
IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 392 | P a g e

Power and Area Efficient Implementation of Single

Precision Floating Point Unit
Vishnu Mawandia, Gajendra Sujedia

Department of Electronics and Communication Engineering, Rajasthan Institute of Engineering and

Technology

Abstract - The use of floating point unit has lot of application

in real time embedded systems. Algorithms like Fast Fourier

Transform(FFT) from the digital signal processing (DSP)

domain often make extensive use of floating-point arithmetic.

This paper presents the design and implementation of an

efficient single precision floating-point processor in FPGA.

This processor can be dynamically configured, loaded, and

executed when needed by software applications. The system is

binary compliant with the conventional microprocessor
without interlocked pipelining (MIPS) architecture and the

IEEE-754 standard. Here the hard-ware design is done in a

way to optimize the area and delay. The design is coded in

Verilog hardware description language at Register Transfer

Level (RTL) and synthesized in Virtex 5 device with the help

of Xilinx ISE tool.

I. INTRODUCTION
Floating-point arithmetic is widely used in many areas,

especially in scientific computation; numerical processing and

signal processing (like digital filters, FFT, image process-ing,

etc.)[8]. The IEEE-754 defines the standard for single-

precision and double-precision formats.The range & precision

of numbers that can be represented using IEEE-754 format is

higher than that of fixed point representation with the same

number of bits.Implementation of arithmetic operations for

IEEE floating-point standard in hardware becomes a crucial

part of almost all processors. The applications are always

look-ing for high-performance and area efficient

implementation of floating-point arithmetic operation. Due to
progression in VLSI technology nowadays we have FPGA’s

with high speed, more embedded modules and more number

of logic.These make them suitable for implementing complex

applications and also we can go for improved implementation

of application’s like floating point arithmetic. If the

performance of floating point arithmetic in FPGA is

improved, Then FPGA is a attractive platform for scientific

and real time applications.By embedding our floating point

processor we can easily improve the speed of floating point

application. our goal is to create a flexible, generic embedded

floating point processor, which over floating point
applications will improve performance and save a significant

amount of FPGA real estate when compared to

implementations on current FPGAs. With this goal of

flexibility in mind, our processor was designed so that it can

be configured to perform several useful functions. Since

multiplication and addition are two of the most commonly

used arithmetic operations, these operations are included in

the ALU, both in integer and floating-point mode.Our

processor has 512 MB of data memory,256 KB of program

memory,32 number of 32 bit register file,32 bit A and B

register.32 bit ALU,32 bit PC(program counter),32 bit

IR(instruction register).It has two modes of operation floating

point mode and normal integer mode.In floating point mode
operations like adder ,subtracter,multiplier and multiply-add

are performed and it also handles 5 floating point

exceptions.For effective implementation the ALU uses

merged datapath for floating point addition and multiplication

and efficient algorithm for multiplier and adder design. The

design is implemented in verilog HDL and synthesized for

Xilinx virtex-5 device.The design is synthesized using Xilinx

ISE tool.

II. SINGLE PRECISION FLOATING POINT

NUMBER

Single-precision floating-point format is a computer number

format that is specified in the IEEE-754-2008 standard.fig:1

shows a single precision floating point format.where sign bit

determines the sign of the number. It is the sign of the

mantissa as well. Exponent is an 8 bit signed integer from -

128 to 127 (2’s Complement) or can be an 8 bit unsigned

integer from 0 to 255 which is the accepted biased form in

IEEE 754 single precision definition. In this case an exponent

with value 127 represents actual zero. The true mantissa
includes 23 fraction bits to the right of the binary point and an

implicit leading bit (to the left of the binary point) with value

1 unless the exponent is stored with all zeros. Thus only 23

fraction bits of the mantissa appear in the memory format but

the total precision is 24 bits[6].

A. Processor Design

The first step in design is choosing an efficient instruction set

architecture for our processor.Here we uses MIPS

ISA(instruction set architecture).MIPS is a load-store RISC

(Reduced Instruction Set Computer) instruction set with three
operands .Remaining of the design is divided into two part

• Data path performs the data operations as commanded by

the program instructions.

IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 393 | P a g e

• Controller design controls the datapath, memory and I/O

according to the program instructions.

B. Control unit design

The control unit of the MIPS single-cycle processor examines

the instruction opcode bits [31:26] and decodes the instruction
to generate 12 control signals to be used in the datapath.

The controller uses FSM to generate the control signal.Here

the FSM consist of one initial state and 3 operating states. The

states are start, fetch, decode, execute

START : All control signals are assigned to zero.

FETCH : Control signals are assigned in way to fetch the

instruction from program memory. The control signal active

in this state are: PCen, memread, Iren

DECODE: In this state the instruction is decoded and the

datapath control signals prepared for next cycle.The control

signal active in this state are:Iren, write, Bsel, ACCen, Ben.

EXECUTE: In this state the data from the file register is

passed to ALU for the desired operation and the result is

written back to the destination register.The control signal

active in this state are: ALUfz, d memrd, d memwr,
memtoreg, dstsel C. Datapath design Here the datapath is

based on MIPS (microprocessor without interlocked pipeline

stages). It also utilizes the features of the Harvard architecture

(separate memory for instruction and data).In this scheme

instructions are executed in multi clock cycles. The datapath

consist of 512 MB of data memory,256 KB of program

memory,32 number of 32 bit register file,32 bit A and B

register.32 bit ALU with floating point support,32 bit PC

register,32 bit IR register. To incorporate pipelining the

datapath is clearly divided into three section(fetch, decode,

execute). And operation of each section is controlled by the

control signal generated from the controller.

C. Fetch unit

The function of the instruction fetch unit is to obtain an

instruction from the instruction memory using the current

value of the PC and increment the PC value for the next

instruction . The instruction fetch component contains the

following logic elements that are implemented in Verilog: 16-

bit program counter (PC) register, an adder to increment the

PC by one, the instruction memory, and an Instruction
register.

D. Fetch

Instruction decode unit: The main function of the instruction

decode unit is to decode the 32-bit instruction fetched in

previous state (fetch state) to index the register file and obtain

the register data Values as seen in Figure:4 . This unit also

sign extends instruction bits [15 - 0] to 32-bit. The logic

elementsimplementedinVerilogincludemultiplexersanda32 bit

register file,16 to 32 bit sign extender and A & B register.

E. Decode

Execution unit: The execution unit of the MIPS processor

contains the arithmetic logic unit (ALU) which performs the

operation determined by the ALUfz signal in the case of

arithmetic operation. The branch address is calculated by

adding the PC+1 to the sign extended immediate field shifted

left 2 bits by a separate adder. And obtaining the address of

data memory in case of load and store instruction. The logic

elements implemented in Verilog include a multiplexer, an

adder, the ALU and the ALU consist of datapath for floating

point arithmetic.fig:5 shows the datapath for execute unit and
the corresponding floating point ALU

F. Execute

The execution unit of the MIPS processor contains the

arithmetic logic unit (ALU) which performs the operation

determined by the ALUfz signal in the case of arithmetic

operation. The branch address is calculated by adding the

PC+1 to the sign extended immediate field shifted left 2 bits
by a separate adder. And obtaining the address of data

memory in case of load and store instruction. The logic

elements implemented in Verilog include a multiplexer, an

adder, the ALU and the ALU consist of data path for floating

point arithmetic.fig:5 shows the data path for execute unit and

the corresponding floating point ALU is shown in

ALU is a single precision IEEE-754 compliant integrated unit.

It can handle basic floating point operations like floating point
addition, subtraction, multiplication and multiply-add in

floating point mode and 23 bit normal addition, subtraction &

multiplication in integer mode of operation. The mode of

operation can be indicated by 27th bit of instruction and if the

bit is set to one then floating point operation is performed.

ALU control signal from the controller select the desired ALU

operation corresponding to the instruction. The input to the

ALU is 32 bit value from A & B register. for floating point

operation these are floating point numbers represented in

IEEE-754 format and in the case of integer operation first 23

bit of these operand is used as input values to the ALU.

