The Target column is used to specify the target variable.  This variable is ignored when

the models are computed; rather it plays a role in selecting the ‘best' model.

The Number of states is exactly that, the number of states in which the process can exist. 

It must be at least two, and it typically is small, rarely more than four.  Execution time

blows up rapidly as the number of states increases.

Initialization trials is the number of trials used to find a starting point for the iterative

fitting process.  Run time is approximately linearly proportional to this number, but it

really should be as large as possible, because having a sufficient number of trials is

critical to correct operation.

Max iters is an insurance policy against unending iterations.  Leaving it set at the default

1000 should virtually always be good.  Unless the data is pathological, the number of

iterations will never get even close to this limit.

Replications is the number of Monte-Carlo permutation test replications.  Values in the

range 100-1000 are reasonable, with larger being better.  Complete permutation is always

done, as cyclic permutation would not simulate the null hypothesis of no memory.

The only thing printed by this test is a p-value for the null hypothesis that the data

cannot be explained by a hidden Markov model.
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Stationarity Test for Break in Mean

Stationarity in the mean is vital to most prediction schemes, the most critical of

stationarity properties.  If a predictor or target significantly changes its mean in the midst

of a data stream, it would be foolish to assume that a prediction model will perform well

on both sides of this break.  Even a slow, steady drift is a serious problem.  Thus, we

should always check for this sort of nonstationarity in all predictors and targets.

For applications in which the series being evaluated are not being used as predictors or

targets, this test is also useful.  We may have a process whose performance is indicated

by a numerical value.  It may be the error rate of a prediction system, or cost savings

achieved by a new manufacturing process.  A classic example is following the

performance of a market trading system.  Suppose a previously profitable system

suddenly or even slowly deteriorates.  We naturally wish to determine whether this

falloff in performance is within historical norms or signifies something serious.  This test

is performed by clicking Test / Stationarity break in mean.  The dialog box shown on the

next page will appear.

The user must select one or more variables.  The user also specifies the range of recent

history which will be searched for a break in the mean.  The default of doing no search at

all, but rather looking at only the most recent observation, allows the fastest detection of

a change.  However, it is also the least sensitive test, being based on a single observation

relative to the rest of history.  Employing a wider search range greatly increases the

sensitivity of the test, at the price of delayed confirmation of a change in the mean.

Two families of tests are available, the multiple comparisons option, and the serial

correlation option.  They are mutually incompatible in that if the data has significant

serial correlation, a statistically sound multiple comparisons test cannot be done, at least

not in VarScreen.  And probably not in any practical way in any program.

If you leave the default multiple comparisons option selected, and leave the numeric field

above it set to the default of 1, a single, straightforward test as just described is

performed.  The program simply searches the user-specified range of recent history,

moving a hypothetical boundary, and finds the greatest difference in means on the two

sides of the boundary.  But two possible alternative tests are provided.  We first explore

the test performed when the default multiple comparisons option is selected, but the

numeric field above it is set to a value greater than 1.
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The Multiple Comparisons Test

Suppose you are monitoring incoming data from a series.  For example, you may be

assessing monthly returns of a market trading system.  Every time a new month rolls

around you repeat the test.  The statistical term for this repetition of the same test with

different data is multiple comparisons.  Its effect is to increase the chance that you will

observe a statistically significant result, even if the effect you are looking for is not

present.  Sooner or later, random chance is going to present a significant result due to

nothing more than luck.

The user can compensate for this effect by having the program adjust its p-values under

the assumption that a specified number of tests will be performed.  Of course, in real life

it would be difficult to make an honest assessment in advance of exactly how much
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testing will be done.  Still, this capability is better than blithely ignoring this vital issue! 

At a minimum, the user can see the effect of multiple tests on the computed p-values, and

make a good-faith assessment of the number of tests that will be performed.

Because there will be huge correlation between successive test statistics due to overlap of

the testing regions, ordinary multiple-comparison tests are invalid.  For this special

application, an ad hoc but reasonable methodology is followed.  Look at the figure below.

This figure illustrates the simple situation of testing with a range of 3 (minimum recent

history) to 5 (maximum recent history) cases on the ‘recent' side of the hypothetical

break.  It also shows 2 multiple comparisons.  The dotted lines show the breakpoints

tested.

For the original, unpermuted data only the ‘First comparison' would be performed. 

Whichever of the three trial breakpoints produces the largest break will be the score as of

the most current observation.

For all permutations, both comparisons will be performed.  The null-hypothesis score

will be the greatest of the six scores (three for each of the two comparisons).  We then

count how many of these null hypothesis scores equal or exceed the obtained score for

each test.  As per the usual Monte-Carlo permutation test, let there be m permutations,

with k of them having a score equaling or exceeding the greatest score among the tests

(which, strictly speaking, is not known in real life until all tests are complete!).  Then the

p-value is (k+1)/(m+1).  This is the approximate probability that, if there were no break in

the mean, we would have obtained a maximum break score across all tests that is at least

as large as that actually observed.

There are several theoretical problems with this multiple-comparison test.  Foremost, it is

not strictly correct to keep re-evaluating the p-value on each test.  By rights we should

wait until all tests are complete and examine the maximum break across all tests.  The

computed p-value relates to this maximum break.  Of course, in real life this would

defeat the whole purpose of the test!  We want to test on an ongoing basis, not just once
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after all of the multiple results are in.  But I strongly suspect that, compared to other

sources of random error, this is of minor consequence.

Also, the shifting of test windows probably does a good job of accounting for serial

correlation in the test statistics, but I have no rigorous proof.  Because each sequential test

involves a massive overlap in the data that goes into the test, the test statistics will have

similarly massive serial correlation.  The algorithm illustrated in Figure 1.2 simulates

what would happen in real life, but rigorous justification would be nice.

In short, the mathematical foundations of this test are shaky.  Nonetheless, in a

multiple-comparisons situation, this test is almost certainly far superior to failing to

compensate in any way, and I have reasonable confidence that it is actually quite good. 

But be warned.

If the user sets the Monte-Carlo permutation test replications to zero or one, no MCPT

will be performed, and only two columns of results will be printed.  The first is labeled

Z(U), and it is the absolute Z-score corresponding to the Mann-Whitney U-test statistic

for the difference in means between the data before and after the break point.  The second

column reports how many indicator values lie on the recent side of the break boundary. 

You can count backwards this many cases from the end of your dataset to locate the bar

on which the maximum difference occurs.

In the more usual situation of the user specifying a large number of replications (100-1000

or so), one or two additional columns are printed.  The Solo pval for a variable is the

approximate p-value for that variable considered in isolation; it is the probability that if

the variable had no break in its mean we would have obtained a test statistic at least as

large as was actually obtained.  Note that this is not the p-value associated with the

printed Z(U).  That Z(U) is the Z-score for the greatest break encountered across the

user-specified search range.  Thus, it is a ‘best-of' statistic, though limited to that single

variable.  The solo p-value takes into account that a whole range of boundaries has been

searched for the greatest break.

If this solo p-value is not small, the developer should be inclined to believe that the

variable does not have a significant mean break.  Of course, this logic is, in a sense,

accepting a null hypothesis, which is well known to be a dangerous practice.  However, if

a reasonable number of cases are present and a reasonable number of Monte-Carlo

replications have been done, this test is powerful enough that failure to achieve a small

p-value can be interpreted as the variable being decently stationary in its mean.
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If more than one variable is specified, then the Unbiased pval column has a useful

interpretation.  When several variables are tested, chances are that one or more of them

will, by sheer chance, have an usually large apparent mean break, even if in truth no such

break exists.  The Unbiased pval compensates for this effect.

The Unbiased pval is printed for all variables.  For the first variable, the one having the

greatest observed mean break, this is the approximate probability that, if none of the

variables had a mean break, we could get a greatest mean break among them at least as

large as that observed.  For those other, lesser candidates, the Unbiased pval is an upper

bound for the true unbiased p-value of the variable.  Thus, a very small Unbiased pval

for any candidate is a strong indication that the candidate has a significant mean break. 

Unfortunately, unlike the Solo pval, large values of the Unbiased pval are not necessarily

evidence that the candidate is break-free.  Large values, especially near the bottom of the

sorted list, may be due to over-estimation of the true p-value. I am not aware of any

algorithm for computing correct unbiased p-values for any candidate other than that

having the largest break.  However, because this measure is conservative, it does have

great utility in discovering nonstationary variables.

On a final note, be aware that having a statistically significant mean break does not

equate to having a practically significant mean break.  If the dataset is large, even a trivial

mean break, something of no practical consequence, may show statistical significance. 

This test should be treated as a tool, a supplementary source of information, as opposed

to the final arbiter of stationarity.
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The Serial Correlation Test

It will often be the case that the variable we are testing for a mean break will have

substantial serial correlation.  This is particularly true for indicators derived from

financial markets.  Most indicators examine recent market history using a moving

window, computing each indicator value from the market prices in the window.  Thus,

when we advance from one bar to the next, most historical prices will remain in the

window.  For example, suppose we compute an indicator based on the most recent 20

bars of price history.  Then, adjacent indicator values will have 19 historical price bars in

common, with only the oldest price being replaced by a new price as time marches

forward.  This leads to massive serial correlation.

Such dependency among the observations in a statistical test will, almost without

exception, completely invalidate the test.  Testing for a break in the mean is no exception. 

Even a fully nonparametric test such as the combination of complete permutation and the

Mann-Whitney U-test, as performed in the algorithm described in the prior section, is not

immune to this nearly universal problem.  Roughly stated, the issue is that when

observations are dependent on one another, the dataset's statistical behavior is very

different from the behavior that would be observed if there were no dependencies, and

the latter situation is the assumption in this and nearly all other statistical tests.

In many of the tests available in VarScreen, serial correlation is accommodated by

performing cyclic permutation instead of complete permutation.  This largely preserves

the serial dependencies inherent in the unpermuted data, and it is a reasonable if not

perfect solution to the problem.  But when testing for a break in the mean, cyclic

permutation is  much less applicable.  All that data rotation does is move the locations of

any mean breaks, so if a wide area is searched (the usual situation in indicator analysis),

the generated null hypothesis distribution is worthless for testing purposes.  And even if

a narrow region is searched, the distortion induced by serial correlation has a much

stronger impact than for the other tests in VarScreen.  For these reasons, only complete

permutation is available for the mean break test.

But what can we do if our data is serially correlated, as will nearly always be the case for

any variables whose computation is based on a moving window?  Unfortunately, if the

correlation extends back in history for a substantial distance, there is little or nothing that

can be done.  However, if the extent of serial correlation is a small fraction of the total

number of observations, we can modify the test in a way that is almost certainly valid,

though at the price of somewhat blurring the location of the break.  (In practice, visual
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inspection of a plot of the series would show the location of any sudden break in most

situations.)

To modify the mean break test, we take advantage of the fact that, by definition,

observations separated by at least the extent of the serial dependency will be

independent.  For example, suppose we compute a financial market indicator by

considering the most recent 20 historical price changes.  Then the current computed value

will be independent of the value that was computed 20 time intervals ago, because the

two computation windows are completely disjoint.  This, of course, assumes that the

underlying price changes are independent, which in general is almost but not quite the

case.  So we would be wise to actually examine a table of lagged correlations to confirm

the dropoff in correlation.  This also assumes freedom from any significant dependencies

that do not show up as correlation, but such situations are rare enough that we can

almost always ignore that possibility.

This naturally leads to the following modified mean-break test, under the assumption

that serial dependency extends for k prior observations.  When we test for the presence of

a mean break at a particular boundary, in the traditional test we compare all observations

on one side of the trial boundary with all observations on the other side.  But in this

modified test we compare every k'th observation on one side of the trial boundary with

every k'th on the other side, and we do so for every possible offset from 0 through k–1. 

The ‘score' is the maximum U-statistic over all trial boundaries and offsets.  For

generating the null hypothesis distribution, each offset is permuted separately, and all

trial boundaries are tested for each permutation.

An example may make this (admittedly vague) description more clear.  Suppose our

historical lookback window is five observations, and we confirm that, as normally

expected, serial correlation drops to essentially zero for observations five time samples

apart.  Number the observations beginning with 0 as the most recent.

Start the test with an offset of 0.  Collect observations 0, 5, 10, 15, 20, and so forth.  These

are independent (at least as far as correlation goes, and probably entirely).  If we are in a

permutation replication, permute this set, which is legal since there are no dependencies

to destroy.  Then test all trial boundaries that are within the user's specified range.  For

example, suppose the trial boundary is between observations 12 and 13.  Then we will

use the U-test to compare observations 0, 5, and 10 to observations 15, 20, 25, and so

forth.

That takes care of offset 0.  Now we move on to offset 1.  Collect observations 1, 6, 11, 16,

21, and so forth.  Permute these if we are in a permutation replication.  Again test all trial
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boundaries.  For a trial boundary between 12 and 13, test observations 1, 6, and 11 against

16, 21, and so forth.

Offsets of 2, 3, and 4 are treated similarly.  The final test statistic is the maximum

U-statistic taken over all offsets and trial boundaries.

