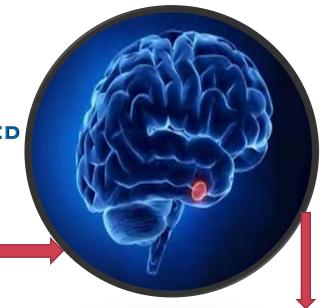


THE SIGNAL OF EFFORTLESS EXERCISE

THE FULL BODY CONTRACTION

SEVERED NEURON
WITH Virtual Gym ACTING
AS A BYPASS MECHANISM

Thirty-two years OF EMPIRICAL LONDON UNIVERSITY RESEARCH IN SEARCH OF THE MOTOR NERVE BLUEPRINT SIGNAL BY THE CO-INVENTOR OF THE PACEMAKER, GERRY POLLOCK. Originally, he AIMED TO REPLACE THE SIGNAL OF DAMAGED MOTOR NERVES IN MULTIPLE SCLEROSIS PATIENTS BY SIMULATING PHYSICAL EXERCISE -- THE WAY THE PACEMAKER REPLACES THE SIGNAL OF THE HEART PACEMAKER CELLS TO SIMULATE HEART BEATS. EVENTUALLY IT BECAME CLEAR THAT SIGNAL RESONANCE INVOLVED THE BRAIN! IT'S THE BRAIN THAT INTEGRATED THE DEVICE SIGNAL IT RECEIVED AND CAUSED


VOLTAGE DRIVEN MOTOR NERVE BLUEPRINT SIGNAL THAT HUNTS FOR THE MOTOR NERVE

THE VIRTUAL GYM BLUEPRINT MOTOR NERVE SIGNAL IS SHOT THROUGH THE SKIN VIA VOLTAGE

IT EXCITES THE SENSORY NERVES AS IT RESONATES WITH THE MOTOR NERVES

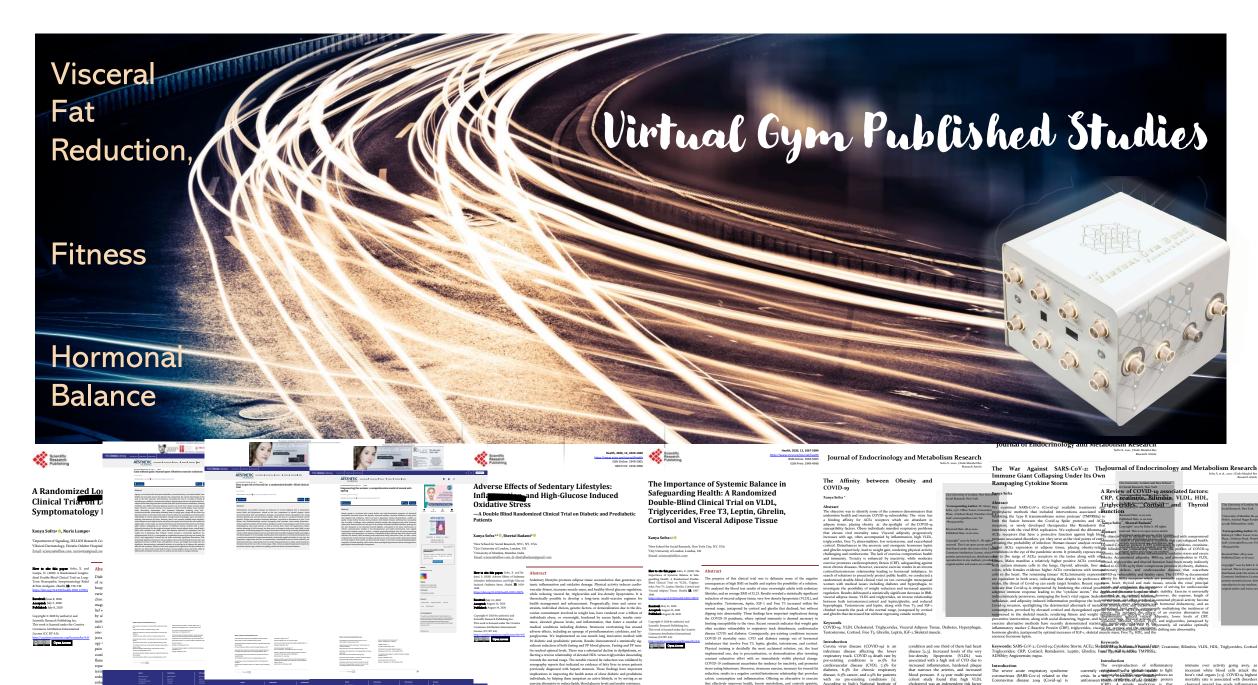
THE SIGNAL IS RECOGNIZED / AUTHORIZED
TO BE TRANSFERRED TO THE BRAIN
ONLY SIGNALS IN SYNC WITH THE CNS
CAN RECEIVE SUCH AUTHORIZATION

