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1. Introduction
This paper proposes an alternative approach to the tra-

ditional method of assessing the ‘fitness for use’ of spatial
data. It begins by examining the shortcomings of the tradi-
tional standards-based approach and explains how an alter-
native option that focuses on assessing the impact or
consequences of uncertainty may be more appropriate. The
suggested method not only overcomes several limitations
of the standards-based technique, but also offers mecha-
nisms for managing the impact of uncertainty in data that
is eventually accepted for use. It is argued that this latter
feature is an important characteristic of the proposed ap-
proach because the problem of uncertainty neither ends with
nor is limited to simply assessing fitness for use. Hence it is
desirable that any fitness assessment provides significant
inputs to the subsequent uncertainty management steps.
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Furthermore, in those cases where conditions, tradi-
tions or the circumstances of users and their access to data
preclude assessment of its fitness, a knowledge of how data
uncertainty affects their decisions is essential for managing
the possible consequences of uncertainty. The suggested
method uses risk as a metaphor for quantifying the conse-
quences that uncertainty in data may have upon the deci-
sions for which it is used. The paper discusses limitations
of the standards-based approach, then reviews the concept
of risk, its subjective bias, and the factors that influence its
perception. Finally, the paper outlines the risk management
process for assessing fitness for use, presents an example of
its application, and discusses the limitations of the approach
and future research issues that will need to be resolved.

2. Limitations of The Standards-
based Approach

The primary concern that end-users have about uncer-
tainty in data is its potential impact upon their decisions.
As such, the assessment of fitness for use is intended to avoid
using data whose uncertainty is associated with conse-
quences that are deemed unacceptable. Therefore fitness
for use is essentially about, and should be ultimately deter-
mined by, whether the impact of uncertainty is either ac-
ceptable or unacceptable. The method traditionally
employed to assess fitness for use — the standards-based
method — compares data uncertainty with a set of stan-
dards that reflect acceptable levels of uncertainty in the data
(Frank 1998). With this technique, fitness for use is assessed
by directly comparing the quality elements of information
against a set of standards that represent the corresponding
acceptable quality components. To facilitate direct compari-
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son, the standards are defined using the same elements as
those used for describing data quality. These may include:
scale (of the source document); Root Mean Square Error
(RMSE); resolution; Percentage of Correctly Classified pix-
els (PCC); currency; and percentage completeness.

Its use as the method of choice for assessing fitness can
be traced back to the map production roots of spatial data
handling, where positional and attribute accuracy standards
have long been used for quality control and assurance. Since
uncertainty in the data is considered to be acceptable if its
consequences are acceptable, then the standards approach
inherently reflects a certain threshold of acceptability. How-
ever, the standards-based method does not provide for esti-
mation of the consequences of uncertainty and it is argued
that this is one of its key limitations.

While uncertainty in spatial data is composed of sev-
eral well-known elements (Guptill and Morrison 1995), the
obvious measurable ones are positional and attribute accu-
racy, logical consistency, completeness and currency. Un-
fortunately, measures of these elements cannot as yet be
combined into a single meaningful composite index (Veregin
and Hargitai 1995), which means that assessment of fitness
for use entails inspecting each element separately. In turn,
this requires specification of a separate standard for each
element, and the necessary standards are derived by invert-
ing the acceptable consequences of uncertainty into a set of
the various elements of spatial data uncertainty (Frank 1998).

This inversion is perhaps the most vexed problem of
the standards-based method, since it involves estimating
several unknowns from a single value — a problem without
a unique solution (since the solution is an infinite number
of possible combinations of the unknowns). This makes the
use of simplifying assumptions imperative — for example
the standard may be based on a single uncertainty element
to which all consequences will be attributed. The uncer-
tainty element typically assigned this role is the one to which
the decision is most sensitive, but clearly such assumptions
compromise the validity of the estimated standards and ul-
timately the fitness for use assessment.