A Major Caveat, Again

At the risk of being overly pedantic, I'll repeat the warning given earlier: a statistically

significant break in the mean does not imply a problematic break in the mean.  A key part

of any investigation of the properties of a time-series variable is visual examination of a

plot of the series.  If the series contains a mean break large enough to be a problem, you

will almost certainly see it in the plot, either as a sharp discontinuity or as a steady drift

upward or downward.  You won't need any printed number to tell you where it is.  This

is one of those rare times in life in which what you don't see really won't hurt you.  Most

of the time, anyway.
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A Multiple-Comparisons Demonstration

We begin with a very simple test.  Suppose we have a market trading system, and we

monitor its monthly net profit.  We decide that we want to see how the latest month

stacks up compared to prior months.  Is it an oddball win or loss?  We know, perhaps

from theory, or perhaps from empirical evidence, or even both, that our monthly returns

have negligible serial correlation, so we don't have to compensate for that.  With these

things in mind, we specify a minimum and maximum size of recent history to be just one

observation and run the test.  The following results are obtained:

**********************************************************
*                                                        *
* Computing stationarity test for break in means         *
*     1 predictor candidates                             *
*     1 Minimum recent history cases                     *
*     1 Maximum recent history cases                     *
*     1 Multiple comparisons                             *
*   100 replications of Monte-Carlo Permutation Test     *
*                                                        *
**********************************************************

-------------> Mean break test <------------

Z(U) refers to the maximum break across the user's range.
Nrecent is the number of most recent cases this side of the break.
Solo pval takes into account all tries across the range.

       Variable        Z(U)      Nrecent      Solo pval

         PROFIT       0.4811         1         0.7000

This large p-value of 0.70 is evidence that the mean profit has not just shifted.  Of course,

as any graduate of Statistics 101 will know, failing to achieve a significant p-value does

not mean that the null hypothesis is true.  Making that leap would be a cardinal sin called

accepting the null hypothesis.  So to be strictly correct, we cannot say that the average

monthly return is still about the same as it has historically been, especially as this suspect

conclusion is based on a single observation relative to history.  But the most recent profit

is obviously on par with other results, and as long as we have a reasonably long history

of monthly profits we can treat this result as circumstantial but strong evidence that the

mean profit is still the same.

The test just shown has yet another statistical flaw that we should be aware of.  This

procedure is fine as long as we perform a single test, examining the monthly return for

just this one month and never doing it again.  But that's pretty doubtful.  Chances are

we'll be repeating this test the next month, and the month after that, and so forth. 

Suppose the mean never changes.  If we keep testing every month, it's likely that



Stationarity Test for Break in Mean 65

eventually we'll erroneously get a significant p-value simply by random chance.  Ideally,

we should compensate for that.  This was discussed beginning on Page 2, so we won't

pursue the general issue here.  But we will repeat the example just shown, this time

assuming that we'll be repeating the test 12 times.  Of course, it can be difficult, if not

impossible, to provide an honest estimate of how many times we'll repeat the test, but we

just do the best we can.  Here are the results:

**********************************************************
*                                                        *
* Computing stationarity test for break in means         *
*     1 predictor candidates                             *
*     1 Minimum recent history cases                     *
*     1 Maximum recent history cases                     *
*    12 Multiple comparisons                             *
*   100 replications of Monte-Carlo Permutation Test     *
*                                                        *
**********************************************************

------------> Mean break test <------------

Z(U) refers to the maximum break across the user's range.
Nrecent is the number of most recent cases this side of the break.
Solo pval takes into account all tries across the range.

       Variable        Z(U)      Nrecent      Solo pval

         PROFIT       0.4832         1         1.0000

Note that Z(U) changes slightly because the number of tested cases changes slightly, and

the function that maps U to Z uses this quantity.  More importantly, observe that the

p-value rises to its maximum value.  P-values will always increase in a

multiple-comparisons test.

Testing Correlated Market Returns

Before investing a lot of time developing a trading system for some market, it would be

wise to investigate whether the market returns (change in the market over some time

period) are stable across the time period over which we will devise our system.  As an

illustration of this, I computed returns of OEX (the S&P 100 index) over time intervals of

1 day, 20 days, and several other intervals.  I looked at trial break boundaries rangiong

from 100 days ago to 5000 days ago.  Computations are based on day-bars, so returns for

any time interval greater than 1 day are serially correlated due to overlapped sharing of

daily returns.  Thus we must use the serial correlation test with a lag of 20.  The following

results are obtained:
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**********************************************************
*                                                        *
* Computing stationarity test for break in means         *
*     5 predictor candidates                             *
*   100 Minimum recent history cases                     *
*  5000 Maximum recent history cases                     *
*    20 Maximum serial correlation lag                   *
*   100 replications of Monte-Carlo Permutation Test     *
*                                                        *
**********************************************************

------------------> Mean break test <---------------

Z(U) refers to the maximum break across the user's range.
Nrecent is the number of most recent cases this side of the break.
Solo pval takes into account all tries across the range.
Unbiased pval takes into account all variables tested.

    Variable     Z(U)    Nrecent   Solo pval  Unbiased pval

DAY_RETURN_20   3.5216      4361     0.1200       0.4000
DAY_RETURN_10   3.4939      4605     0.1900       0.4400
 DAY_RETURN_1   3.1224      1926     0.4200       0.8200
 DAY_RETURN_2   3.0492      1402     0.5600       0.9000
 DAY_RETURN_5   3.0157      4517     0.5000       0.9000

None of the p-values are significant, especially when we look at the unbiased values that

take into account our testing of several variables.  Despite skating on the edge of illegally

accepting a null hypothesis, given that we have over 6000 days represented we are

reasonably safe in concluding that the returns of this market do not suffer a mean break.
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Testing an Indicator

We conclude these demonstrations by testing a standard indicator for a break in its mean. 

This indicator is ADX with a lookback window of 7 days, so we will need to perform the

serial correlation test with a lag of 7.  But it's always good to verify that serial correlation

has fallen off to essentially zero by the time we think it will.  The autocorrelation test

provides the following results:

***********************************************************
*                                                         *
*  Computing autocorrelation analysis                     *
*      20 maximum lag                                     *
*            ADX7 is the tested variable                  *
*                                                         *
***********************************************************

 Lag     AutoCorr   Partial
   1      0.951      0.951
   2      0.837     -0.717
   3      0.685      0.020
   4      0.517     -0.086
   5      0.348     -0.015
   6      0.192      0.037
   7      0.066      0.138
   8     -0.014      0.235
   9     -0.059     -0.365
  10     -0.084      0.009
  11     -0.096     -0.026
  12     -0.098     -0.014
  13     -0.096      0.047
  14     -0.089      0.100
  15     -0.077      0.149
  16     -0.065     -0.277
  17     -0.052      0.016
  18     -0.042     -0.017
  19     -0.033     -0.015
  20     -0.027      0.012

We see that the autocorrelation is practically zero by a lag of 7 days.  If we were fanatic

we might want to go to a lag of 8 days, but we know that the computation of ADX7 uses

only the last 7 days' prices, so we are safe in assuming that the observed autocorrelation

of 0.066 is just random variation.  If we had observed a significant value at this lag we

would know that something is wrong with our ADX computation and the problem must

be investigated.
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We proceed with the mean break test and observe the following result, which lets us

cautiously (one cannot accept a null hypothesis) conclude that the mean of our indicator

does not drift or shift precipitously.

**********************************************************
*                                                        *
* Computing stationarity test for break in means         *
*     1 predictor candidates                             *
*   100 Minimum recent history cases                     *
*  5000 Maximum recent history cases                     *
*     7 Maximum serial correlation lag                   *
*   100 replications of Monte-Carlo Permutation Test     *
*                                                        *
**********************************************************

-------------------> Mean break test <------------------

Z(U) refers to the maximum break across the user's range.
Nrecent is the number of most recent cases this side of the break.
Solo pval takes into account all tries across the range.

       Variable        Z(U)      Nrecent      Solo pval
           ADX7       2.4502      2616         0.5500

What if we were to incorrectly use an ordinary mean break test, ignoring the large serial

correlation?  We would get a vivid demonstration of why we must use the serial

correlation test when the data has serial correlation. Note the massive Z(U) and the

minimum possible p-value.

**********************************************************
*                                                        *
* Computing stationarity test for break in means         *
*     1 predictor candidates                             *
*   100 Minimum recent history cases                     *
*  5000 Maximum recent history cases                     *
*     1 Multiple comparisons                             *
*   100 replications of Monte-Carlo Permutation Test     *
*                                                        *
**********************************************************

----------------> Mean break test <---------------

Z(U) refers to the maximum break across the user's range.
Nrecent is the number of most recent cases this side of the break.
Solo pval takes into account all tries across the range.

       Variable        Z(U)      Nrecent      Solo pval
           ADX7       6.1463      2619         0.0100
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Multiple Mean Breaks

The tests we have described look for a single boundary such that the observed values

prior to this boundary are maximally larger or smaller than those on the other side of the

boundary.  It does not require a sharp break; if the observed values have a slow, steady

increase or decrease in their central tendency, this test will discover this property by

finding a boundary at which this tendency is most evident, even if this discovered

boundary is itself not pronounced at all.

But what if the mean of the series has multiple changes, going up and down several

times.  This is certainly dangerous nonstationary behavior, but the algorithm may have

difficulty finding a break that optimally splits the entire series.  In such a situation, the

user may be tempted to visually examine the series and then manually split it into one or

more subsets that contain a visible break in the interior, and analyze these subsets

separately.

The problem with this approach is that if a break is large enough to be visible, it is

virtually guaranteed to have an extremely significant p-value.  In other words, the user

has set up the algorithm, giving it a series that is already known to have a significant

mean break.  This approach can still have some practical value, as the reported Z(U) can

provide an indication of the size of the break relative to ‘normal' changes in the series. 

But computed p-values will be worthless due to being prejudiced by manual selection of

the tested series.

The bottom line is this: the ‘break in mean' test is a valuable screening tool in that it allows the

user to quickly identify variables that exhibit nonstationarity in the form of the mean drifting

monotonically or suddenly shifting, but it should not be used for making final conclusions. 

Nothing can replace careful visual examination of the plotted series.
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FREL: Feature Weighting as Regularized Energy-Based
Learning

The FREL algorithm (Yun Li et al, ‘FREL: A Stable Feature Selection Algorithm’, IEEE

Transactions on Neural Networks and Learning Systems, July 2015) is a useful method for

ranking, and even weighting, predictor variables in a classification application which is

relatively low noise but is plagued by high dimensionality (numerous predictors) and

small sample size.  The implementation in VarScreen is strongly based on their innovative

algorithm, but with significant modifications that I believe improve on the original

version by providing more accurate and stable weights (at the cost of slower execution). 

My implementation also includes an approximate Monte-Carlo permutation test (MCPT)

of the null hypothesis that all predictors have equal value, as well as an MCPT of the null

hypothesis that the predictors, taken as a group, are worthless.  Sadly, I am unable to

devise a FREL-based MCPT of any null hypothesis concerning individual predictors

taken in isolation.

The ‘model’ which inspires FREL is weighted nearest-neighbor classification.  The

distance between a test case having predictors x = {x1, ..., xK} and a training-set case t = {t1,

..., tK} is defined as the city-block distance between these cases, with each dimension

having its own weight.  This is defined as:

Then, if one wishes to classify an unknown test case x based on a training set, one would

compute the distance between the test case and each member of the training set.  The

chosen class for the test case would be the class of the training case having minimum

distance from the test case.

Of course, performing this classification presupposes that we know appropriate weights. 

The procedure can be inverted and used to find optimal weights, and we could then

interpret the weights as measures of importance of the predictors (assuming that the

predictors have commensurate scaling!).  All we would do is define a measure of

classification quality and then find weights that maximize this quality measure.

An approach to machine learning that is becoming more and more popular is energy-

based modeling.  One has a set of random variables, which in the current context would be

predictors, and a prediction target or class membership.  The model defines a scalar

energy as a function of the values of these variables, sometimes called their configuration. 

This energy is a measure of the compatibility of the configuration, with small values of
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energy corresponding to compatible configurations.  If we have a known energy-based

model and we wish to make an inference (a prediction or classification) based on

specified values of the predictors, we fix the predictors and vary the target or class

variable to identify the configuration that minimizes the energy.

In order to find a good energy-based model, we tune the parameters of the model in such

a way that ‘correct’ configurations (as indicated by the training set) have small energy

and ‘incorrect’ configurations have large energy.

Once the structure of the model is specified, in order to find optimal parameters we

define a loss functional (a function of a function).  The model is a function which maps

configurations of variables to energy values, and the loss functional maps models to

scalar loss values.  In order to train the model, we find the version (parameters for the

model family) which minimizes the loss functional.

The most common version of this latter operation, which we will do here, is to define a

per-sample loss functional as a function of the model and a single case, and then average

this per-sample measure across the entire training set.

This is a good time for a brief digression to make sure that two crucial issues are clear. 

First, many models, such as nearest-neighbor classification and some types of kernel

regression, implicitly include the entire training set (or some other dataset) as a key

component of the model.  Do not confuse this with discussions of the training set related

to training.  It’s still just the model, and we need not explicitly mention the presence of

the training set as part of the model.  Second, do not confuse energy with loss.  Energy is

a measure of the compatibility of a given variable configuration with a model, and it is

used to make a prediction.  Loss is a measure of the quality of a model in a way that

generally includes a training set, and it is used to find an optimal model.

The energy that a model M assigns to a hypothetical variable configuration {x, y} can be

conveniently written as E(M, x, y).  An extremely common and useful way to express the

per-sample loss for a single training case {xi, yi} is L( yi, E(M, xi, m  ), in which the term

E(M, xi, m  ) actually stands for multiple energy values, one for each possible value of y. 

In other words, the per-sample loss for a single case is a function of the true value of y for

that case, and the energies given by the model for x associated with every possible y.