THE VIRTUAL GYM'S SUSTAINED FULL BODY CONTRACTION IS A CENTRAL EVENT THAT INVOLVED THE BRAIN

1.THE BRAIN INTEGRATES THE SIGNALS
IT RECEIVES INITIATING THE PROCESS OF
EXERCISE

2. ORDERS THE RELEASE OF
HORMONES VIA THE PITUITARY TO
SIMULATE PHYSICAL EXERCISE
3. SENDS THE INTEGRATED SIGNAL
BACK TO THE MOTOR NERVES TO
CAUSE A SUSTAINED FULL BODY EIGHT SECS
CONTRACTION OF LARGE COORDINATED
MUSCLES

1000 Strength-Resistance-Aerobic-Exercises



THE VIRTUAL GYM BURNS BOTH SUBCUTANEOUS AND VISCERAL FAT BOTH AROUND AND INSIDE THE VITAL ORGANS AS AN ENERGY SOURCE TO BUILD MUSCLE, IMPROVE THE FUNCTIONING OF VITAL ORGANS, DETOX THE ENTIRE BODY. BALANCE HORMONES, INCREASE ENERGY, SEXUALIT, AND OVERALL HEALTH.

EFFORTLESS SIMULATED EXERCISE.

ALL THE BENEFITS OF ONE
MONTH INTENSE EXERCISE
IN ONE HOUR WITHOUT
THE MUSCLE PAIN THE
NEXT DAY
NO LACTIC ACID
NO EFFORT
NO ENERGY EXPENDITURE

h CRP such as diabetes, cardiovascular dise ie virus' (CVD), and respiratory defects that effensive often linked to obesity, measured by b

NOTHING WORKS ON VISCERAL FAT AFTER THE AGE OF 50. NOT EVEN THE GYM!

Virtual Gym is the ONLY Technology that Reduces Visceral Fat

BMI Reduction: -6.63%

12 Virtual Gym treatments: Visceral Fat Reduction: -23.31%

One of Several Virtual Gym Published studies

				31.0 3. 30	rorar rintaar	Cylli i dolloi									
Gender	Age	BMI	BMI	Visceral	Visceral Fot Boot	M	55	27.7	26.7	9.5	8				
		Pre	Post	Fat Pre	Fat Post	F	38	37.1	34.5	20.5	14.5				
F	54	35.9	34.6	30	23	M	36	37.1	34.0	18	13.5				
F	43	34.6	33.4	21	18	F	34	29.6	27.8	11	9				
F	49	25.2	24.4	7.5	7	F	46	31	30.0	14	11.5				
M	47	37.6	33.4	30	21										
F	39	37.8	36.7	23	20	F	43	46.8	45.5	30	25				
F	28	30.7	29.4	11	8	F	32	29.4	26.8	15.5	12				
M	45	26.4	24.9	13	11	F	39	27.4	25.2	14.5	10				
M	27	34.1	31.2	17	14	M	68	28.2	27.3	19.5	17.2				
F	34	29.8	27.9	11	8.5	F	36	33.5	32.1	18.5	16.5				
M	81	34.8	32.2	31	26.5	F	42	23	20.3	9.5	8				
F	47	25.8	24.5	8	7	F	56	32.6	29.7	29.6	21.6				
F	63	42.8	40.3	28	23	F	52	36.5	33.9	31.2	23.3				
F	57	41.9	38.7	32	26	F	49	28.6	25.4	27.9	16.1				
F	27	24.1	22.5	4.5	4	F	63	34.9	31.8	30.4	22.8				
M	37	26.3	24.5	11	7	F	51	34.2	32.7	30.9	23.6				
F	43	34	31.7	24.5	20.4	F									
M	27	29.5	28.2	11	9		55	35.4	33.9	32.2	27.6				
F	35	36.2	34.0	19	15.5	F	48	30.9	28.2	27.5	17.2				
M	61	29.5	28.8	19.5	17.6	F	61	32.7	29.9	28.4	20.9				
M	55	27.7	26.7	9.5	8	F	46	29.5	24.3	26.1	16.7				
F	38	37.1	34.5	20.5	14.5	F	58	33.8	29.5	30.2	21.9				