III. SIMULATION RESULT

A. Multiplier

A1(shown in diagram) is the accumulator and the value stored

in accumulator is:

32’b00000000000000000000000000000001.B1(shown) is

another general purpose register of 32 bit in which we have

stored 32’b00000000000000000000000000000010.These 2

values are multiplied using the multiplier and the
result(shown) is obtained after simulation is

32’b00000000000000000000000000000010

IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 394 | P a g e

which correspondins to the required result.

Fig 1. Simulated Waveform of Multiplier

B. Adder
The value stored in accumulator is

32’b00000000000000000000000000000001.B1(shown) is

another general purpose register of 32 bit in which we have

stored 32’b00000000000000000000000000000010.These 2

values are added using the adder and the result(shown) is
obtained after simulation is

32’b01110101010000000000000000000000 which is

obtained post normalisation and thus correspondins to the

required result.

Fig 2. Simulated Waveform of Adder

IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 395 | P a g e

C. Divider

The value stored in accumulator is

32’b00000000000000000000000000000010.B1(shown) is

register of 32 bit in which we have stored

32’b00000000000000000000000000000001.These 2 values

are divided using the divider and the result(shown) is obtained

after simulation is

32’b11110101110000000000000000000000 which is

obtained post normalisation which correspondins to the

required result.

Fig 3. Simulated Waveform of Divider

Table 1: Performance comparison Table

Feature Earlier result Optimised result

Power 9.54 W 8.76 W

LUT used 14500 13977

Registers

used

3000 2116

IV. CONCLUSION

This project deals with development of a efficient Floating

Point adder, Subtractor and Multiplier for ALU in Verilog
.That ALU is used to design a single precision floating point

processor. Here the processor uses MIPS and Harvard based

architecture. The whole design is performed with the help of

Xilinx and synthesized with Xilinx tools. The experimental

result shows that area and delay of the processor is reduced

with the help of suitable hardware design for the datapath.

Efficiency is again improved by reconfiguring the datapath for

two modes of operation, integer mode and floating point

mode. A simple program to add and multiply two floating

point numbers is stored in program memory and

corresponding floating point data is stored in data memory.

V. REFERENCES
[1]. C. H. Ho, C. W. Yu, P. H. W. Leong, W. Luk, and S. J. E.

Wilton, Domainspecific hybrid FPGA: Architecture and floating
point applications, in Proc. Int. Conf. Field Program. Logic
Appl. (FPL), 2007,pp. 196201.

[2]. Yee Jern Chong and Sri Parameswaran, Configurable
Multimode Embedded Floating-Point Units for FPGAs, IEEE
Transactions 2010.

[3]. Akkas, Dual-mode quadruple precision floating-point adder, in
Proc. 9th Euromicro Conf. Digit. Syst. Des. (DSD), 2006, pp.
211220. Xilinx Inc., Virtex-5 Family Overview - LX, LXT,and
SXT Platforms, 2007.

[4]. P. C. Diniz and G. Govindu, Design of a field-programmable

dualprecision floating-point arithmetic unit, in Proc. Int. Conf.
Field Program. Logic Appl. (FPL), 2006, pp. 14. ANSIWEE std
754-1985, IEEE standard for binary Floating-point arithmetic,
IEEE New York (1985)

[5]. C.W. Yu, J. Lamoureux, S.J.E. Wilton, P.H.W. Leong and W.
Luk.The Coarse-Grained/Fine- Grained Logic Interface with
Embedded FloatingPoint Arithmetic Units. International Journal
of Reconfigurable Computing, 2008, Article ID 736203, 10

pages, 2008.