Note, by the way, that the distinction between function and functional become a bit murky

here, depending on whether we think in terms of E being a hypothetical function or an

observed number.  In any case, the idea should be clear.
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We are almost done presenting a general form of an effective loss function(al) for training

an optimal (in the sense of the loss) model.  We have seen the form of a per-sample loss,

and stated that averaging this quantity over every sample in the training set is

reasonable.  The only remaining issue is that of regularization.  This enables us to embed

prior knowledge about the model in the final solution.  Typically, this involves limiting

the size of weights involved in the expression of the model, although other approaches

are possible.  With these things in mind, we can express the loss of a given model M for a

given training set T and regularization function R as shown below.  This is a scalar

quantity which we will minimize in order to develop a good model.

To review, a good model will fulfill two requirements: it will have low energy for correct

configurations and high energy for incorrect configurations.  Looked at another way,

when a good model is presented with a set of predictors x, its energy will be low when it

is simultaneously presented with the correct y for that x, and its energy will be high

when it is simultaneously presented with any incorrect y.

It is tempting, and often appropriate, to consider only the first half of this two-part

requirement: the model will have low energy for correct configurations.  This is

especially true for models in which fulfilling the first half automatically fulfills the second

half.  For example, suppose we have a regression equation as the model, and we define

the energy associated with the model and a training case as the squared difference

between the correct answer and the answer provided by the regression function.  If the

loss is just this energy, then averaged across the entire training set, the loss is the mean

squared error (MSE).  The optimal model is produced by minimizing the MSE, a

venerable approach.

But for many model architectures, this halfway method is not a good approach.  It is

much better, if not mandatory, to explicitly take into account the second half of the

requirement: the energy of incorrect answers should be large.  And intuitively, we don’t

much care about easy situations, those incorrect answers that have huge energy.  Even a

weak model will do well with them.  What we must worry about is those situations in

which an incorrect answer has dangerously low energy.  We want our model to be able

to raise the energy of these problematic cases as much as possible above the energy of the

correct answer.
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This intuition leads to the following definition:

The most offending incorrect answer for a case, which we will call ÿ, is the incorrect answer

that has the lowest energy.  This is the answer most likely to cause an error, because it is

the incorrect answer that is most difficult for the model to distinguish from the correct

answer.  The second half of the training procedure discussed earlier, that incorrect

answers should have large energy, is more general than is necessary.  All we really care

about is that the most offending incorrect answer has energy as large as possible,

compared to the energy of the correct answer.  The other incorrect answers are of

relatively minor importance because they are easier for the model to avoid.

In particular, what we often want to maximize is the difference between the energy of the

most offending incorrect answer and the energy of the correct answer.  This will give us a

model that is optimal in the sense of effectively handling the most difficult cases, while

letting the easy cases slide.

A popular per-sample loss criterion, and which is used in VarScreen, is the log loss shown

below.  Note how it is a monotonic function of the difference between the two energies,

so optimizing either is equivalent to optimizing the other (for a single case, not averaged

across the training set!).

Now that a theoretical foundation is laid, we can apply these ideas to the specific model

used in the FREL paper and VarScreen.  Recall from the beginning of this section that we

use weighted nearest-neighbor classification.  Thus, in order to compute E(M, xi, yi) for

training case i, we check all other training cases in the correct class, yi.  The smallest

distance is the energy for the correct class.  Similarly, to compute E(M, xi, ÿ i) we search all

other training cases in an incorrect class and find the distance to the nearest.  Of course,

although this is simple to describe and implement, it can be horrendously slow to

compute.  The quantity being minimized is the average across the training set of the per-

sample losses shown in the equation above.  If there are n training cases and K predictors,

a single evaluation of the grand loss function requires on the order of Kn2 operations. 

Yikes!  Luckily, FREL is most useful for situations in which the training set is small

relative to the number of predictor candidates, so that squared term will hopefully not be

a serious problem.
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All that remains to be settled is the regularization.  In any reasonable application, the

energy of the incorrect answers will, on average, exceed that of the correct answers;

otherwise the model would be worthless!  For the loss function just shown applied to

weighted nearest-neighbor classification, increasing the weights together will decrease

the loss, because the term being exponentiated will become increasingly negative.  Thus,

naive minimization of the loss will result in the weights blowing up without bound. 

Thus, we are inspired to penalize large weights.  This is common practice, even in

situations in which this blowup is not natural.  The reason is that in many models, large

weights are associated with overfitting and poor out-of-sample performance.  In

VarScreen we use the common method of penalizing by the sum of the squares of the

weights.  The sum of their absolute values is also common and may be implemented in a

future version of the program.

The optimal weights determined by minimizing regularized loss can be interpreted as

measures of importance of the individual predictors.  However, two issues must be

considered.  First, the scaling of the predictors obviously impacts the weights, so their

scaling should be commensurate.  VarScreen takes care of this by internally scaling per

their standard deviation.  Second, interpretation by the user is aided by normalizing the

weights in some way for display.  In VarScreen they are linearly normalized so as to sum

to 100.

A frequently useful variation is to take many bootstrap samples from the dataset and

compute the final weight estimate by averaging the estimates produced from each

bootstrap sample.  The sampling must be done without replacement, as nearest-neighbor

algorithms are irreparably damaged when the dataset contains exact replications of cases. 

Bootstrapping FREL has at least two major advantages over doing one FREL analysis of

the entire dataset:

1) Stability is usually improved.  A critical aspect of any weighting scheme is that the

computed optimal weights should be affected as minimally as possible by small changes

in the dataset.  Such changes might be inclusion or exclusion of a few training cases, or

change might be effected by the addition of noise to the data.  An average of bootstraps is

much more robust against data changes compared to a single complete FREL processing.

2) Because run time of the FREL algorithm is proportional to the square of the number of

cases, we can greatly decrease the run time by performing many iterations of a small

sample.

For these reasons, bootstrapping is generally recommended.
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FREL Operation in VarScreen

We’ve already discussed the mathematics behind the FREL implementation in VarScreen. 

This section covers the user interface.  When the user clicks Test / Regularized energy-based,

a dialog box appears.  The following information must be supplied by the user:

The leftmost (Predictors) column is used to specify the set of predictor candidates. 

Multiple candidates can be selected by dragging the mouse cursor across a block, or by

clicking the first candidate in a block, holding the Shift key, and clicking the last

candidate in the block.  Individual candidates can be toggled on and off by holding the

Ctrl key while clicking on the variable.

The Target column is used to specify the target variable.  This variable will be partitioned

into two or more classes based on it values.  FREL does not permit continuous targets.

Target bins specifies the number of bins into which the target will be categorized.  The

number of cases in each bin will be made as equal as possible.

Regularization factor traditionally prevents model weights from running away to

problematic large values.  However, in VarScreen this is a fairly non-critical parameter;

even zero is acceptable.  This is because the optimization algorithm in VarScreen

inherently prevents weight runaway as part of its stability enforcement.  In practical

terms, the effect of the regularization factor is to control the relative spread of weights. 

Suppose that predictability is concentrated in just one or a few candidates.  If the user

specifies a small or zero value for this parameter, the computed weights will strongly

reflect this focus.  However, if a very large regularization factor is specified, the focus will

be less intense; some of the weight will be redistributed away from the dominant

predictors and given to predictors of lesser value.  Intense focus on one or a few

dominant predictors can, in some cases, be seen as a form of overfitting.

Bootstrap operation usually increases robustness of the weight estimates and also

decreases runtime, a happy confluence of outcomes.  By default, no bootstrapping is

done.  But the user can specify that a given number of iterations are performed, each

having a specified sample size.  The sample size must be large enough that each sample is

virtually guaranteed to have a significant number of representatives from each target

class.  For the number of iterations, my own rough rule of thumb is that the product of

the number of iterations times the sample size should be about twice the number of

training cases.



76 Feature Weighting as Regularized Energy-Based Learning

A Monte-Carlo permutation test is a useful, though time consuming, way to test certain null

hypotheses about the predictor candidates.  It is vital to understand that these tests are

radically different from the other permutation tests in VarScreen.  For one thing, I am not

aware of any way of performing a perfect individual-candidate MCPT with FREL; the

best I can do is come up with a rough approximation that appears to work well in

practice.  More importantly, in other tests, the candidate predictors are handled

individually, so the p-values (at least the solo tests) are independent.  But FREL considers

all candidates simultaneously.  This dependence changes the nature of MCPT.  One effect

is for dominant candidates to ‘suck’ weight out of lesser candidates, thus reducing their

apparent significance.  But the important effect is to radically change the nature of the

null and alternative hypotheses of the test.

In other VarScreen tests, the null hypothesis for each solo p-value is that the individual

candidate is worthless, and that for the unbiased p-values is that all candidates are

worthless, and the power of the test is in identifying individual candidates which have

predictive power.  But for FREL, the individual MCPT tests have no useful power in

situations in which all candidates have equal predictive power, regardless of whether

that power is tiny or large.  The null hypothesis is still generated by making all

candidates worthless, exactly as in other tests.  But because of the joint estimation of

weights, it is more intuitive (though not strictly correct!) to think of the null hypothesis as

being that all candidates have equal predictive power, with the unbiased p-values

compensating for the fact that we are testing numerous candidates, and any of them may

be outstanding by random luck.  In other words, these individual tests are related to the

predictive power of each candidate relative to their competitors.  Their individual predictive

powers play no easily identifiable role in determining p-values.

With this in mind, we can look at the p-values of candidates at the top of the list, those

ranked highest in terms of predictive power and having the largest weights, and consider

the p-values as being the probability that if all candidates were truly equal in predictive

power, the top-ranked candidates would have outperformed the others to the degree

shown.  Suppose we see a highly significant result for the single best candidate.  It may

be that this best candidate is almost worthless, and its competitors are completely

worthless.  Or it may be that this single candidate is excellent, while its competitors are

merely very, very good.  In either case we may see the best candidate having a highly

significant p-value.  Again, I emphasize that this interpretation is not strictly correct, but I

believe that it is close enough, especially the unbiased p-values, to be effective indicators

of the validity of the obtained results.
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The sucking of weight from relatively poor predictors to good predictors has a peculiar

and potentially confusing effect on the solo p-values.  As we drop down the sorted list to

the low-ranked candidates, we can see the solo p-values cover a wide range, jumping up

and down between high and low significance randomly.  This is illustrating in an

exaggerated manner the fact that the p-values for worthless candidates in any statistical

test have a uniform distribution, with all values being equally likely.  This is yet another

reason why we should focus on the unbiased p-values, ignoring the solo p-values except

perhaps (and with great caution) for the few top-ranked candidates.

VarScreen does print one additional p-value, called the Loss p-value.  This is a ‘grand’

measure of the ability of all predictors taken together to be effective at correct

classification.  The null hypothesis is that none of the candidates have any predictive

power, and the Loss p-value is the probability that if this were so, we would have

achieved a loss at least as low as that obtained.  This p-value being small is a necessary

condition for any of the individual p-values to be meaningful.  If we cannot be reasonable

certain that at least one of the candidates has predictive power, then there is no point in

considering their relative power!

The user may specify several parameters for the MCPT:

Replications defaults to zero, in which case no Monte-Carlo permutation test is performed. 

However, if computer time permits, it is usually best to set this to at least 100, and

perhaps as much as 1000, so that solo and unbiased p-values will be computed.  Note that

the minimum possible p-value is the reciprocal of the number of permutations.  So, for

example, if the user specifies 100 permutations, the minimum p-value that can appear is

0.01.  Run time of this test is linearly related to the number of permutations.

The user must choose either Complete or Cyclic permutations.  If the user is confident that

there is no dependency as described earlier in this document, then Complete should be

used; it is the traditional approach which does a complete random shuffle for each

permutation.  However, if there is dependency, this type of shuffling will produce

underestimation of p-values, a very dangerous situation.  If the dependency is serial (the

data is a time series and the dependency is among samples close in time) then a slight

improvement in the situation can be obtained by using Cyclic permutation.  In this type of

shuffle, the time order of the target is kept intact except at the ends by rotating the targets

with end-point wraparound.  Shuffling this way preserves most of the serial dependency

in the permutated targets, which makes the algorithm more accurate.  The p-values

computed this way will generally be larger than those computed with complete

shuffling, and hence less likely to lead to false rejection of the null hypothesis of no
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predictive power.  But be warned that the cure is far from complete; computed p-values

will still underestimate the true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency.  However, if the dataset is small, Cyclic permutation will limit

the number of unique permutations and hence increase the random error inherent in the

process.  As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy.  Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation.  Relying

on Cyclic permutation to take care of dependency problems is living dangerously.  And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.
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CUDA Considerations

First, be aware that the default CUDA parameters (Kernels and Granularity) should be fine

for nearly all applications and hardware.  However, for users who wish to tweak

operation (or those who must do so because of timeouts) the FREL dialog allows the user

to specify two parameters.

Computation of the loss function entails two nested loops.  The outer loop performs cross

validation, letting each training case play the role of a test case, with these individual

losses averaged across the entire training set.  The inner loop  passes through all cases

other than the test case and finds the energy of the correct answer and that of the most

offending incorrect answer.  Since this latter operation also involves finding the weighted

distance between cases, this results in a lot of mathematical operations.

Microsoft Windows has the infamous ‘feature’ of limiting the time during which CUDA

computation can monopolize the video display in a contiguous stretch, typically two

seconds.  Therefore, the CUDA Kernels parameter lets the outer loop be broken up into

multiple kernel launches.  By default all computation is performed in a single launch,

which is good, because launches have considerable overhead.  But if the screen goes

black and a message pops up that the display adapter has been reset, you will have to

increase (as little as possible!) the CUDA Kernels parameter.