MRIs showed a significant decrease of Visceral Fat:

Visceral Fat Before: 159.88 cm2

Visceral Fat After: 76.90 cm2 p< 0.01 -- Significance

Diabetic Patient with back Pain and Fatty Liver. Measures: Sonogram, Blood Test, Measuring tape, Tanita Scale, Self Reports

BEFORE	AFTER
Real Age: 43 y.o. female	METABOLIC AGE 32
Severe Obesity FAT 36.5 %	FAT% 25.8
Diabetic Status: On Insulin HbA1c- 10.8	On Oral Drugs HbA1c – 7.8
Visceral Fat Evidence Sonography Reports: Fatty Liver	NO FATTY LIVER
Lower Back Pain	NO BACK PAIN
Weight: 92.2 Kg	Significant Weight Loss 83.7 KG
Measurement: Umbilicus: 111cm	Significant Improvement:100cm
Measurement: Lower Abdomen: 115cm	Significant Improvement:100cm

SONOGRAPHY REPORTS

ON PATIENTS

WITH FATTY LIVER

REVEALED

NO FATTY LIVER

AFTER 12-15

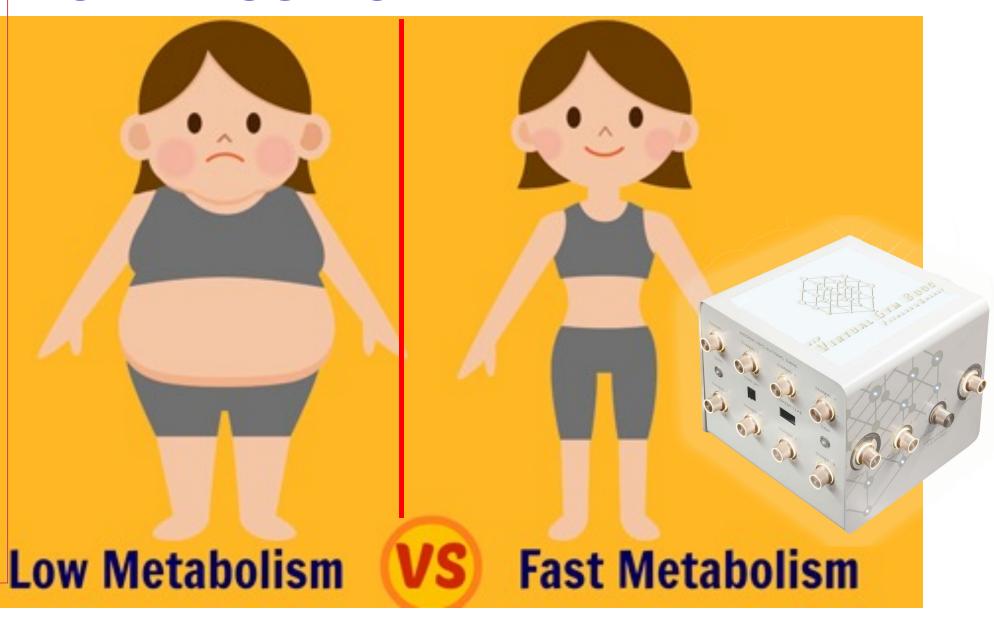
VIRTUAL GYM

TREATMENTS

Triglycerides Normal Range: >150 mg/dL;

