Math 2471 Calculus III - Sample Test 2 Solutions

1. Classify the critical points for the following

$$
\begin{aligned}
& \text { (i) } z=x^{3}+y^{3}-3 x-12 y+20 \\
& \text { (ii) } z=3 x y-x^{2} y-x y^{2}
\end{aligned}
$$

Soln
(i) Calculating the partial derivatives gives

$$
z_{x}=3 x^{2}-3=3(x-1)(x+1), \quad z_{y}=3 y^{2}-12=3(y-2)(y+2)
$$

and the critical points are when $z_{x}=0, z_{y}=0$ giving $x= \pm 1$ and $y= \pm 2$ leading to the critical points $(-1,-2),(-1,2),(1,-2)$, and $(1,2)$. To determine the nature of the critical points we use the second derivative test. So

$$
z_{x x}=6 x, \quad z_{x y}=0, \quad z_{y y}=6 y
$$

giving

$$
\Delta=z_{x x} z_{y y}-z_{x y}^{2}=36 x y
$$

Now, we consider each critical point separately.

$$
\begin{array}{rlc}
(-1,-2) & \Delta=72>0, z_{x x}<0 & \max \\
(-1,2) & \Delta=-72<0 & \text { saddle } \\
(1,-2) & \Delta=-72<0 & \text { saddle } \\
(1,2) & \Delta=72>0, \quad z_{x x}>0 & \min
\end{array}
$$

(ii) Calculating the partial derivatives gives

$$
z_{x}=3 y-2 x y-y^{2}=y(3-2 x-y), \quad z_{y}=3 x-x^{2}-2 x y=x(3-x-2 y)
$$

and the critical points are when $z_{x}=0, z_{y}=0$ giving the critical points $(0,0),(0,3),(3,0)$, and $(1,1)$. To determine the nature of the critical points we use the second derivative test. So

$$
z_{x x}=-2 y, \quad z_{x y}=3-2 x-2 y, \quad z_{y y}=-2 x
$$

giving

$$
\Delta=z_{x x} z_{y y}-z_{x y}^{2}=4 x y-(3-2 x-2 y)^{2}
$$

Now, we consider each critical point separately.

$$
\begin{array}{llc}
(0,0) & \Delta=-9<0 & \text { saddle } \\
(0,3) & \Delta=-9<0 & \text { saddle } \\
(3,0) & \Delta=-9>0 & \text { saddle } \\
(1,1) & \Delta=3>0, z_{x x}<0 & \max
\end{array}
$$

2. Reverse the order of integration and integrate showing your steps.

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} \frac{3 d x d y}{1+x^{3}}
$$

Soln. From the region of integration (see figure 1 below) we have

$$
\int_{0}^{1} \int_{0}^{x^{2}} \frac{3 d y d x}{1+x^{3}}=\left.\int_{0}^{1} \frac{3 y}{1+x^{3}}\right|_{0} ^{x^{2}} d x=\int_{0}^{1} \frac{3 x^{2}}{1+x^{3}} d x=\left.\ln \left(1+x^{3}\right)\right|_{0} ^{1}=\ln 2
$$

(a) Figure 1

(b) Figure 2
3. Find the volume bound by the paraboloid $z=2-x^{2}-y^{2}$ and the cone $z=\sqrt{x^{2}+y^{2}}$

Soln. From the two surfaces we see they intersect when $z=2-z^{2}$ or $(z+2)(z-1)=0$ giving $z=1$ as $z=-2$ is inadmissible. The volume is then obtained from the integral

$$
\iint_{R}\left(2-x^{2}-y^{2}-\sqrt{x^{2}+y^{2}}\right) d A
$$

As the region of integration is a circle of radius 1 (see figure 2 above), we switch to polar coordinates giving

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left(2-r^{2}-r\right) r d r d \theta=\frac{5 \pi}{6}
$$

4. Find the limits of integration of the triple integral

$$
\iiint_{V} f(x, y, z) d V
$$

where the volume is bound by
(i) $x=0, x=1, y=0, z=0, z=1$, and $z=2-y$.
(ii) $x=0, z=0, z=1-y^{2}$, and $z=2-x$.

Soln. (i) The integral is best set up with the surface to surface going in the y direction. The outer two integrals is then over the region of the square (see figure 4).

$$
\int_{0}^{1} \int_{0}^{1} \int_{0}^{2-z} f(x, y, z) d y d z d x
$$

(a) figure 3

(a) figure 5

(b) figure 4

(b) figure 6

Soln. (ii) The integral is best set up with the surface to surface going in the x direction. The outer two integrals is then over the region of the parabola (see figure 6).

$$
\int_{-1}^{1} \int_{0}^{1-y^{2}} \int_{0}^{2-z} f(x, y, z) d x d z d y
$$

5. Set of the triple integral $\iiint_{V} z d V$ in both cylindrical and spherical coordinates for the volume inside the hemisphere $x^{2}+y^{2}+z^{2}=8$ and outside the cone $z^{2}=x^{2}+y^{2}, z \geq 0$. Soln-Cylindrical Eliminating z between the equations gives $x^{2}+y^{2}=4$. This is the region of integration (see figure (b)). From figure (a) since the height is vertical we see we have two surfaces we touch depending whether $0 \leq r \leq 2$ or $2 \leq r \leq \sqrt{8}$ and so we'll need two integrals.

$$
\int_{0}^{2 \pi} \int_{0}^{2} \int_{0}^{r} z r d z d r d \theta+\int_{0}^{2 \pi} \int_{2}^{\sqrt{8}} \int_{0}^{\sqrt{8-r^{2}}} z r d z d r d \theta
$$

Soln-Spherical From the picture (figure (a)) we see that $\phi=\pi / 4 \rightarrow \pi / 2$. Further, $\rho=0 \rightarrow 2 \sqrt{2}$ and $\theta=0 \rightarrow 2 \pi$ so

$$
\int_{0}^{2 \pi} \int_{0}^{\pi / 4} \int_{0}^{2 \sqrt{2}} \rho \cos \phi \rho^{2} \sin \phi d \rho d \phi d \theta
$$

(a) side view.

(b) top view.