The Granularity parameter is more subtle and require an understanding of CUDA

hardware to be fully appreciated.  If the granularity is set to 1, each outer-loop case is

assigned to a thread, and this single thread handles the entire inner loop.  But CUDA

devices prefer much finer granularity so that they can run thousands or even millions of

threads simultaneously.  Otherwise, vast amounts of hardware resources sit idle, a

grievous waste.  To avoid this, the inner loop for each outer-loop case is broken up into

Granularity sub-tasks, where this parameter cannot exceed the number of cases.  The

bottom line is that a total of Number of cases times Granularity separate threads are

executed.  Users with a late-model extremely powerful CUDA processor may benefit

from increasing the granularity beyond the default, perhaps even to its limit of the

number of cases.
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FSCA: Forward Selection Component Analysis

The algorithms provided here are greatly inspired by the paper “Forward Selection

Component Analysis: Algorithms and Applications” by Luca Puggini and Sean

McLoone, published in IEEE Transactions on Pattern Analysis and Machine Intelligence,

December 2017, and widely available for free download on various Internet sites. 

However, I have made several small modifications that I believe make it somewhat more

practical for real-life applications.

The technique of principal components has been used for centuries (or so it seems!) to

distill the information (variance) contained in a large number of variables down into a

smaller, more manageable set of new variables.  Sometimes the researcher is interested

only in the nature of the linear combinations of the original variables that provide new

‘component’ variables having the property of capturing the maximum possible amount

of the total variance inherent in the original set of variables.  In other words, principal

components analysis can be viewed as an application of descriptive statistics.  Other

times the researcher wants to go one step further, computing and employing the

principal components as predictors in a modeling application.

However, with the advent of extremely large datasets, several shortcomings of

traditional principal components analysis have become problematic.  The root cause of

these problems is that traditional principal component analysis computes the new

variables as linear combinations of all of the original variables.  If you have been

presented with thousands of variables, there can be issues with using all of them.

One possible issue is the cost of obtaining all of these variables going forward.  Maybe

the research budget allowed for collecting a huge dataset for initial study, but the

division manager would look askance at such a massive endeavor on an ongoing basis.  It

would be a lot better if, after an initial analysis, you could request updated samples from

only a much smaller subset of the original variable set.

Another issue is interpretation.  Being able to come up with descriptive names for the

new variables (even if the ‘name’ is a paragraph long!) is always good.  It’s hard enough

putting a name to a linear combination of a dozen or two variables; try understanding

and explaining the nature of a linear combination of two thousand variables!  So if you

could identify a much smaller subset of the original set, such that this subset encapsulates

the majority of the independent variation inherent in the original set, and then compute

the new component variables from this smaller set, you are in a far better position to

understand, name, and explain what these new variables represent.
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Yet another issue with traditional principal components when applied to an enormous

dataset arises is the all too common situation of groups of variables having large mutual

correlation.  For example, in the analysis of financial markets for automated trading

systems, we may measure many families of market behavior: trends, departures from

trends, volatility, and so forth.  We may have many hundreds of such indicators, and

among them we may have several dozen different measures of volatility, all of which are

highly correlated.  When we apply traditional principal components analysis to such

correlated groups, an unfortunate effect of the correlation is to cause the weights within

each correlated set to be evenly dispersed among the correlated variables in the set.  So,

for example, suppose we have a set of 30 measures of volatility that are highly correlated. 

Even if volatility is an important source of variation (potentially useful information)

across the dataset (market history), the computed weights for each of these variables will

be small, each measure garnering a small amount of the total ‘importance’ indication.  As

a result, we may examine the weights, see nothing but tiny weights for the volatility

measures, and erroneously conclude that volatility does not carry much importance. 

When there are many such groups, and especially if they do not fall into obvious families,

the possibility of intelligent interpretation becomes hopeless.

The algorithms presented here go a long way toward solving all of these problems.  They

work by first finding the single variable that does the best job of ‘explaining’ the total

variability (all original variables) observed in the dataset.  Roughly speaking, we say that

a variable does a good job of explaining the total variability if knowledge of the value of

that variable tells us a lot about the values of all of the other variables in the original

dataset.  So the best variable is the one that lets us predict the values of all other variables

with maximum accuracy.

Once we have the best single variable, we consider the remaining variables and find the

one that, in conjunction with the one we already have, does the best job of predicting all

other variables.  Then we find a third, and a fourth, et cetera.  Application of this simple

algorithm gives us an ordered set of variables selected from the huge original set,

beginning with the most important, and henceforth with decreasing but always optimal

importance (conditional on prior selections).

It is well known that a greedy algorithm such as the strictly forward selection just

described can produce a sub-optimal set of variables.  It is always optimal in a certain

sense, but only in the sense of being conditional on prior selections.  It can (and often

does) happen that when some new variable is selected, a previously selected variable

suddenly loses a good deal of its importance.  Thus, the algorithms here optionally allow

for continual refinement of the set of selected variables by regularly testing previously

selected variables to see if they should be removed and replaced with some other
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candidate.  Unfortunately, we then lose the strict ordering-of-importance property that

we have with strict forward selection, but we gain a more optimal final subset of

variables.  Of course, even with backward refinement we can still end up with a set of

variables that is inferior to what could be obtained by testing every possible subset. 

However, the combinatoric explosion that results from anything but a very small

universe of variables makes exhaustive testing impossible.  So in practice, backward

refinement is pretty much the best we can do.

When FSCA is selected from the Create menu, a dialog box will appear, from which the

user makes the following specifications:

The leftmost (Variables) column is used to specify the universe of variables from which a

subset will be selected.  Multiple candidates can be selected by dragging the mouse

cursor across a block, or by clicking the first candidate in a block, holding the Shift key,

and clicking the last candidate in the block.  Individual candidates can be toggled on and

off by holding the Ctrl key while clicking on the variable.

The Number of Components specifies how many variables will be selected, although if the

dataset contains extreme colinearity this number will be reduced as needed to prevent

colinearity in the computed components.  Setting this value to zero causes all variables to

be selected.  This, of course, runs counter to the primary purpose of this algorithm.  On

the other hand, it does let us see the universe of variables rank-ordered according to

ability to reconstruct the complete dataset.  This information is often interesting and

useful.  The number of components computed will always equal the number of variables

selected.

Three algorithms for variable selection and corresponding component generation are

available:

Principal Components of the traditional variety can be computed.  This is a rather

uninteresting option, but it is included for comparison purposes.

Forward selection, ordered uses strict forward selection; no backward refinement is done. 

As a result, the order in which variables are printed when the program is finished

represents their order of importance in reproducing the entire dataset.  In other words,

the first variable in the list is the single most important.  The second variable in the list is

the one that, given the value of the first variable selected, is the most important among the

remaining variables.  The third is the one that, given the values of the first two variables

selected, is best at reproducing the dataset.  Et cetera.
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Forward selection, refined combines forward selection with backward refinement.  This

generally improves the quality of the final subset of variables compared to the prior

option, but backward refinement destroys the ordering of the variables.  It can happen

that the first variable selected, the single best, doesn’t even make it to the final subset!  At

this time, this option (the slowest of the three) is the only one of the three that is multi-

threaded for full use of multi-core CPUs.

All three of these options create a new set of variables in the database which can then be

used in subsequent studies.  If the user specified principal components, the variable

names will be in the form PrinCo_n_m, while the other two options will produce

variables named FSCA_n_m.  In both cases, n refers to the sequence number in which

they were computed as separate operations.  The first time you run the algorithm, n=1. 

The second time, n=2, and so forth.  In both cases, m is the component number, ranging

from 1 through the number of variables in the selected subset.

For all three options, the newly computed variables will have zero mean, unit standard

deviation, and they will be uncorrelated.  The VarScreen.log file will provide information

to allow the user to recreate the components with other data and programs, if desired.

For the ordered (no refinement) option, the log file will list the actual coefficients needed

to convert standardized (zero mean, unit standard deviation) values of the original

variables to the newly created component variables, also standardized.  For the other two

options, the log file will list the correlations between each component and the original

variable, with the first column being the component that captures the most variance from

the subset, the second column capturing the second-most variance, and so forth.  If you

require coefficients for computing standardized values of the components, just divide

each correlation by the eigenvalue shown at the top of the table.  Or you can use the

correlations directly, without dividing by the eigenvalues, in which case you will get the

same components, but they will not have unit standard deviations.

For all three options, the eigenvalues and eigenvectors of the correlation matrix of the

universe will be printed first, with as many columns as variables/components specified

by the user.  This is followed by a list of the mean squared correlation of each variable in

the universe with all other variables.  Finally, the table of coefficients or

component/variable correlations as described above is printed.
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Here is an example of each of the two FSCA algorithms.  For this example, the following

variables are employed:

RAND0 - RAND6 are independent (within themselves and with each other) random time

series.

SUM12 = RAND1 + RAND2

SUM34 = RAND3 + RAND4

SUM1234 = SUM12 + SUM34

When we run the FSCA algorithm using the option for strict ordering (no refinement), we

first see the following results printed:

There are 6 unique (non-redundant) sources of variation
The number of components computed is therefore being reduced to this
value.

Eigenvalues, cumulative percent, and principal component factor
structure

     Eigenvalue    2.988   1.986   1.052   1.015   0.987   0.972
     Cumulative   33.195  55.263  66.957  78.240  89.203 100.000

          RAND1   0.4835  0.4964 -0.6476 -0.1497 -0.1080 -0.2576
          RAND2   0.4597  0.5206  0.6390  0.1478  0.1037  0.2770
          RAND3   0.5246 -0.4808 -0.0470 -0.2077  0.6690 -0.0271
          RAND4   0.5175 -0.4859  0.0620  0.2194 -0.6661  0.0240
          RAND5  -0.0198 -0.0198 -0.4669  0.4999  0.1474  0.7139
          RAND6   0.0020  0.0260  0.0233  0.7937  0.2265 -0.5635
          SUM12   0.6800  0.7331 -0.0090 -0.0021 -0.0036  0.0128
        SUM1234   0.9997  0.0239  0.0012  0.0040  0.0003  0.0073
          SUM34   0.7331 -0.6800  0.0104  0.0076  0.0039 -0.0023

We have 9 variables in the universe, but the program notes that there are only 6 unique

sources of variation.  This is not surprising, because the 3 sum variables are just

combinations of the other variables.  Since by definition the computed components must

be independent, the program limits us to just 6 components.

The first eigenvector accounts for one-third of the total variation in the dataset, and it

correlates almost perfectly with SUM1234, very highly with SUM12 and SUM34, and

moderately highly with RAND1-RAND4.  None of this should be surprising.

The second component is just the contrast between RAND1 and RAND2 versus RAND3

and RAND4.  In conjunction with the first component, it gives us over 55 percent of the

total variation.  The remaining components are other contrasts as well as RAND5 and 6.
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Next, we get a list of the mean squared correlation of each variable in the universe with

all other variables:

Mean squared correlation of each variable with all others

          RAND1    0.091
          RAND2    0.088
          RAND3    0.096
          RAND4    0.095
          RAND5    0.000
          RAND6    0.000
          SUM12    0.181
        SUM1234    0.248
          SUM34    0.191

It is not surprising that RAND1-RAND4, along with their various sums, have positive

mean squared correlations, while RAND5 and RAND6 have zero correlations.

Last of all we get the table of coefficients needed to compute the 6 components from the

chosen 6 variables in the subset.  Note that each component depends on only the

corresponding ordered variable and all previously selected variables.

       Variable      1        2        3        4        5        6    
        SUM1234   1.0000  -0.9730   0.0181   0.0106   0.0047  -1.4045
          SUM12  -0.0000   1.3953  -0.9696  -0.0091  -0.0131   0.9888
          RAND2   0.0000  -0.0000   1.3842  -0.0129   0.0380  -0.0081
          RAND6   0.0000   0.0000  -0.0000   1.0001  -0.0169  -0.0071
          RAND5   0.0000  -0.0000   0.0000   0.0000   1.0007  -0.0017
          RAND4  -0.0000   0.0000  -0.0000  -0.0000  -0.0000   1.4188

Observe that the best single variable for reproducing the entire universe of values is

SUM1234, the sum of four other variables in the universe, and the first component is just

this one variable (its coefficient is 1.0 and all other coefficients are 0.0).

The second variable selected is another sum variable, and the corresponding

component’s value is computed as that sum variable times 1.3953, minus the prior

selected variable times 0.9730.

The third variable selected is a similar weighted sum, primarily based on RAND2.  The

next two components are essentially equal to the two completely independent variables,

RAND6 and RAND5.  Note that their coefficients are almost exactly 1, and all other

coefficients are almost exactly 0.  And the last component is a complex mix of other

variables.
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We use this same universe of variables to demonstrate the other FSCA option, forward

selection combined with backward refinement.  The initial information (eigenstructure

and mean squared correlations) are the same as in the prior example, so we will skip

straight to the interesting part, the log of variables being added and replaced:

Commencing stepwise construction with SUM1234
Added SUM12 for criterion=4.973085
  Replaced SUM1234 with SUM34 to get criterion = 4.973123
Added RAND2 for criterion=6.011605
  Replaced SUM12 with RAND1 to get criterion = 6.011623
Added RAND6 for criterion=7.011701
Added RAND5 for criterion=8.010402
Added RAND4 for criterion=8.999919
  Replaced SUM34 with RAND3 to get criterion = 8.999940

As in the prior example, the first variable selected is SUM1234.  We then add SUM12, as

in the prior example.  (Both options will always select the same first two variables.)  But

then something interesting happens: SUM1234 is replaced by SUM34, giving us a two-

variable set of SUM12 and SUM34.  To me, this is prettier than SUM1234 and SUM12.

We then add RAND2, which immediately triggers the replacement of SUM12 with

RAND1.  After that we add the two totally independent variables, RAND6 and RAND5. 