High-Density Lipoprotein (HDL) Normal Range: Men > 60 mg/dL; Women > 60 mg/dL

High-Density Lipoprotein (HDL) At Risk: Men: <40 mg/dL; Women < 50 mg/dL


Gender	Age	Health Status	Fatty Liver	Fatty Liver		Back Pain Post	Triglycerides mg/dL Pre	Triglycerides mg/dL Post	Triglycerides mg/dL decrease	HDL mg/dL Pre	HDL mg/dL Post	(HDL) mg/d Increase
1 F	45	Diabetes	Grade-2	Nil	Yes	No	203	158	Bord Normal	32	39	Improved at risk
2 M	69	Diabetes			Yes	No	215	128	Normal	35	47	Bord. Not at risk
3 M	46	Diabetes					230	153	Bord Normal	28	37	Improved at risk
4 F	50	Diabetes			Yes	No	86.7	84.3	Normal	49.6	53	Not at risk
5 F	49	Diabetes			Yes	No	103	88	Normal	34.5	38	Improved at risk
6 F	46	Diabetes	Grade-1	Nil	Yes	No	287	176	Improved (abnormal)	32	39	Improved at risk
7 F	48	Diabetes	Grade-2	Nil	Yes	No	266	147	Normal	29	41	Bord. Not at risk
8 M	44	Diabetes	Grade-1	Nil	Yes	No	283	189	Improved (abnormal)	30	35	Improved at risk
9F	43	Prediabetes			Yes	No	294	197	Improved (abnormal)	36	42	Bord. Not at risk
10 F	27	Prediabetes					192	126	Normal	36	48	Bord. Not at risk
11 F	63	Prediabetes					155	117	Normal	45	47	Bord. Not at risk
12 F	24	Prediabetes					88	86	Normal	45	52	Not at risk
13 M	30	Prediabetes					156	124	Normal	37	46	Not at risk
14 F	45	Diabetes	Grade-1	Nil	Yes	No	225	179	I Improved (abnormal)	33	40	Improved at risk
15 F	47	Diabetes	Grade-1	Nil	Yes	No	237	188	Improved (abnormal)	31	41	Improved at risk
16 M	45	Diabetes					112	105	Normal	41	45	Not at risk
17 M	82	Diabetes					97	94	Normal	26	38	Not at risk
18 M	15	Prediabetes	Grade-1	Nil			187	132	Normal	36	42	Not at risk
19 M	58	Prediabetes					141	136	Normal	43.1	46.8	Not at risk
20 M	46	Prediabetes					262	158	BN	52.3	56	Not at risk

Muscle
Stimulators
Lasers & RF
Do not
Increase
Hormones

Low
Metabolism

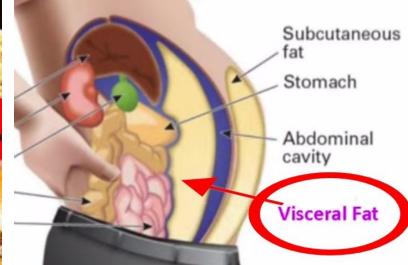
Heart Disease
Diabetes
Obesity

Low Free T3 Peak Free T3

METABOLISM (FREE T3) INCREASE WITH THE VIRTUAL GYM:

DATA FROM PUBLISHED STUDIES

Mean Average Free T3 % increase within the Normal Range 30% FREE T3 FREE T3 Normal **GENDER METABOLOSM** PRE **POST** Range FREE T3 (nmol/L) % **Increase MALE** 4.22 41% 2.98 2.63-5.7 MALE 3.69 4.98 34.95% 2.63-5.7 **FEMALE** 2.63-5.7 4.77 5.37 12.5% **FEMALE** 4.56 5.31 2.63-5.7 16.44% **MALE** 4.15 5.47 2.63-5.7 31.80% MALE 3.29 4.86 2.63-5.7 47.7% 4.36 5.64 **FEMALE** 2.63-5.7 29.35% 3.66 4.79 2.63-5.7 **FEMALE** 30.87% 3.19 MALE 4.12 2.63-5.7 29.15% **FEMALE** 4.09 5.12 2.63-5.7 25.18%



DETOX & INFLAMMATION DECREASE

CLINICAL STUDY

HORMONAL IMBALANCE

The More Toxic you are The More Hunrgry you are

TOXICITY

HUNGER

WEIGHT GAIN

EAT MORE

PROVEN THAT THE VIRTUAL GYM DECREASES HUNGER BECAUSE IT INCREASES THE ANOREXIC HORMONE LEPTIN AND DECREASES THE APPETITE HORMONE GHRELIN

Table 6. Blood Plasma Results on Leptin and Ghrelin for each subject.

