Solomon Press Statistics S1 Paper L (Mark Scheme)

All exam papers are issued free to students for education purpose only. Mr.S.V.Swarnaraja (Marking Examiner, Team Leader & Author) www.swanash.com, Mobile: +94777304755, email: swa@swanash.com

GCE Examinations Advanced Subsidiary / Advanced Level

Statistics Module S1

Paper L

MARKING GUIDE

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.

Accuracy marks (A) can only be awarded when a correct method has been used.

(B) marks are independent of method marks.

Written by Shaun Armstrong & Chris Huffer

© Solomon Press

These sheets may be copied for use solely by the purchaser's institute.

S1 Paper L - Marking Guide

1. (a)
$$S_{TT} = 1802 - \frac{124^2}{12} = 520.667$$
 M1

$$S_{nn} = 18518 - \frac{384^2}{12} = 6230$$
 M1

$$S_{Tn} = 2583 - \frac{124 \times 384}{12} = -1385$$
 M1

$$r = \frac{-1385}{\sqrt{520.667 \times 6230}} = 0.7690$$
 M1 A1

2. (a)
$$\frac{3}{4} - \frac{1}{4} = \frac{1}{2}$$
 M1 A1

(b)
$$\frac{3}{4} \times P(B) = \frac{1}{2}$$
 : $P(B) = \frac{2}{3}$ M2 A1

(c)
$$1 - [P(B) + P(A \cap B')] = 1 - (\frac{2}{3} + \frac{1}{4}) = \frac{1}{12}$$
 M2 A1 (8)

3. (a)
$$2E(X) + 3 = 2a + 3$$

(b)
$$2^2 \times Var(X) = 4b$$
 M1 A1

(c)
$$\operatorname{Var}(X) = \operatorname{E}(X^2) - [\operatorname{E}(X)]^2$$
 B1
 $b = \operatorname{E}(X^2) - a^2$ M1
 $\operatorname{E}(X^2) = a^2 + b$ A1

(d)
$$E[(X+1)^2] = E(X^2 + 2X + 1) = E(X^2) + 2E(X) + 1$$
 M1 A1
= $a^2 + b + 2a + 1 = (a+1)^2 + b$ M1 A1 (10)

4. (a)
$$S_{xy} = 11600 - \frac{100 \times 23}{8} = 11312.5$$
 M1

$$S_{xx} = 215000 - \frac{100^2}{8} = 213750$$
 M1

$$b = \frac{11312.5}{213750} = 0.0529240$$
 M1 A1

$$a = \frac{23}{8} - (0.0529240 \times \frac{100}{8}) = 2.21345$$
 M1 A1

$$y = 2.21 + 0.0529x$$
 A1

(b)
$$n-20 = 2.21345 + 0.0529240(v-700)$$
 M1
 $n = {}^{-}14.8 + 0.0529v$ A1

(c)
$$n = 14.83 + 0.05292 \times 900 = 32.8 : 33$$
 M1 A1 (11)

5. (a)
$$y \text{ values} = ^{-3}, ^{-2}, ^{-1}, 0, 1, 4, 9$$
 M1 M1 A1

(b) $\sum f = 52; \quad \overline{y} = \frac{-86}{52} = ^{-1}.6538$ M1 A1

 $\overline{x} = (200 \times ^{-1}.6538) + 699.5 = 368.73 = £369 \text{ (nearest £)}$ M1 A1

 $\text{std. dev. of } y = \sqrt{\frac{424}{52} - (-1.6538)^2} = 2.3278$ M1 A1

(c) e.g. mean is raised by a few very large values, most weeks a lot less is stolen; median is more typical but would suggest that the amount stolen is much less of a problem than it really is B3 (12)

6. (a) $\frac{4}{10} \times \frac{3}{9} = \frac{2}{15}$ M2 A1

(b) P(more F) = P(3F) + P(2F) M1 A1

(c) after M goes, left with 6F and 3M M1 A1

P(next 2 F) = $\frac{6}{9} \times \frac{5}{8} = \frac{5}{12}$ M1 A1

7. (a) cum. freqs: 15, 46, 78, 101, 118, 120

Q1 = $30.25^{th} = 30 + 30(\frac{15.35}{3.25}) = 44.8 (30^{th} \rightarrow 44.5]$
Q2 = $60.5^{th} = 60 + 30(\frac{15.35}{3.25}) = 73.6 (60^{th} \rightarrow 73.1]$
Q3 = $90.75^{th} = 90 + 30(\frac{12.25}{3.25}) = 106.6 (90^{th} \rightarrow 105.7]$

(b) median = mean = 72 minutes

P(Z < $\frac{Q_1 - 72}{48} = 0.67$; Q1 = 39.8 (1dp)

P(Z < $\frac{Q_1 - 72}{48} = 0.67$; Q3 = 104.2 (1dp)

M1 A1

(c) e.g. median and quartiles from model all slightly lower than in new results but reasonably close so fairly suitable model

M1 A1

M1 A1

(c) e.g. median and quartiles from model all slightly lower than in new results but reasonably close so fairly suitable model

Total (75)