Finally, we add RAND4, which triggers the replacement of SUM34 with RAND3.  The

final results are shown below:

Eigenvalues, cumulative percent, and selected principal component factor
structure
     Eigenvalue    1.056   1.023   1.002   0.988   0.983   0.948
     Cumulative   17.600  34.646  51.343  67.811  84.194 100.000

          RAND3   0.2269  0.5167  0.2772  0.5747 -0.5221 -0.0431
          RAND1   0.5751  0.0508 -0.1047  0.3593  0.5829  0.4322
          RAND2  -0.6877  0.0094  0.1597  0.2264  0.0044  0.6709
          RAND6  -0.0862 -0.6254  0.4725  0.4844  0.1757 -0.3357
          RAND5   0.4228 -0.5366  0.1187 -0.2014 -0.5355  0.4381
          RAND4   0.1210  0.2723  0.8070 -0.4496  0.2300  0.0702

The final set of selected variables is intuitively more appealing than what we got with the

strict ordering option, because it’s just the individual random variables, without their

various sums.  Because replacement has destroyed any ordering of the subset, it makes

the most sense to me to just compute the components as the principal components of the

final subset.  Note that the eigenvalues are all nearly equal, meaning that the components

have no strong ordering either.  Also note that the values in the table are the correlations

between the components and the variables, and they can be converted to weights by

dividing each column by the eigenvalue at the top of the column.
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LFS: Local Feature Selection

Most common feature selection algorithms are primarily oriented toward favoring

features that are at least somewhat predictive over the entire domain of the feature set. 

This predictivity may be nonlinear, and it may interact with other features, but such a

predictor will be at a significant advantage over more powerful but only locally predictive

candidates if the nature of its relationship to a target variable is at least somewhat

consistent across the domain of all possible values of all candidate features.

This can be a major problem, because modern nonlinear models can obtain a lot of useful

predictive information from variables whose power is limited to small areas of the

domain, or whose predictive relationship changes significantly over the domain.  But if

our predictor selection algorithm fails to find such variables, focusing instead on more

global candidates, we lose out on what may be valuable information.

For example, consider the XOR problem.  Suppose we have two variables symmetric

around zero, and we define two classes.  A case is a member of Class 1 if both of our

variables are positive or both negative, and it is in Class 2 if one is positive and the other

negative.  This classification problem can be solved with 100 percent accuracy by a simple

rule, and modern nonlinear models should have no trouble achieving nearly perfect

performance.  Yet if we were to augment these two variables with numerous worthless

predictor candidates and then try to identify the two true predictors, an amazing number

of otherwise sophisticated predictor selection algorithms would fail to find them.  Not

only are the marginal distributions of both variables identical in both classes, but the

relationship of each variable to the class depends completely on the value of the other

variable, with the relationship reversing across the domain.  This is a tough problem.

This same issue arises in applications that are closer to reality.  For example, a common

phenomenon in equity market prediction is that certain families of indicators have

considerable predictive power in times of low market volatility, but become useless in

times of high volatility.  The presence of a large amount of high-volatility data in the

dataset dilutes the predictive power of such variables and may put otherwise excellent

indicators at a competitive disadvantage.  And this  problem arises in many other

applications.  The effectiveness of medical treatments can vary according to age, weight,

and a potentially large number of other unknown conditions.  Identification of vehicles

and pedestrians by a self-driving car’s control system can depend on features that are

vital in some contexts and distracting clutter in others.  We need a feature selection

algorithm that is sensitive to predictive power that comes, goes, and even reverses,

according to location in the feature domain.
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In terms of modeling we can deal with inconsistent behavior by using sophisticated

nonlinear models (which are prone to overfitting!), or by using different models in

differing regimes (assuming that we know how to define these regimes!).  But consider

the pre-modeling stage, when we are searching for predictor candidates.  We would like

to have a predictor selection algorithm that can automatically find such regime-dependent

behavior and identify powerful predictors, even if this power is localized.

The feature selection algorithm described in “Local Feature Selection for Data

Classification” by Narges Armanfard, James P. Reilly, and Majid Komeili (IEEE

Transactions on Pattern Analysis and Machine Intelligence, June 2016) fits the bill nicely. 

We’ll now present a condensed and intuitive overview of how it operates.

There are a large number of possible approaches to feature selection.  We’ve seen some

based on mutual information and uncertainty reduction, techniques that are effective at

detecting highly nonlinear relationships.  Some techniques actually train predictive

models, and perform their feature selection by intelligently choosing inputs for these

models.  Early discriminant analysis methods involve the use of Mahalanobis distances to

find dimensions of maximum separation when the predictors are highly correlated,

optimally taking correlation into account.  The LFS algorithm presented here is based on

yet another approach, a concept akin to nearest neighbor classification, but taken to a

much higher level of sophistication.

We begin with a simple example:  we want to predict success in college, with students

divided into two classes: those who graduate, and those who drop out.  We measure four

candidate predictors for each student in our study dataset, and standardize the values of

these predictors (mean zero and standard deviation one) to put their variation on a level

playing field.  These candidate predictors are:

1)  SAT score

2)  High school grade point average

3)  Circumference of thumb divided by circumference of index finger

4)  Day of month student was born

Suppose we randomly choose two students, both in the Success class.  For each of these

four features, think about the average difference in predictor value we would see for

these two students.  But now suppose we randomly choose two students, one in the

Success class, and one in the Dropout class.  The expected difference between these two

students would be about the same as it was for the ‘same class’ students for the third and

fourth candidate predictors, but much larger for the first and second candidate

predictors: a person who graduated would probably have a higher GPA and SAT score
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than a dropout, leading to a large difference, while these two students would probably

have similar finger sizes and birthdays, at least relatively speaking.

If we effectively estimated these expected differences throughout the dataset, looking at

every pair of students, we would conclude that the first two candidate predictors are the

ones we want, because the expected difference in these two features for students in

different classes greatly exceeds the expected difference for students in the same class,

while for the third and fourth candidates we observe about the same difference,

regardless of whether the two students are in the same class or different classes.

Now, instead of looking at candidate predictors individually, let’s look at them in pairs: 1

and 2, 1 and 3, et cetera.  A good measure of the difference between two cases is the

Euclidean distance between them.  Let xk
(i) represent the value of variable k as measured

for case i, and let x(i) represent the vector of all variables for this case.  Then the distance

between case i and case j is given by the following Equation:

It should be clear that the pair of variables consisting of the first two competitors will

have the greatest expected inter-class distance between cases, the pair consisting of the

last two competitors will have the least expected inter-class distance, and mixed pairs will

have intermediate values.

Intuition can now guide us toward a good way to choose an effective set of candidate

predictors.  We look for a set that has a high contrast between expected intra-class

distance (which we want to be small) and inter-class distance (which we want to be

large).  Neither quality alone is good.  For example, if we find a set of candidates that

produces large average inter-class separation between cases, but the expected separation

between cases in the same class is also large, we have gained nothing; we cannot look at

either quality in isolation.  We must find a balance, a way to trade off the desirable

quality of low intra-class separation with the also desirable quality of high inter-class

separation.  The LFS algorithm has an automated way to find the optimal tradeoff, a topic

which we will return to later.

All that we’ve seen so far is good, and the algorithm just outlined would work fairly well

in practice.  However, it is missing the ‘Local’ component of the ‘Local Feature Selection’

algorithm.  We still need a way to handle the problem of predictive power that varies

across the domain of all features.  For example, the distribution shown in Figure 9 would

foil the algorithm just described.
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Figure 9: A job for Local Feature Selection

In this example, we have two classes, one

of which is split into two distinct subsets. 

Think about how the variable selection

algorithm just described would perform

when presented with this problem.  Half

of the cases in Class 2 would have

excellent inter-class separation from

Class 1 via X1, though no separation at

all via X2.  The other half would

experience the opposite behavior, gaining

great separation via X2 but none via X1. 

If inter-class separation were the only

consideration, the algorithm would pick

up X1 and X2 easily.

The problem lies with the intra-class separation.  Cases that lie within either of the subsets

of Class 2 would have nicely small separation.  But if one case in Class 2 lies in one subset,

and the other case lies in the other subset, the distance between them would be

enormous, larger even than the inter-class separation!  So the average intra-class

separation for Class 2 would be so large that it would be nearly commensurate with the

inter-class separation.  It’s unlikely that (X1,X2) would stand out as a set of effective

predictors, even though this figure shows that they are fabulous.

The key element of the paper cited at the beginning of this section is that the problem

shown in Figure 9 can be alleviated by weighting the distances with intelligently

computed weights.  The primary focus in the weighting scheme is that pairs of cases

which are close are given higher weights than pairs which are distant, with the weighting

dropping off exponentially with distance.  It’s somewhat more complicated than that,

because the class memberships of the cases are taken into account, as well as global

behavior of the distance metrics.    The details are far too complex to get into here;  see the

cited paper if you are interested.

In order to get an idea of what’s happening in regard to weights, the four histograms in

Figure 10 show the weights generated from a test with data having the pattern shown in

Figure 9.
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Figure 10: LFS weights for split-class example
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The most interesting of these four histograms is the upper-left, which shows the weights

for pairs of cases that are both in Class 2.  We see that half of the weights are clustered

near the maximum possible weight, one.  These are the pairs of cases that are both in the

same subset of Class 2.  The other half of the weights are clustered near zero, the

minimum possible.  These are the pairs of cases that, while both in Class 2, are in different

subsets of this class.  So we see that when the intra-class separation (mean distance

separating cases both in Class 2) is computed with weighted distances, pairs that span the

two subsets are downplayed, thus providing a more realistic estimate of the intra-class

separation.

The Class 1 intra-class weights are all close to one because this class is not split into

subsets.  Also, when we are considering cases in Class 2 and looking at their distances

from cases in Class 1, we have full weighting.  The weights are about 0.5 when we

consider cases in Class 1 and look at the distances to cases in Class 2 (the weighting

algorithm is asymmetric).  Very roughly speaking, this is because there are two possible

ways the difference can go.  You can study the weight equations in the cited paper to see

exactly how this comes to be.

What This Algorithm Reports

Because the algorithm performs optimal-candidate selection separately for each case,

there is no practical way to report a single optimal candidate set, let alone a sorted list of

subsets like we were able to achieve with some prior algorithms.  Instead, it counts the

number of times each candidate predictor appears in an optimal subset.  For example, we

might see that X2, X7, and X35 form an optimal subset for some region; X3, X7, and X21

form another optimal subset, X7 and X94 form another, and so forth.  X7 appeared in an

optimal subset 3 times, while each of the other subset members appeared just once.  So it

looks like X7 is on its way to becoming popular and heading up the popularity list.

This does not mean that X7 alone is valuable.  In fact, it may be (and often is) that X7

alone is worthless; it’s value is only in conjunction with other candidates.  This is why

LFS is superior to many other feature selection algorithms, which often rely on some

form of stepwise selection and hence ignore individually worthless candidates.  But this

property of reliance is not a problem.  The reason is that most modern prediction models, if

given a list of the most popular predictors, can sort out the complex relationships

between them and perform well.  All they need is preprocessing to weed out the

worthless candidates, so they are not overwhelmed.
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Specifying the Test Parameters

When LFS is selected from the Tests menu, the following items must be specified:

The leftmost column specifies the set of predictor candidates.  Multiple candidates can be

selected by dragging the mouse cursor across a block, or by clicking the first candidate in

a block, holding the Shift key, and clicking the last candidate in the block.  Single

candidates can be toggled on/off by holding the Ctrl key while clicking on the variable.

The Target column is used to select the target variable.  The target is partitioned into bins

that are as equal in size as possible.  The user must specify the number of bins to employ

for each, and unless the dataset is huge the default of three bins is frequently appropriate.

Max kept is the maximum number of variables ever employed in a metric space (subset of

candidates).  In general it is best to make this as small as possible, consistent with having

enough variables simultaneously present to provide predictive power.  In my experience,

setting this to more than 5 is rarely, if ever needed.  The default is 3.

Iterations is the number of LFS algorithm iterations to obtain good weight estimates.  Run

time is heavily impacted by this number.  The point of diminishing returns is reached

quickly; in many cases 2 is sufficient, and 3 is almost certainly more than enough for all

but the most critical applications.  The default is 3.

Binary random is the number of random trials employed to convert the floating-point

usage flags to binary flags.  More is better, but the default of 500 should be plenty for

most applications, although if there are a great many variables this should be increased. 

It has a modest but not severe impact on run time for most applications.

Beta trials specifies the number of search points for optimizing the relative importance of

intra-class versus inter-class separation discussed earlier in this section.  The default of 20

should be sufficient for the vast majority of applications.  It has a modest but not severe

impact on run time for most applications.

Replications defaults to zero, in which case no Monte-Carlo Permutation Test is

performed.  However, it is usually best to set this to at least 100, and perhaps as much as

1000, so that solo and unbiased group p-values will be computed.  Note that the

minimum possible p-value is the reciprocal of the number of permutations.  So, for

example, if the user specifies 100 permutations, the minimum p-value that can appear is

0.01.  Run time of this test is linearly related to the number of permutations.
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The user must choose either Complete or Cyclic permutations if a Monte-Carlo

Permutation Test is to be performed.  If the user is confident that there is no dependency

as described earlier in this document, then Complete should be used; it is the traditional

approach which does a complete random shuffle for each permutation.  However, if there

is dependency, this type of shuffling will produce underestimation of p-values, a very

dangerous situation.  If the dependency is serial (the data is a time series and the

dependency is among samples close in time) then a considerable improvement in the

situation can be obtained by using Cyclic permutation.  In this type of shuffle, the time

order of the target is kept intact except at the ends by rotating the target with end-point

wraparound.  Shuffling this way preserves most of the serial dependency in the

permutated target, which makes the algorithm more accurate.  The p-values computed

this way will generally be larger than those computed with complete shuffling, and hence

less likely to lead to false rejection of the null hypothesis of no predictive power.  But be

warned that the cure is far from complete; computed p-values will still underestimate the

true values, just not as badly.