Gender	Age	Ethnicity	Leptin pre ng/mL	Leptin post ng/mL	Normal range ng/mL	% increase ng/mL	Ghrelin pre pg/mL	Ghrelin post pg/mL	Normal range pg/mL	% decrease pg/mL
Male	36	Asian	3.69	3.98	1.2 - 9.5	7.86%	687	602	520 - 700	12.37%
Male	39	Caucasian	4.43	4.98	1.2 - 9.5	9.78%	695	634	520 - 700	8.77%
Male	43	Caucasian	5.62	6.22	1.2 - 9.5	10.68%	598	552	520 - 700	7.69%
Male	35	Asian	6.15	6.83	1.2 - 9.5	11.05%	629	587	520 - 700	6.68%
Female	42	Asian	9.16	9.74	4.1 - 25.0	6.33%	577	542	520 - 700	6.06%
Female	45	Indian	5.23	6.09	4.1 - 25.0	16.44%	659	613	520 - 700	6.99%
Female	49	Caucasian	7.22	8.17	4.1 - 25.0	13.15%	644	617	520 - 700	4.19%
Female	38	Caucasian	12.34	13.22	4.1 - 25.0	7.13%	569	536	520 - 700	5.79%
Female	37	Asian	11.38	13.08	4.1 - 25.0	14.93%	499	461	520 - 700	7.62%
		Mean Aver	age Leptin Ir	ncrease		+10.82%	Mean A	verage Ghreli	n Decrease	-7.35%

There was an inverse relationship between leptin and ghrelin where leptin significantly increased and ghrelin significantly decreased within the normal range. Mean average percentage leptin increase was +10.82% and ghrelin decrease was -7.35%.

PROVEN THAT THE VIRTUAL GYM DECREASES INFLAMMATION AND STRESS

CRP: <1.0 mg/dL. Low cardiovascular risk according to AHA/CDC CRP: 1.0-3.0 mg/dL Average cardiovascular risk according to AHA/CDC CRP: >3.0-10.0 mg/dL High cardiovascular risk according to AHA/CDC

GENDER	AGE	MEDICAL HISTORY	ВМІ	CRP PRE	CRP	NORMAL	CORTISOL TOTAL,	CORTISOL	NORMAL
			PRE	MG/DL	POST	RANGE	SERUM	TOTAL, SERUM UG/DL,	RANGE
					MG/DL	MG/DL	ug/dL, PRE	POST	ug/bL
F	56	DIABETES FATTY LIVER	32.6	1.56	1.02	<1.00	18.44	15.66	3.09-25.0
F	52	PREDIABETES FATTY LIVER	36.5	1.09	1.06	<1.00	21.89	20.12	3.09-25.0
F	49	HYPERTENSION HYPOTHYROIDISM	28.6	2.31	1.15	<1.00	24.98	18.47	3.09-25.0
F	63	HYPERTENSION FATTY LIVER	34.9	1.93	1.06	<1.00	23.43	21.98	3.09-25.0
F	51	PREDIABETES HYPERTENSION	34.2	1.43	1.22	<1.00	18.46	15.34	3.09-25.0
		HYPOTHYROIDISM	54.2						
F	55	PREDIABETES		1.64	1.01	<1.00	19.33	14.75	3.09-25.0
		FATTY LIVER	35.4						
F	48	HYPOTHYROIDISM PREDIABETES		1.04	0.86	<1.00	9.67	8.23	3.09-25.0
	40	FATTY LIVER	30.9	1.04	0.80	<1.00	9.07	6.23	3.09-23.0
		HYPOTHYROIDISM							
F	61	HYPERTENSION FATTY LIVER	32.7	1.08	0.74	<1.00	14.76	10.65	3.09-25.0
F	46	HEART DISEASE	29.5	1.84	0.98	<1.00	17.22	13.95	3.09-25.0
F	58	PREDIABETES		2.11	1.03	<1.00	21.28	17.24	3.09-25.0
		FATTY LIVER	33.8						
		HYPOTHYROIDISM	MEAN TOTAL	1.00.00	1.01.110/=1		10.05	15.04	
			MEAN TOTAL	1.6UMG/DL	1.01 MG/DL		18.95 ug/pL	15.64 ug/pL	
MEAN AVERAGE CRP % DECREASE			-36.87 MG/DI		MEAN AVERA	GE CORTISOL %	DECREASE	-17.47% MG/DL	