Assessment of the various uncertainty elements sepa-
rately, according to a limited combination of standards, fails
to account for possible trade-offs and compensations that
occur when the elements are combined. For example, un-
certainty in slope gradient is primarily influenced by the
positional and attribute accuracy of elevation models. Us-
ing the standards-based method, a dataset is declared to be
unsuitable if either its positional or attribute accuracy does
not meet a specified standard, but this assessment does not
take into account the fact that when considered jointly the
two accuracies may well produce a result that is acceptable.
In another example, it was rumored in the mid-1990s that
an Australian emergency service agency was to take out a
$20 million insurance policy to protect itself against liabil-
ity claims arising from its use of a GIS-based dispatch sys-

tem. While the street centerline and address databases were
produced according to contract specifications (standards),
the authors suggest there was no means of separating out
the individual error effects of poor positional accuracy (of
the street segments), attribute accuracy (street numbers and
names), logical consistency (street network topology), com-
pleteness (missing street segments and addresses) or cur-
rency (out-of-date information), and as such the $20 million
figure may well have been simply a calculated guess. In-
stead, with a risk-based approach it would have been pos-
sible to determine which of these factors contributed most
to the potential liability associated with the system and to
formulate a strategy for reducing this liability in the most
cost-effective manner.

Furthermore, the reluctance by many users to formally
assess the fitness of their data can be traced back to the
difficulty of the task (Beard 1997), and the failure of the
method of assessment to rationally justify the undertaking
primarily because it does not warn users of the consequences
of uncertainty. As Goodchild (1998) observes, politicians
and decision makers often ignore uncertainty issues because
uncertainty is not portrayed as a number to which they can
easily relate. The authors agree with this contention and
suggest that a more appropriate form which users would
relate to more easily and effectively, is one that they associ-
ate with the consequences of uncertainty such as liability,
pecuniary losses and mortality.

At the same time, there are instances when users are
constrained to use particular datasets regardless of the un-
certainty they contain because alternative datasets either
do not exist, are not accessible or not feasible to use. For
example, it is simply not feasible for a person or organiza-
tion other than a national statistical agency to undertake a
national census, and so users are constrained to use the data
that is officially available. For users faced with these condi-
tions the main concern regarding data uncertainty should
be managing its impact on their decisions. This is also a
concern shared by those who already assess fitness, because
they too must eventually absorb any residual uncertainty
and therefore need suitable mechanisms for managing its
impact. Because the standards-based approach does not in-
volve estimating the size of the impact of uncertainty, it
offers limited value for managing uncertainty. In addition,
the inability of the method to enable comparison between
competing datasets that are all judged suitable, diminishes
its usefulness when the problem extends to choosing the
best among several suitable datasets.

From Figure 1, when a fitness assessment establishes
that a dataset is unsuitable the initial reaction is to reduce
uncertainty in the data. However other options exist such
as accepting higher consequences of uncertainty and thus
tolerating greater uncertainty, or reducing the vulnerabil-
ity of the decision to uncertainty in the data by diminishing
the influence that it exerts upon the decision. If acceptance
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of higher consequences is chosen, then again the key issue
is quantifying the extra burden of the consequences. The
third option of reducing the vulnerability of the decision
involves establishing an association between reduction of
the influence of data on a decision and the resultant reduc-
tion in the consequences of its uncertainty. Again, the stan-
dards-based approach is not well suited to supporting this
method. Quantifying the consequences of uncertainty is also
necessary for stimulating interest amongst those that ig-
nore the issue because they remain doubtful as to its impact
upon their decisions. Furthermore, quantification can pro-
vide a compelling rationale to system managers for sup-
porting further system development and implementation,
by helping to determine the ratio between the cost of
avoided misuse achieved by using suitable data, and the re-
quired funding.

Thus, the fundamental shortcomings of the standards-
based method revolve around the fact that it does not in-
volve quantitative estimation of the consequences of
uncertainty. Knowledge of these consequences is essential
for improving the utility of spatial data and motivating re-
luctant users who may be exposed to potential losses to
undertake fitness assessments. Such knowledge is also nec-
essary for managing the consequences, and accordingly the
authors believe an alternative approach to the current stan-
dards-based method is required.