Note that in most cases it is legitimate to use Cyclic permutation instead of Complete when

there is no dependency.  However, if the dataset is small, Cyclic permutation will limit the

number of unique permutations and hence increase the random error inherent in the

process.  As long as the dataset is large, some users may prefer to use Cyclic permutation

even if it is assumed that there is no serial dependency; in case there really is hidden

serial dependency, this is a cheap insurance policy.  Still, the best practice is to make sure

that the data does not contain dependency and then use Complete permutation.  Relying

on Cyclic permutation to take care of dependency problems is living dangerously.  And if

the dataset contains fewer than 1000 or so cases, use of Cyclic permutation is not

recommended unless it is necessary to handle dependency.

Important note: If you perform a Monte-Carlo permutation test, please see the discussion

of solo and unbiased p-values that begins on Page 5 and continues onto the next page. 

That discussion covers vital issues related to what these figures mean, as well as when

they are and are not valid.

CUDA note: As of Version 1.81, LFS will by default use CUDA-capable video hardware if

present.  This results in a speed increase of 1 or even 2 orders of magnitude if there are

several thousand cases and not more than a few hundred variables.  In other situations,

CUDA may slow processing due to its overhead, and might better be disabled by clicking

File/Use CUDA to make the check mark disappear.
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An Example of Local Feature Selection

I created a dataset consisting of about 4000 cases and 10 variables, X0 through X9.  Each

random variable is uniformly distributed on [–1, 1].  Variables X3 and X4 determine the

class.  A case is in one class if X3 and X4 are both positive or both non-positive.  The case

is in the other class if one of these variables is positive and the other is not.  This is a very

difficult problem for many feature selection algorithms because the marginal

distributions of these variables are identical for both classes, and the nature of the

relationship between one of the variables with the class is determined by the value of the

other variable.  Here is the output of the LFS algorithm:

******************************************************************************
*                                                                            *
* Computing Local Feature Selection for optimal predictor subset             *
*      10 predictor candidates                                               *
*       5 predictors at most will define a metric space                      *
*       2 target bins                                                        *
*       3 iterations of LFS algorithm                                        *
*     500 random trials for real-to-binary f conversion                      *
*      20 trial values for beta optimization                                 *
*     100 replications of complete Monte-Carlo Permutation Test              *
*                                                                            *
******************************************************************************

-------------------> Percent of times selected <-------------------

        Variable        Pct      Solo pval  Unbiased pval

             X3        96.26       0.0100       0.0100
             X4        69.62       0.0100       0.0100
             X0         4.66       1.0000       1.0000
             X1         2.94       1.0000       1.0000
             X6         2.29       1.0000       1.0000
             X7         1.76       1.0000       1.0000
             X9         1.13       1.0000       1.0000
             X8         0.58       1.0000       1.0000
             X2         0.53       1.0000       1.0000
             X5         0.39       1.0000       1.0000

It’s a little curious that X3 was selected somewhat more often than X4, when they have

identical roles in predicting the class, but I’ve seen this happen often.  It’s undoubtedly a

random occurrence that would change with a different random set of cases.  What is

certainly clear is that these two variables are selected vastly more often than their

worthless competitors.  Also, the computed solo and unbiased p-values are impressive,

leaving no doubt about the conclusion reached by the algorithm.
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A Note on Run Time

This local feature selection algorithm does have one downside that can make it unusable

in some situations.  Its run time is proportional to the cube of the number of cases.  On

modern computers, especially those containing CUDA-capable video hardware, handling

several thousand cases should be manageable.  But if you get up to the range of many

thousand cases, run time will become so slow as to be impractical.
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Enhanced Stepwise Lin-Quad

It's likely that everyone reading this book is familiar with stepwise selection.  Typically,

you have a large set of candidates for some task, often prediction or classification.  You

test each individual candidate and select the one candidate that performs the task best. 

Then you test the remaining candidates, seeking the one that, in conjunction with the one

already selected, performs best.  This is repeated as desired.  It is a fast, efficient, and

usually fairly effective way of selecting a respectable subset of features from a potentially

large population.

Unfortunately, this venerable and widely used algorithm suffers from several serious

weaknesses.  The most obvious and problematic is that very often an application can be

handled only when we have multiple features available simultaneously.  As a crude

example, suppose we wish to evaluate the intelligence of a person.  We could give this

person a test involving sophisticated logical reasoning.  Suppose the person got half of

the problems correct.  That score would mean one thing if the person were 25 years old,

and it would mean something else entirely if the person were 3 years old.  Or suppose we

want to measure a risk of cardiac disease.  Neither height alone nor weight alone would

be very good, but the two together would provide significant predictive power.  When

we are dealing with such an application, simple stepwise selection could easily miss a

predictor that is immensely powerful when used in conjunction with another predictor

but that is nearly worthless when used alone.

Another issue with stepwise selection that can be a problem if not properly handled is the

fact that a naive selection criterion results in the performance steadily increasing as we

add more variables (features).  This is due to the fact that random noise is mistaken for

legitimate information.  The selection algorithm gets better and better at learning the

properties of the noise as more features are examined, all the while blissfully unaware

that the supposedly valuable ‘features' do not represent repeatable patterns.  If we judge

quality on a simplistic measure such as in-sample performance, we are very likely to add

more variables than are appropriate and actually decrease out-of-sample performance.

Yet another potential problem with naive stepwise selection is failure to distinguish

between seemingly good performance versus statistically sound performance.  An

apparently great performance figure means nothing if there is a substantial probability

that it could have done that well by nothing more than good luck.  These are the key

issues that will be addressed in this chapter.
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In particular, VarScreen provides a generic, broadly applicable stepwise selection

algorithm.  The three aspects of this stepwise selection algorithm that set it apart from

simple, traditional methods are:

! It significantly overcomes the problem of neglecting important variables that have

little value when used alone, while avoiding the combinatoric explosion arising

from exhaustive testing of all possible subsets.  It does this by saving multiple

promising subsets at every step, and evaluating future candidates in conjunction

with these multiple subsets.

! It avoids the ‘more variables means better performance' issue by judging the

quality of a feature set according to its cross-validation performance.  This

tremendously reduces the likelihood that random noise will be misinterpreted as

valid predictive information.  It also provides a simple and effective automatic

way to stop adding new features to the feature set.

! As each new feature variable is added, it computes two probabilities.  The most

important is the probability that, if all currently selected features are truly

worthless, the performance criterion achieved by the current feature set could be

as good as it is by pure luck.  A less important but still useful measure is the

probability that, if all current features are truly worthless, the performance

increase provided by adding the most recently selected feature to those already

selected could have been as large as we observed.
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The Feature Evaluation Model

In order to implement the enhanced stepwise selection algorithm, we need a basis model

with which to assess the predictive power of feature variables.  One of my favorite

prediction algorithms fits the bill nicely.  This is what is sometimes called linear-quadratic

regression, or perhaps quadratic-linear regression.  In this model, the input vector is

expanded to include not just the feature variables, but their squares and all possible cross

products.  These variables are supplied to an ordinary linear regression model.  This

hybrid approach gives us the speed and stability of simple linear regression while still

supplying significant nonlinear capabilities, including complete reversal of the

predictor/target relationship across the feature domain, as well as complex interactions

between features.  It's really a wonderful model.

Mathematically, standardization of the input variables is not required and makes no

theoretical difference in performance.  However, for real-life computing, as well as easy

human interpretation of model coefficients, it is important to standardize the inputs so

that their means are all zero and their variances are equal (one in this code).  Therefore,

VarScreen automatically standardizes all variables, including the target.

The Cross-Validated Performance Measure

The naive and traditional way of selecting features for a task is to maximize an in-sample

performance criterion.  In other words, we use a single dataset to compute the

performance criterion, and select those features that provide the most optimal criterion. 

Of course, an even modestly responsible developer will then go on to use a second,

independent data sample to evaluate the quality of that feature set in conjunction with

the model that was employed.  But by then it's too late.  That feature selection method

will almost always produce a sub-optimal feature set.

The reason this naive selection method is sub-optimal is that any dataset is a mixture of

legitimate information and random noise.  Unfortunately, in virtually any application,

there is no way for the optimization algorithm to distinguish between noise and

legitimate information when it has only one dataset to examine.  Thus, whatever

algorithm associates features in the dataset with correct target values in order to compute

a performance measure will, to at least some degree, confuse noise with features.  By

definition, noise will not repeat in other data, and so some features will be selected based

on their ability to relate noise to the target, a dangerous error.
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Many ways to deal with this serious issue have been devised.  Most are based on some

sort of complexity penalty.  The performance criterion  may be based on something

simple like applying a penalty that increases as more features are added.  Others may try

to evaluate the degree to which features contribute to performance within the dataset and

reject those features that appear to make relatively little contribution.  Still others may

use sophisticated measures of complexity and penalize feature sets that produce a model

with high complexity.  These are all worthy endeavors, but they all indirectly address the

issue of feature selection confusing nonrepeatable noise with repeatable information.

In my opinion, we are best off taking a direct approach to solving this problem: use one

dataset to optimize our core model's performance with a trial feature set, and then

evaluate the quality of this feature set by measuring its performance on a different dataset. 

This way, features that capture legitimate information will also perform well on the

second dataset, in which the legitimate information also appears.  But features that

mistake random noise for legitimate information will perform poorly on the second

dataset, because those phony patterns will likely not appear.

We would waste a lot of potentially expensive data if we simply divided our dataset in

half for this purpose.  So instead we use cross validation.  A fraction of the dataset is

withheld from optimizing the model, and that withheld portion is used to test the trained

model.  Then that portion is returned to the dataset and a different fraction is withheld. 

This repeats in such a way that each case in the dataset appears in a withheld portion

exactly once.

One unavoidable disadvantage of cross validation is that it requires a sometimes

annoying tradeoff.  If we hold out only a few cases at a time (with each in/out split being

called a fold), processing time will be huge, because we have to re-optimize the model for

each fold.  Thus, we are encouraged to minimize the number of folds (hold out many

cases each time).  But if we hold out a lot of cases, we reduce the number of cases used for

optimization, which makes the model less accurate and less stable, leading to less

accurate results.  The rule of thumb is that we should use as many folds as possible,

consistent with being able to run the program in a manageable length of time.
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Specifying the Test Parameters

When the user clicks Tests / Enhanced stepwise lin-quad, a dialog similar to that shown

below will appear.

The leftmost Predictors column is used to specify the set of predictor candidates. 

Multiple candidates can be selected by dragging the mouse cursor across a block, or by

clicking the first candidate in a block, holding the Shift key, and clicking the last

candidate in the block.  Individual candidates can be toggled on and off by holding the

Ctrl key while clicking on the variable.

The Target column is used to select a single target variable.

Number retained is the number of best models retained for further testing at each step. 

Traditional stepwise selection has this equal to 1.  If you set this to an enormous number

(perhaps 99999999), exhaustive testing of all combinations is attempted.  Larger values

generally provide superior results, but run time blows up fast as this parameter increases.
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Number of folds is the number of cross-validation folds used in performance evaluation. 

Generally, larger is better, but runtime increases approximately linearly as this parameter

increases.

Min predictors is the minimum number of predictors in the final model.  As soon as this

quantity is reached, addition of new variables will stop when such addition results in a

performance decrease.  Setting this to zero will force all selected predictor candidates to

be included.

Max predictors is the maximum number of predictors in the final model.  Addition of

new variables will stop when this limit is reached.  Setting it to zero imposes no upper

limit.

Replications is the number of Monte-Carlo permutation test replications.  It is usually

best to set this to at least 100, and perhaps as much as 1000, so that p-values will be

computed.  Note that the minimum possible p-value is the reciprocal of the number of

permutations.  So, for example, if the user specifies 100 permutations, the minimum

p-value that can appear is 0.01.  Run time of this test is linearly related to the number of

permutations.

The user should select Complete if the targets are independent, the usual case.  If the

targets have serial correlation, Cyclic should be selected to reduce anti-conservative

behavior.  This topic has been discussed in detail elsewhere.
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Demonstrating the Algorithm Three Ways

This section presents three examples of the enhanced stepwise selection algorithm.  For

the first two, the following 11 variables are employed:

RAND0 - RAND9 are independent (within themselves and with each other) random time

series.

SUM1234 = RAND1 + RAND2 + RAND3 + RAND4

I specified a minimum and maximum number of variables to both be the number of

predictor candidates.  This forces testing of all candidates.  The algorithm produces the

output shown below, slightly reformatted to fit.