PROVEN THAT THE VIRTUAL GYM DECREASES CHOLESTEROL

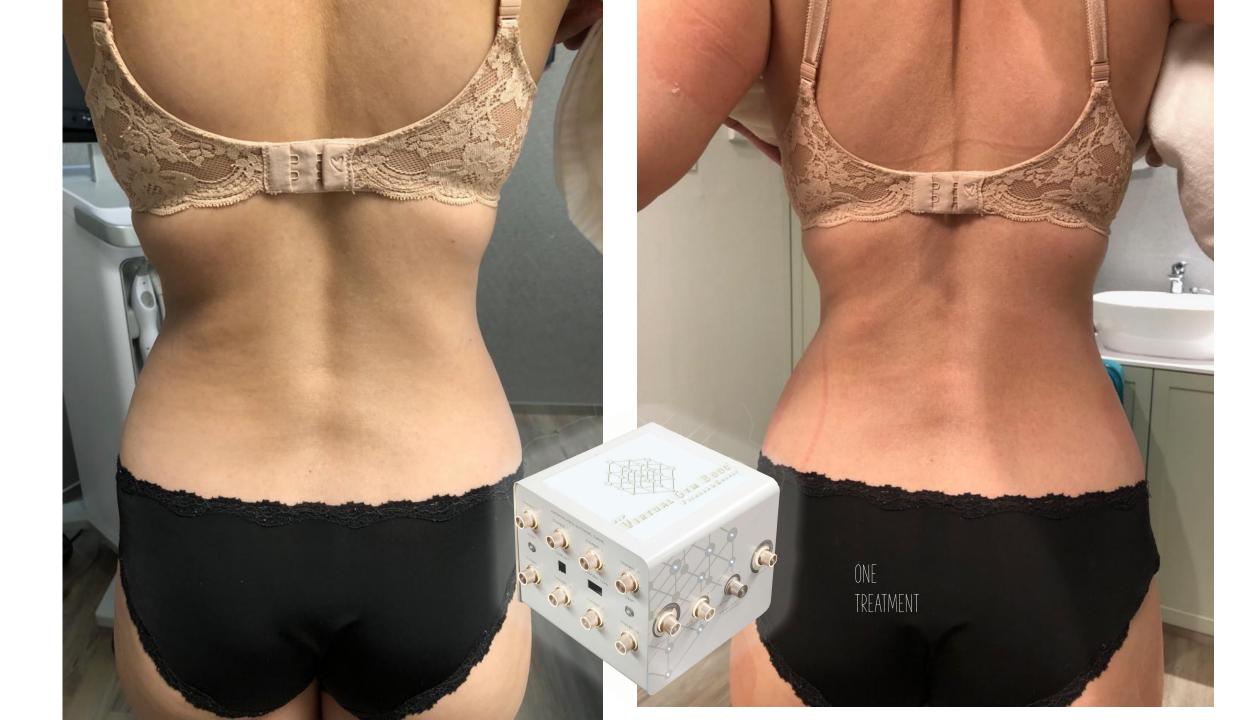
	Triglycerides Normal Range: <150 mg/dL. Boderline high: 150 to 199 mg/dL Hypertriglyceridemia: 200 to 499 mg/dL High risk for pancreatitis : > or = 500 mg/dL							
Gende r/ Age	BMI	Medical History	VLDL PRE mg/dL	VLDL POST mg/dL	VLDL Normal	Trigly cerides PRE mg/dL	Trigly cerides POST mg/dL	Trigly cerides Normal Range mg/dL
F/56	32.6	Diabetes Fatty Liver	39.64	27.33	5.0-40.0	144	137	<150
F/52	36.5	Prediabetes Fatty Liver	43.49	35.77	5.0-40.0	169	146	<150
F/49	28.6	Hypertension Hypothyroidism	27.44	18.28	5.0-40.0	129	114	<150
F/63	34.9	Hypertension Fatty Liver	45.22	32.86	5.0-40.0	163	152	<150
F/51	34.2	Prediabetes Hypertension Hypothyroidism	39.42	31.67	5.0-40.0	159	150	<150
F/55	35.4	Prediabetes Fatty Liver Hypothyroidism	42.55	36.20	5.0-40.0	173	159	<150
F/48	30.9	Prediabetes Fatty Liver Hypothyroidism	37.52	29.38	5.0-40.0	153	139	<150
F/61	32.7	Hypertension Fatty Liver	41.87	36.24	5.0-40.0	175	148	<150
F/46	29.5	Heart Disease	14.76	9.23	5.0-40.0	136	129	<150
F/58	33.8	Prediabetes Fatty Liver Hypothyroidism	43.92	37.56	5.0-40.0	182	157	<150
		MEAN TOTAL	37.58	29.45		158	143.1	
Mean % Decre	ease	Average	-8.13% mg/dL		Mean % Decrease		Average	-14.9% mg/dL