3. An Overview of The Risk-based
Approach

Risk analysis has already been suggested as a plausible
basis for characterizing and estimating consequences of
uncertainty in spatial data (Goodchild 1992). Using risk to

represent the consequences of uncertainty has the added
benefit of being amenable to an established framework (risk
management) for estimating and managing the conse-
quences of uncertainty. In recognition of the limitations of
relying on standards and of the potential benefits of a risk-
based approach, the transition from standards has already
been proposed by organizations such as the water resources
planning and management division of the American Soci-
ety of Civil Engineers (Haimes and Stakhiv 1986), the Aus-
tralian National Commission On Large Dams (ANCOLD)
(McDonald 1995), and the US Environmental Protection
Agency (The Conservation Foundation 1985). According
to the risk-based approach (Figure 2), assessment of fitness
for use essentially involves establishing whether the adverse
consequences of uncertainty in the data, expressed in terms
of risk, are acceptable or not. The assessment process there-
fore elicits answers to two fundamental questions, viz.:

• What are the adverse consequences associated with the
decision, in terms of risk, attributable to uncertainty in
the data? and

• What are the acceptable consequences of uncertainty
in terms of risk?

Answering the first question entails propagating data
uncertainty, in its various elements, into risk. The propa-
gation demands an understanding of how uncertainty in
data interacts with the decision environment to adversely
affect decisions, and the extent to which a particular dataset
influences decisions — that is, the degree of utilization of
the data (Zwart, 1991). If the utilization of data in a deci-
sion is minimal, such as when it is only referred to, then it

Figure 1: The standards-based approach to assessing fitness for use.
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is reasonable to expect uncertainty in that data to have a
lesser impact in terms of risk than if the utilization was more
significant, such as when the data has the power to change
decisions. Indeed, when uncertainty in data is very high it
is common for users to minimize their exposure to its im-
pact by limiting the utilization of the data (Laws et al. 1989)

The second question entails establishing a threshold
for the risk that is considered acceptable. Here, the word
‘acceptable’ prompts the crucial questions: ‘acceptable to
who, in whose view and in what terms?’ (Lowrance 1976).
These questions point to important characteristics of the
risk threshold, and consequently of fitness for use, namely
that the threshold is subjective and influenced by continu-
ally changing values (economic or other means), the con-
straints of parties to the risk, and the circumstances under
which the risk is determined (Fischhoff et al. 1981). Each of
these factors depends on the context of the decision and are
subject to change over time. In turn, users may be catego-
rized into two groups according to how they respond to
uncertainty in data, viz.:

• those who establish the fitness of data before using it;
and

• those who use data regardless of its fitness, either be-
cause they are compelled to use it or else they choose
to ignore its uncertainty.

Because the risk-based approach provides for estimat-
ing consequences of uncertainty, its relevance extends even
to those users who choose not to test data for fitness. For

data that are judged to be unsuitable, the risk-based ap-
proach offers several possible actions (as in Figure 2) all of
which are quite practicable. They include reducing the un-
certainty, accepting more risk, making the decision envi-
ronment less vulnerable to uncertainty in data, or any
combination of the above. This range of options is a fea-
ture of the risk-based method that makes it more favorable
than its standards-based counterpart.

Smith et al. (1991) and Burrough et al. (1996) show that
the quality of information is a function of both the quality
of the models (or algorithms) and the data used to derive
the information. For unstructured decision problems the
models are less well known, rendering the propagation of
data uncertainty into risk more difficult. Furthermore, in
such decisions the contribution of data uncertainty to the
overall decision risk is likely to be less significant compared
to the risk attributable to uncertainty in the models, which
is largely unknown. Finally, the lack of decision structure
implies that a single dataset is not likely to determine the
decision, so in general the degree of utilization for indi-
vidual datasets is low. For these reasons, the risk-based ap-
proach is not well-suited to unstructured problems.