***********************************************************
*                                                         *
* Computing enhanced stepwise linear-quadratic model      *
*                                                         *
*         SUM1234 is the target                           *
*      10 predictor candidates                            *
*       5 candidates retained for each iteration          *
*       4 folds for cross validation performance          *
*      10 minimum predictors in final model               *
*      10 maximum predictors in final model               *
*     100 replications of complete Monte-Carlo Test       *
*                                                         *
***********************************************************

Stepwise inclusion of variables...
R-sqr  MOD pval CHG pval Predictors...
0.2811   0.010   0.010  RAND3
0.5183   0.010   0.010  RAND3 RAND4
0.7497   0.010   0.010  RAND2 RAND3 RAND4
1.0000   0.010   0.010  RAND1 RAND2 RAND3 RAND4
1.0000   0.010   0.690  RAND0 RAND1 RAND2 RAND3 RAND4
1.0000   0.010   0.850  RAND0 RAND1 RAND2 RAND3 RAND4 RAND5
1.0000   0.010   0.970  RAND0 RAND1 RAND2 RAND3 RAND4 RAND5
                        RAND6
1.0000   0.010   1.000  RAND0 RAND1 RAND2 RAND3 RAND4 RAND5
                        RAND6 RAND7
1.0000   0.010   1.000  RAND0 RAND1 RAND2 RAND3 RAND4 RAND5
                        RAND6 RAND7 RAND8
1.0000   0.010   1.000  RAND0 RAND1 RAND2 RAND3 RAND4 RAND5
                        RAND6 RAND7 RAND8 RAND9

STEPWISE successfully completed
Final XVAL criterion = 1.00000
In-sample mean squared error = 0.00000
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Observe the following:

! The R-square criterion jumps up by about 0.25 as each of the four ‘true' predictors

is added, reaching and remaining at 1.0 thereafter.

! Beginning with the first predictor, the model p-value is at the minimum (most

significant) possible, 1/replications=0.01.

! As the three additional ‘true' predictors are added, the p-value for the added

variable remains at 0.01.  But as soon as an irrelevant variable is added, the change

p-value jumps up to extreme insignificance.  The boundary between important

and worthless could not be more clear.

I won't show the results here, but I reran this test with the minimum number of

predictors set to 1, the default.  It accepted the four ‘true' predictors exactly as shown

above but stopped with a ‘performance decrease' caused by addition of a worthless

variable.

Finally, here is a more practical example.  I computed 19 common indicators used in

analyzing equity markets, as well as a measure of the market change over the trading day

following availability of the indicators.  Here is the output produced by this test:

***********************************************************
*                                                         *
* Computing enhanced stepwise linear-quadratic model      *
*                                                         *
*         Z_DAY_RET is the target                         *
*      19 predictor candidates                            *
*      10 candidates retained for each iteration          *
*       4 folds for cross validation performance          *
*       1 minimum predictors in final model               *
*      19 maximum predictors in final model               *
*     100 replications of complete Monte-Carlo Test       *
*                                                         *
***********************************************************

Stepwise inclusion of variables...

R-square  MOD pval  CHG pval  Predictors...
  0.0049    0.040     0.040   CMMA_10
  0.0079    0.020     0.090   ADX15 CMMA_10

STEPWISE terminated early because adding a new variable caused performance
degradation



Enhanced Stepwise Lin-Quad 105

Final XVAL criterion = 0.00793
In-sample mean squared error = 0.98768

Regression coefficients for standardized data:
        0.035689  ADX15
       -0.025106  CMMA_10
       -0.001000  ADX15 Squared
        0.032440  CMMA_10 Squared
       -0.079148  ADX15 * CMMA_10
       -0.030700  CONSTANT

The variable first selected, CMMA_10, is the close of the current bar minus the moving

average of the prior 10 bars.  (All prices are converted to logs before indicator

computation is performed.)  This variable measures the direction and degree of price

departure from recent history.  The second variable, ADX15, is the ordinary ADX

indicator with a 15-day lookback.  This indicates strength of trend, though without

specifying a direction.

Even CMMA_10 alone has a p-value of 0.04, meaning that, if CMMA_10 had no

day-ahead predictive power, there is only a 0.04 probability that it would have

performed as well as it did in predicting market movement the next day.  Adding ADX15

lowers this probability to 0.02.

Here's a quick note for mathematically inclined readers.  It may superficially appear as if

this 0.02 p-value suffers from selection bias and hence is overly optimistic.  After all, the

program first picked CMMA_10 as the best performer, and then picked ADX15 to best

complement it.  But remember that the permutation replications do exactly the same

optimal selections, thus correctly accounting for any selection bias.  So this is a fair and

unbiased p-value.

The p-value for adding ADX15 is 0.09, decent but not excellent.  And after that addition,

despite having 17 more industry-standard candidates to choose from, it terminates with

the observation that performance deteriorates with the addition of a third indicator.

Finally, I printed the fascinating model coefficients.  CMMA_10 has a negative coefficient,

alone and in the cross product, which indicates that regression to the mean is at work. 

And the fact that the cross product has the largest coefficient says that this effect is

strongest when it happens in the presence of a strong trend.  Very, very interesting!
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Nominal-to-Ordinal Conversion

A nominal variable is one that identifies a class membership, as opposed to having a

numerical meaning.  Nominal variables can have numeric values yet have no numeric

meaning, no sense of quantity or order.  The classic example is the month of the year.  We

may say that June has the value 6 and November has the value 11.  Certainly 11 is greater

than 6, but this does not mean that November is greater than June.

Very few prediction or classification models can directly accept a nominal value as an

input, which presents a problem if one or more variables in our application are nominal. 

There are some awkward ways around this.  The most popular method is to recode a

single nominal variable as a set of binary variables, with as many binary variables as the

nominal variable has classes, and assign one of these binary variables to each class.  Then,

for each case, we set the single binary variable corresponding to the case's class to 1, and

set all others to 0.  This works well if there are just two classes, and it works fairly well for

three classes.  But if there are more than a few classes, not only can this generate an

impractical number of input variables, but the information provided by any given class

membership can be diluted.

If we have a variable that takes on meaningful numeric values, and that is equal to or

shares substantial information with our ultimate target variable, we can often use our

training data to elevate the level of an ordinal variable.  In theory at least we can elevate

it to the same measurement level as our (possibly surrogate) target variable.  However, it

has been my experience that raising it to just ordinal level, so that order (greater/less

than) is meaningful, accomplishes the goal of converting a nominal variable so that it is

suitable for model input, without introducing excessive random noise.  This will be what

is implemented in VarScreen.

Some nice bells and whistles are added, but to start let's discuss the basic idea.  The user

supplies a dataset containing values of the nominal variable to be converted, as well as

values for what we will here call a target variable.  In many applications this will be the

actual target variable that will be used by a prediction model.  However, all it really

needs to be is some variable of at least ordinal level that is significantly related to the

ultimate target variable.

As a perhaps overly simplistic example, suppose our ultimate goal is to be able to look at

a set of properties of a patient's disease and decide whether a particular treatment should

be used as a follow-up to surgery, or if the side effects are too severe to justify it.  So this

is a binary classification problem: use the treatment or do not use it.  Also suppose that
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we have available as an input variable the ethnic heritage of the patient, perhaps broken

down into a dozen or so categories.  In an ideal world we would produce 12 different

classification models, using a different model for each ethnic category.  But the world

being what it is, we don't have nearly enough data to take that extravagant approach.  So

instead we treat ethnicity as a nominal variable and associate it with a synthetic target

variable, such as each patient's personal rating of quality of life after treatment, perhaps

on a scale of 1 to 10.

We have a training set of patients, all of whom had this treatment.  (We may have in our

dataset many patients who did not have this treatment.  These patients do not concern us

now.)  In addition to many other measured variables that are not relevant to this

discussion, for each patient we have the nominal variable Ethnicity and the target

variable Quality of life.  We wish to compute a new variable to substitute for Ethnicity

that will have a level of measurement higher than nominal so that we can use it as a

direct input to our ultimate classification model.

A reasonable approach, which is almost but not quite the approach used here, is to find

the mean of the target for each ethnic class and substitute this target mean for the

Ethnicity variable.  For example, suppose people of Vulcan ethnicity report a very high

quality of life after this treatment, while people of Romulan ethnicity report a very low

quality of life after the treatment.  Then we would recode the dataset, substituting the

(large) mean of Vulcans for the Ethnicity variable for each Volcan patient, and the (small)

mean of Romulans for each Romulan patient, and similarly for all other ethnicities.  This

gives us a numeric value for the formerly nominal variable Ethnicity, and this new

variable can be directly input to a classification or prediction model.

In this particular example, the synthetic target variable is well behaved because it has just

ten possible values.  But suppose the synthetic target can have heavy tails.  For example,

perhaps the target is the number of days before death after treatment.  Perhpas most

patients have about 10-50 days of life remaining, while a very few go on to live many

hundreds of days.  Taking the mean to use as our substitute value would likely give poor

results, because one or a few crazy outliers would skew the results.

To avoid this, in my code I pass through the entire dataset and convert the target values

to percentiles.  Thus, the case having the smallest target value would have a score of 0,

the case with the largest would have a score of 100, and all others would lie in between

these extremes.  This gives us a new target having ordinal scale; order in the sense of one

number being greater than another is preserved, but outliers are tamed.  In my own work

I have found that this preserves nearly all useful information for the conversion, yet

outliers have no impact.
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There are three other improvements to this basic technique that I have found to be useful. 

When I first became involved in predicting movement in financial markets, I soon learned

that some techniques work only in times of low volatility, and others (fewer!) work only

in times of high volatility.  I nearly always devised prediction models that specialized in

one or the other of these two market states.  The same applies to nominal-to-ordinal

conversion.  It will often be the case that we will want to employ two different

conversions, with the choice being dependent on the value of some binary state variable. 

This binary state variable is often called the gate.

A second enhancement to the basic technique is the ability to ignore some cases when

devising the nominal-to-ordinal mapping.  In some applications we may have reason to

believe that the class membership of some cases is irrelevant, with the decision

depending on some other variable.  Consider the prior example that involved converting

the nominal variable Ethnicity to an ordinal variable that captures self-assessed quality of

life.  Suppose that some patients had medical disabilities that prevented them from

providing this assessment, and a relative substituted his or her own judgement of the

patient's quality of life.  We may not trust that third-person view and decide, based on a

‘who answered the question?' variable, whether we want to disregard this case for the

purposes of creating the mapping.  Of course, we want to avoid creating ‘missing data'

whenever possible, so it is almost always in our best interest to assign some number to

such cases.  The most reasonable number to assign is the median of the synthetic target,

something right in the middle.  Because we are mapping to percentiles of the synthetic

target, this median will be very close to 50, departing only due to ties in the dataset.

The third desirable enhancement is the ability to decide whether our mapping is based on

a legitimate relationship, as opposed to being based on random variation.  If the nominal

variable that we wish to convert has no legitimate relationship with the synthetic target

we are using to compute the mapping, then the whole operation is pointless.  We might

as well assign random numbers to the cases.  This subject is discussed in an upcoming

section.

Implementation Overview

The VarScreen program implements gating (being able to compute two separate

mappings according to the value of a gate variable) as well as ignoring cases according to

a gate value.  It handles both options by means of a single gate variable.  This does

impose some generally minor limitations on the developer.  On the other hand, it also

simplifies operation of the program.  Any reasonably competent programmer should be
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able to easily modify the supplied code to separate these operations, and even to include

the possibility of several gate variables.

This implementation treats the optional gate variable as trinary: positive, negative, or

zero.  (Any value whose magnitude is less than 1.e-15 is considered to be zero.)  A

positive value of the gate variable places this case in one mapping category, a negative

value places it in another mapping category, and zero causes the case to be ignored.  It is

legal to use only positive and zero values, or only negative and zero values; either

situation will result in only one effective mapping to be generated.  And of course, having

only positive and negative values means that two maps are produced and no cases are

ignored.

Testing For A Legitimate Relationship

We can use a Monte-Carlo permutation test to provide a broadly applicable method for

estimating the probability that an apparently decent mapping we obtained could have

been nothing more than the product of random, meaningless relationships between our

nominal variable and our target.  There are many different tests that we could perform. 

All of them share the null hypothesis that there is no relationship between the nominal

variable and the target.  But we can test this null hypothesis against a variety of

alternative hypotheses.  I have chosen the tests shown below.  The first test is the only

one done if there is no gate variable.  If there is a gate variable, three categories are

possible for the cases: positive gate mapping, negative gate mapping, and case ignored. 

If the gate variable takes only positive nonzero values, or only negative nonzero values,

the unused ‘mapping' maps all values of the nominal variable to the median rank of the

target, very close to 50 except in pathological cases of extreme ties.  Here are the tests

performed:

! The minimum mean target rank (across all categories of the nominal variable) is

subtracted from the maximum.  We test whether a difference this extreme could

have arisen by random chance from an unrelated nominal variable and target.

! Separately for each nominal variable category, we compute the absolute difference

in mean target rank between the positive gate and the negative gate.  We test

whether a difference this extreme could have arisen by random luck.

! The maximum of the differences computed above is considered.  We test whether

a maximum difference this extreme could be just the product of random luck.  The
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prior test, which looks at each category separately, is subject to selection bias

because multiple p-values are computed.  This test is immune to this particular

selection bias.  If you attain a significant p-value in the test above, discount its

importance if you do not also attain a significant p-value for this test.

! Considering only cases having a negative gate value, compute the minimum mean

target rank across all categories and subtract it from the maximum.  We test

whether a difference as extreme as what we observed could have arisen by

random chance.

! This same test is performed by considering only cases having a positive gate value.

! We look at the greater of the two differences computed in the prior two tests and

test whether a maximum difference as large as what we observed could have

arisen by random chance.  The prior two tests have a small but significant selection

bias because we look at each gate category (positive and negative) and pay

attention to whichever is more significant.  This ‘greater of the two differences'

does not suffer from this particular selection bias.

Of course, in most applications we will be looking at a multitude of p-values, so selection

bias is unavoidable.  But in order to be able to examine a variety of ways in which the

mapping could demonstrate that the null hypothesis (no nominal variable - target

relationship) is false, we need to perform multiple tests.  Thus, some degree of selection

bias is unavoidable.

An Example From Equity Price Changes

The test described in this section is based on over 8500 days of closing prices of OEX, the

S&P 100 index.  I wondered whether the order of the most recent three day's closing

prices could be used as an input to a model that predicts price movement the next day. 