SLIMMING VS

Lasers / RF DO NOT
Change The Metabolism
Results Rebound

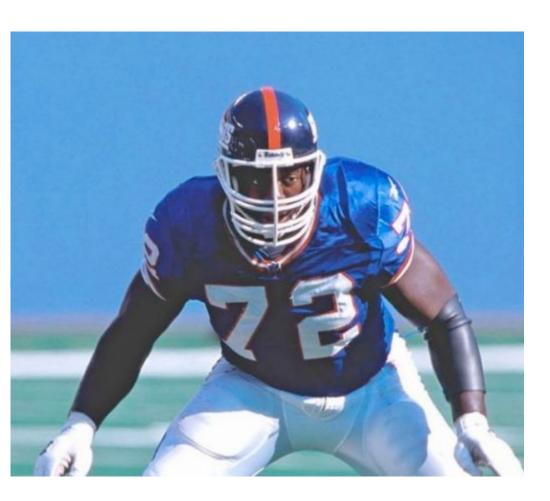
FITNESS

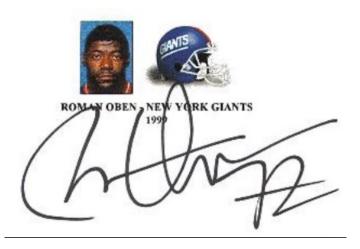
Increased Metabolism/ Reduced Hunger


NO REBOUND

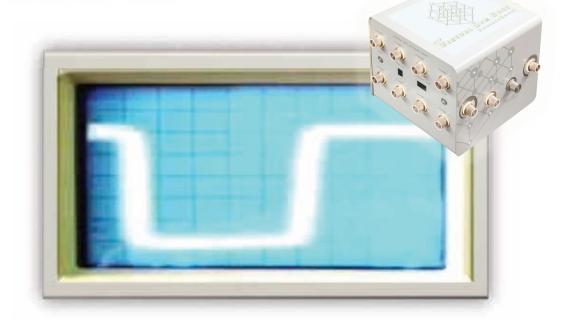
SKELETAL MUSCLE MASS (SMM) INCREASE

Mean Avera	age % Increase for Skeletal	36.45%	
GENDER	SKELETAL MUSCLE MASS PRE	SKELETAL MUSCLE MASS POST	SKELETAL MUSCLE MASS (SMM) % Increase
MALE	36.40	43.80	20.3%
MALE	30.30	38.60	27.39%
FEMALE	18.40	27.00	46.79%
FEMALE	17.00	26.80	57.64%
MALE	37.80	44.80	18.5%
MALE	29.40	38.30	30.27%
FEMALE	17.20	26.80	55.81%
FEMALE	19.80	28.80	45.45%
MALE	29.80	37.22	25.89%
FEMALE	17.95	26.63	48.35%



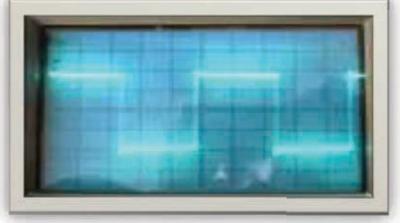


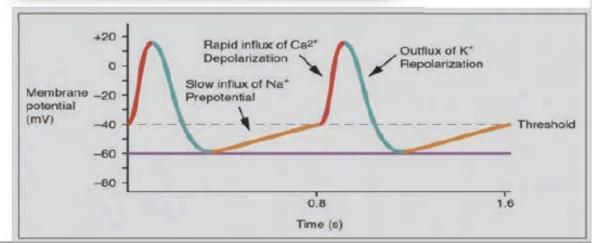
VIRTUAL GYM IS ENDORSED BY FAMOUS ATHLETES