IJRECE VOL. 5 ISSUE 4 OCT.-DEC. 2017 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 396 | P a g e

[6]. Earl E. SwartzlanderJr.,andHani H.M. Saleh, FFT
Implementation with Fused Floating-Point Operations, IEEE
Transactions on computers, vol.61

[7]. Steven Smith, (2003), Digital Signal Processing-A Practical
guide for Engineers and Scientists, 3rd Edition, Elsevier

Science, USA
[8]. John G. Proakis, Dimitris K Mano lak is,(2 003),D

igitalSignaIProcessingPrincipl es,Algorithnms,Applications,4th
edition, Primer, USA

[9]. "A New Common Sub expression Elimination Algorithm for
Realizing low-Complexity Higher Order Digital Filters"IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 29, No.5, pp 844 - 848, May 2010

[10]. Vinay K. Ingle, John G. Proakis,(2009),
DigitalSignalProcessingU singMATLAB,3e ,Cengage learning.
IEEE Standards Board. “IEEE Standard for Bi- nary Floating-
point Arithmetic”. Technical Re- port ANSI/IEEE Std
754-1985, The Institute of Electrical and Electronics
Engineers, New York, 1985.

[11]. T. Ebisuzaki et al. “GRAPE Project: An Overviewn.
Publications of the Astronomical Society of Japan, 45:361-

375, 1993.
[12]. Richard I. Hartley and Keshab K. Parhi.Digit- Serial

Computation.Kluwer Academic Publishers, Boston, MA,
1995.

[13]. John L. Hennessy and David A. Patterson. Com- puter
Architecture A Quantitative Approach, Sec- ond Edition.
Morgan Kaufmann, 1996.

[14]. NabeelShirazi, A1 Walters, and Peter Athanas. “Quantitative

Analysis of Floating Point Arithmetic on FPGA Based Custom
Computing Ma- chines”. In IEEE Symposium on FPGAs for
Cus- tom Computing Machines, pages 155-162, April 1995.

[15]. Hong-Ryul Kim Todd A. Cook and LoucasLouca.“Hardware
Acceleration of N-Body Simulations for Galactic Dynamics”. In
SPIE Photonics East Con- ferences on Field Programmable
Gate Arrays (FP- GAS) for Fast Board Development and
ReconfigurableComputing, pages 115-126, 1995.

[16]. N. Shirazi, A. Walters, and P. Athanas, “Quantitative Analysis

of Floating Point Arithmetic on FPGA Based Custom
Computing Machines,” Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM‟95), pp.155–
162, 1995.

[17]. John L. Hennessy and David A. Patterson.Computer
Architecture A Quantitative Approach, Second Edition. Morgan
Kaufmann, 1996.

[18]. Richard I. Hartley and Keshab K. Parhi.Digit-Serial

Computation. Kluwer Academic Publishers, Boston, MA,
1995

[19]. A. El Gama1 et al., “An architecture for electrically
configurable gate arrays,” IEEE J. Solid State Circ., vol. 24, pp.
394398, 1989.

[20]. C. Renard, “FPGA implementation of an IEEE Standard
floating-point unit,” Tech. Rep., Thayer School of
Engineering, Dartmouth College, NH USA. Shirazi, N.,

Walters, A. and Athanas, P. “Quantitative analysis of
floating-point arithmetic on FPGA based custom computing
machines”, Proc. IEEE symp.on FPGAs for Custom Comput.
Machines, 1995, pp. 155-162.

[21]. Styles, H. and Luk, W. “Customising graphics applications:
techniques and programming interface”, Proc. IEEE Symp.
on Field-Programmable Custom Computing Machines, 2000,
pp. 77-87.

[22]. Ligon 111, W.B. et al. “A re-evaluation of the practicality of

floating-point operations on FPGAs”, Proc. IEEE Synzp.On
FPGAs for Custom Comput.Machines, 1998, pp. 206-215

[23]. Louca, L. et al. “Implementation of IEEE single precision
floating-point addition and multiplication on FPGAs”, Proc.
IEEE Symp. on FPGAs for Custom Computer Machines, 1996
Luk, W. and McKeever, S. “Pebble: a language for parametrised
and reconfigurable hardware design”, Field- Programmable
Logic and Applications, LNCS 1482, Springer, 1998, pp. 9-
18.