In other words, prices increasing steadily over the prior three days might mean one thing,

and a steady decrease might mean another, and a price rise followed by a price drop

might mean another, and so forth.  There are 3!=6 ways in which three different prices can

be ordered.  (I made arbitrary decisions for ties, which are not terribly common).  Let C

be the closing price two days ago, B be the closing price yesterday, and A be the closing

price today.  I assigned the six categories as shown on the next page.  To accommodate

price ties, the class is assigned to the last category in which it falls.
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0: C <= B <= A
1: C <= A <= B
2: B <= C <= A
3: B <= A <= C
4: A <= B <= C
5: A <= C <= B

This is clearly a nominal variable, as there is no apparent way to sensibly assign numeric

values to these categories.

It is well known that market price patterns can take very different forms in times of high

volatility as opposed to times of low volatility.  I decided that I wanted to compute

separate mappings for exceptionally high volatility regimes and exceptionally low

volatility regimes, and ignore price order when volatility is just average.  (This may or

may not be a wise plan in real life, but it ideally suits demonstrating this mapping

technique.)  This test produced the following output:

***********************************************************
*                                                         *
* Computing nominal-to-ordinal conversion                 *
*                                                         *
*     ORDER_CLASS is the sole predictor                   *
*        VOLATILE is the gate                             *
*       Z_DAY_RET is the target                           *
*    1000 replications of complete Monte-Carlo Test       *
*                                                         *
***********************************************************

Class bin counts...

Class    Gate-    Gate0    Gate+
    0      874      707      710
    1      471      324      378
    2      473      325      360
    3      380      324      350
    4      687      552      581
    5      412      327      313

Class bin mean percentiles...

 Class      Gate-      Gate0      Gate+
     0      47.40      50.09      48.13
     1      48.77      49.68      51.97
     2      48.04      46.74      50.96
     3      50.03      52.56      50.26
     4      50.87      50.39      54.61
     5      51.73      49.73      50.34
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For each class individually, p-value for positive gate versus negative gate...
 Class    p-value
     0    0.614
     1    0.097
     2    0.145
     3    0.939
     4    0.018
     5    0.532

p-value for max across classes of the gate +/- difference = 0.254
p-value for max class mean percentile minus min, for negative gate  = 0.162
p-value for max class mean percentile minus min, for positive gate  = 0.016
p-value for max of the above two = 0.024

By examining the bin counts, we see (not surprisingly) that for all volatility regimes, the

pattern of steadily increasing price is by far the most common.  A fairly distant second is

the pattern of steadily decreasing prices.

The target is the log price change the next day.  The table of mean target percentiles

shows an interesting pattern.  For both extremes of volatility, the category of steadily

increasing prices shows the smallest mean target percentile.  For exceptionally high

volatility, the category of steadily decreasing prices shows the largest mean target

percentile, and for exceptionally low volatility this category is second-largest.  The largest

is still a category in which the most recent price is the lowest of the three.  This is

evidence that mean reversion is in control, as opposed to trend following, at least for

these two extremes of volatility.

Note that the ‘Gate 0' category, which means ‘ignore this case' still has mean target

percentiles printed for the edification of the user.  When the new nominal variable is

generated, it will be assigned the target mean percentile, which of course will be very

close to 50.

Now let's look at the p-values.  We see that the difference in target mean percentiles is

highly significant (0.018) for only category 4, steadily decreasing prices.  However, we are

picking the most significant out of six p-values, so selection bias is at work.  We see that

when the max across categories is considered, the p-value is an unimpressive 0.254.  This

tells us that we should not pay much attention to that one attention-grabbing p-value.  It

could easily be the product of random variation.

The maximum difference across classes for a negative gate (exceptionally low volatility) is

an uninteresting 0.162.  But with high volatility, we get a much more impressive p-value

of 0.016.  Moreover, we are inclined to take it seriously, since the selection-bias-free

p-value for categories is 0.024, quite respectable.
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After this test is run, a new variable is created.  If this is the first time during this run of

the VarScreen program that we performed nominal-to-ordinal conversion, this variable

will be named NomOrd_1.  The second time, the new variable will be NomOrd_2, and so

forth.  This variable can be used in subsequent tests, and it can also be written to a text

file using the ‘File / Write variables' menu command.
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Plotting

Several plot functions are available from the Plot menu.  These are as follows:

Series

This selection causes a time series to be displayed.  The user must specify a variable and

optionally check or uncheck the Connect box.  This option controls whether the points are

connected, or displayed as vertical lines with a baseline at zero.  The display can be

magnified by positioning the mouse at the left side of the desired area of magnification,

pressing the left mouse button, dragging to the right as desired, and releasing the button. 

Once magnified, the enhanced area can be shifted left or right by dragging the horizontal

scroll at the bottom of the screen, or clicking on the scroll bar in the usual Windows

fashion.  At this time, the program does not allow expanding the image back to its

original size, although the same effect can be had by plotting the series again.

Histogram

A histogram of a selected variable is displayed.  By default, the entire range of the

variable is displayed.  The user can impose a lower and/or upper limit for display by

clicking the corresponding checkbox and entering the desired limit(s).  This is handy for

variables that have one or a few extreme values that cause the graph to become

unnaturally compressed.  Cases outside the specified limits accumulate in a bar at the

lower (and/or upper) edge of the display.

The user also specifies the number of bins to use.  Making this an odd number causes the

graph to be centered at zero if the upper and lower limits are equal, which is good in

many cases.

Density, Inconsistency, and Mutual Information Plots

A density plot is a sophisticated version of a scatterplot for showing the relationship

between two variables.  A scatterplot displays individual cases on a map that uses the

horizontal axis for the value of one variable and the vertical axis for the value of the other

variable.  Each case has a unique position on this map and this position is typically

marked with a small dot.
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The problem with this approach is that if there are numerous cases, so many that limited

display or visual resolution results in multiple cases being overlaid on the same spot, it is

impossible to see the quantity of cases at that spot.  Whether one case lies there, or a

thousand, it's still a single dot.

The Density Plot included in VarScreen overcomes this difficulty by fitting a bivariate

Parzen window to the data and plotting the smoothed density as defined by the Parzen-

window density approximation.  Much information about Parzen windows is available

online, so I won’t pursue it in detail here.  Roughly speaking, it is a kernel-based

exponential smoother whose value at any location is proportional to the number of cases

near that location.

Another problem with scatterplots as well as the density plot just described is that they

unavoidably include marginal densities in the display.  If one of the variables clusters at

one extreme, most of the cases will be plotted there.  In this situation, even if the two

variables are unrelated, the map will show a gradient, when what most people are most

interested in is departures (inconsistencies) in the actual bivariate density after taking

marginal distributions into account.

An inconsistency plot overcomes these problems by using the gray level or color of the

display to portray the log ratio of the actual density to the theoretical density (product of

the smoothed marginals) of cases in every area of the map.  It does this by fitting a Parzen

smoothing window to the data in order to produce an estimated bivariate density as well

as both marginal densities.  If the two variables are completely unrelated, the bivariate

density will equal the product of the marginal densities everywhere, and so the log of

their ratio will be identically zero.  Areas in which cases are unnaturally concentrated will

have positive values, and unnaturally sparse areas will have negative values.

A third display possibility involves mutual information, the information that is shared

between two variables.  Mutual information is widely discussed online, so I won’t delve

into fine details here.  Roughly, it is the sum over the bivariate domain of the product of

the joint density times the log of the ratio of the joint density to the product of the

marginal densities.  When seen as such a sum, it is clear that if the two variables are

related, the contribution to the mutual information contained in the pair of variables

varies across the domain.  We can plot this contribution, with the result that areas of the

bivariate domain that contribute most greatly to the mutual information are highlighted.
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The following parameters may be set by the user:

Horizontal variable - Selects the variable plotted along the horizontal axis.  By checking

the Upper Limit and/or Lower Limit box above the list of variables and filling in a

numeric value, the user can limit the range plotted.  Cases outside this range still take

part in computations, but the plot does not extend to include them.

Vertical variable - Selects the variable plotted along the vertical axis. The same plot limit

options as above apply.

Resolution - This is the number of grid locations along both axes that are used for

computation.  The plot interpolates between the grid points.  Larger values result in more

accuracy but longer run time.

Relative width - This is the width of the Parzen smoothing window.  The user should set

this in accord with the quantity of noise in the data.  Smaller values produce very precise

density estimates, but if the data contains a large amount of noise, these noise points will

be considered valid data and thus make an undue contribution to the display.  Larger

width values smooth out noise, at the price of less precision in the density estimates.

Tone shift - This controls how the density estimates map to grey levels or color on the

display.  Positive values will push the display in the positive direction, and negative

values in the negative direction.  Use this option to highlight desired features.

Tone spread - Like Tone shift, this has no effect on computation, but it controls how the

density estimates map to grey levels or colors on the display.  Negative values are legal

but rarely useful.  Positive values act to sharpen contrast, emphasizing boundaries near

the middle  of the range of densities at the expense of blurring detail at the extremes.  Use

this option to highlight desired features.

Plot in color - By default the display is black and white.  Checking this box causes the

display to be shades of blue (low values of the plotted quantity) and yellow (high values).

Sharpen - Increases contrast for extreme values at the expense of discrimination for

moderate values.

Histogram equalization - Modifies the display by making all tones/colors appear in equal

quantity.  This usually emphasizes differences in the mid-range while de-emphasizing

extremes.
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The user can select from one of four plot types:

Actual density - This plots the actual bivariate density, the most basic plot.  This is the

smoothed equivalent of a conventional scatterplot.

Marginal density - This plots the product of the two marginal densities.  This plot is only

rarely useful, and then only as a possible comparison baseline to contrast with an actual

density.

Inconsistency - This plots the inconsistency between the actual bivariate density and the

theoretical bivariate density.  It is the log ratio of the actual density to the product of the

marginal densities.  Areas of unusually large actual density are highlighted.

Mutual information - This shows the contribution of each region to the mutual

information between the variables.

Note that the algorithms for computing the plotted values of these four dislpays are

described in detail in my book “Data Mining Algorithms in C++” published by the Apress

division of Springer.



Appendix: Version Updates 119

Appendix: Version Updates

1.0 Univariate mutual information between predictor candidates and a single target

Bivariate mutual information between a pair of predictor candidates and one or

more target candidates

1.1 Added the option of uncertainty reduction instead of mutual information for

bivariate mutual information, in order to accommodate targets with widely

differing entropies

1.2 Peng, Long and Ding (2005) “Feature Selection Based on Mutual Information:

Criteria of Max-Dependency, Max-Relevance, and Min Redundancy” algorithm

implemented to select an optimal subset of predictors based on maximum

relevance at predicting the target while simultaneously minimizing redundancy

within the predictor set.

1.3 Hidden Markov models are defined using up to three predictors, without regard

to a target.  Then these models are sorted according to the multivariate correlation

of their state probability vectors with a user-supplied target variable.

1.4 The univariate mutual information test now prints a new column: the probability

that a selected candidate will have XVAL out-of-sample mutual information less

than or equal to the median out-of-sample mutual information for all candidates.

1.5 One or more time series are examined for a break in their mean using the Mann-

Whitney U-test.  The user specifies how far in recent history to look back for a

break.  The test includes compensation for examining more than one series

simultaneously, as well as compensation for repeating the test as time passes and

new values for the series become available.

1.6 Feature Weighting as Regularized Energy-Based Learning (FREL): A recent

development for feature ranking and weighting that is excellent for low-noise,

high-dimension, small-sample-size applications.

1.7 Forward selection, as well as optional backward refinement, is used to find a

relatively small subset of a very large set of variables such that the principal

components of this subset capture the most variance possible from a subset of that

size.  This is valuable when faced with an extremely large set of predictors.
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1.8 LFS (Local Feature Selection) for identifying predictors that are optimal in

localized areas of the feature space but may not be globally optimal.  Such

predictors can be effectively used by nonlinear models but are neglected by many

other feature selection algorithms.

1.81 CUDA computation added to the LFS algorithm, resulting in huge speed increase

for problems with a large number of cases.

1.82 Fixed a serious non-thread-safe bug in a random number generator.  Under certain

unusual but possible conditions this could compromise Monte-Carlo permutation

test results, especially for cyclic permutation.

1.9 Enhanced stepwise selection

Nominal-to-ordinal conversion

Assessing memory in a time series by fitting a hidden Markov model

2.0 Compute and print table of autocorrelation and partial autocorrelation

2.1 Improved mean break test

2.2 Threshold optimization allows optimal profit factor to be the indicator selection

criterion.

2.3 Bug fix for Optimal Profit Factor introduced in Version 2.2

Plot time series, histogram, and bivariate densities (and relatives).

2.4 Added to threshold-optimized indicator selection the option of ordered stepwise

selection with strongly controlled familywise error.

2.5 Significant acceleration of the stepwise threshold-optimized indicator selection.


	About the VarScreen Program
	About CUDA Processing
	Reading a Dataset
	Univariate Mutual Information
	Bivariate Mutual Information / Uncertainty Reduction
	Indicator Selection Based On Optimal Profit Factor
	Predictors having Max Relevance, Min Redundancy
	Hidden Markov Models with Target Correlation
	Assessing HMM Memory in a Time Series
	Stationarity Test for Break in Mean
	FREL: Feature Weighting as Regularized Energy-Based Learning
	FSCA: Forward Selection Component Analysis
	LFS: Local Feature Selection
	Enhanced Stepwise Lin-Quad
	Nominal-to-Ordinal Conversion
	Plotting
	Appendix: Version Updates