HORMONES ARE INTERCONNECTED WITH EXERCISE
HORMONES TRIGGER THE FAT BURNING PROCESSES TO
FORM THE ENERGY THAT SUSTAINS EXERCISE AND BUILD
MUSCLE

THE VIRTUAL GYM INVOLVES THE BRAIN WHICH IS RESPONSIBLE FOR ALL MOVEMENT INCLUDING THE FULL MUSCLE CONTRACTIONS YOU OBSERVE DURING A VIRTUAL GYM TREATMENT

SIGNALING EFFORTLESS EXERCISE:


transmits an unlimited resolution complex signal (composed out of 4,000 waveforms) induces constant 8 secs contractions of a large group of coordinated muscles simulating very strenuous exercise that even professional athletes who have invested a life in the gym have difficulty performing.



MUSCLE STIMULATORS

send electrical pulses delivered by multiple digital limited resolution waveform pulses to depolarize individual muscles.

Repeated use leads to muscle cells apoptosis as a result of trapped calcium pausing ATP production. (Pinton et al 2008 and others)

MEDICAL BOARD: PROFESSORS

Gerald Pollock, Ph.D
Technology Inventor
London University
Co-inventor of the
First Pacemaker in the
UK. Pioneer in Ultra
Violet Light. EU
Funded Centre BIC

XANYA SOFRA, PhD Specific Waveform Composition Research and Development, Ph.D in Neurophysiology Ph.D in Clinical Psy Faculty Member & International Speaker.

FROM AROUND THE WORLD

NURIS LAMPE, MD Dermatologist Anti-aging Physician Senior Consultant EUROPE

THOMAS BARNARD.

Anti-aging Physician

BOB MARSHALL, PhD

Biochemical Research

Energy Specialist, USA

CANADA

DR. SHEETAL BADAM M.B.B.S., D.A. Certified Bariatric Physician , INDIA

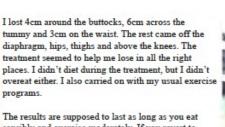
Dr. Lok Ngai Sang Anti–aging Physician Senior Consultant Hong Kong

HIROYUKI OTOMO MD, JAPAN Anti-Aging Doctor Pain Management


VERONICA YAP Lymphatic Disorders SINGAPORE

FIONA MAK, MBChB (Leid DPD (Wales), Anti-aging Physician

YUKO KAWAMURA, MD, JAPAN Antiaging Physician



how the WAIST

You can lie back and lose centimetres, or pump iron and eat like a horse to lose fat. HEDI LAMPERT KEMPER rates the latest passive and active ways of getting in shape

> Photographs: PETER BAASCH Model: LVNN from The Sports Connection

The results are supposed to last as long as you eat sensibly and exercise moderately. If you revert to your slothful ways, you'll be back where you started. Formightly maintenance sessions will also help to keep you more toned. I recommend the Arasys system.

itself, since it won't make you fitter, just more cosmetically toned, and it doesn't help you to make permanent lifestyle changes which are really the only answer to successful weight control. It is, however, really helpful for spot reduction and should be used in conjunction with regular exercise and controlled eating.

but I would not view it as an end in

Building muscle is vital to the process of fat loss, because it is in the muscle cells that fat is burned for energy

was won

I view the concept of passive exercise with as much faith as Sharon Stone probably has in any director who says, "Lose your panties: they're causing too much glare for the camera." But when a friend, who'd subjected her body and blank balance to every promise of exertion-free inch-reduction raved about a new, electronic muscle-contracting machine. I thought I'd give it a try.

So in the interest of research. I had myself strapped up to the terminals of an Arasys machine... to willingly experience electric shocks, or, rather strong electronic impulses which build from a ticklish tingle to a Herculean contraction that is quite alarming initially, but you soon get used to it.

The pulsating electronic currents cause the muscles to relax and contract, mimicking isometric exercise which is what Callanetics is based on. The Arasys Inch Loss System was developed by doctors with vast experience in biochemistry and electronic fields and systems, including those used in pacemakers.

According to its developers, their machine differes from other electronic-impulse slimming-machines in that it has a different wave form which works the muscles on a deeper level and over a larger muscle area. Apparently one 20minutes session on the buttocks is equal to 400 strenuous bum raises. If you are very inactive, you might feel quite flushed after a session, and might even experience a mild muscle ache the next day.