4. The Concept of Risk
Risk is an abstract parameter for representing the im-

pact of adverse events or actions about which there is no
certainty (Thomson 1987). It is an important factor in de-
cision making since it is one of the few quantitative vari-
ables that can determine the utility of decision alternatives.
It consequently aids in providing a rational basis for com-
paring not only those alternatives, but also for allocating

Figure 2: The risk-based approach to assessing fitness for use of spatial data.
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resources towards risk reduction and improving safety and
public health (Starr 1987). Analysis or estimation of risk
entails identifying the potential damage, injury or loss as-
sociated with events or undertakings, and estimating its like-
lihood.  This knowledge is then used to determine the level
of exposure and to judge whether the risk is tolerable or
unacceptable (Fischhoff et al. 1981, Bohnenblust and
Schneider 1987). Understanding the process and degree of
exposure is essential for developing mechanisms, safeguards
and responses for limiting the likelihood and/or magnitude
of damage as well as the cost of the damage (Rasmussen
1981, Starr 1987). Indeed, as Reid (1992) points out, quite
often simply understanding the process of exposure can be
more useful and informative than deriving the ultimate
quantitative values of risk.

4.1 Definition of Risk
‘Risk’ is a very overloaded term. It cuts across many

disciplines and although it has been extensively discussed,
it still lacks a standard definition. Fischhoff et al. (1984)
suggest that the definition of risk is inherently controver-
sial because of the important role that risk plays in policy
issues. They point out that the choice of definition can de-
pend on how well it suits particular policy positions and as
such is an inherently political issue. However, there is gen-
eral agreement that the notion of risk involves uncertainty
about occurrences or outcomes of events, which are associ-
ated with some kind of loss or damage (Kaplan and Garrick
1981, Gratt 1987 and Williams 1995). Sage (1995) on the
other hand, argues that risk is not limited just to adverse
events but includes positive outcomes as long as their oc-
currence is uncertain. This interpretation is common in
insurance and economics applications and is referred to as
‘speculative risk’. Nevertheless, the sense in which the term
risk is traditionally used is the one that connotes the possi-
bility of loss or damage rather than gain. This does not
necessarily mean that any undesirable event or outcome of
a decision constitutes a risk, but rather that it only becomes
a risk when there is uncertainty about its occurrence. In
addition, there are some terms that are often erroneously
used as synonyms for risk, the commonest examples being
uncertainty and hazard.

4.2 Risk Versus Uncertainty
‘Risk’ and ‘uncertainty’ are so inextricably related that

they are often used interchangeably especially in the disci-
plines of economics, insurance and heath science. For ex-
ample, Knight (1921) defines risk as ‘measurable
uncertainty’ while others variously describe it as ‘the un-
certainty of loss’ or ‘the objectified uncertainty regarding
the occurrence of an undesirable event’. Nevertheless, de-
cisions are said to be made under conditions of risk when
the likelihood of their outcomes is known, whereas they
are made under conditions of uncertainty when the likeli-

hood of their outcomes is not known (Davis and Olson
1985). The predominantly held view, sometimes referred
to as the engineering view, defines risk as a function of un-
certainty or likelihood about the occurrence of an event
that occasions loss, and the loss suffered if the event occurs.
Some authors decline to specify the structure of the rela-
tionship between the two parameters (likelihood and loss),
however many such as Gratt (1987), Raftery (1994) and
Williams (1995) characterize risk as likelihood multiplied
by loss. The ‘likelihood times loss’ characterization of risk
depicts it as a single valued measure, and while this is desir-
able for comparing risks it can mask valuable information
about the joint variability of likelihood and loss. Knowl-
edge of this variability is important for understanding how
the contribution to risk is distributed, which in turn aids in
establishing where to best target risk reduction and other
risk response efforts.

4.3 Risk versus Hazard
Another term that is closely associated with and some-

times confused with risk is ‘hazard’. Kaplan and Garrick
(1981) define a hazard as the source of adverse consequences,
while from a social science viewpoint Pidgeon et al. (1992:89)
define it as ‘… threats to people and the things they value’.
From these perspectives, it can be argued that exposure to
risk results from the presence of a hazard. It can hence be
asserted that uncertainty in spatial information may consti-
tute a hazard, especially if it is ignored. In seismology a
hazard is the likelihood of an area being affected by poten-
tially destructive seismic activity within a given period of
time. Seismic risk is a function of (seismic) hazard, value
and vulnerability, where value includes the number of people
or amount of property exposed to the activity, while vul-
nerability is a measure of the proportion of value likely to
be lost or damaged by the activity (Dobran 1995). In this
paper the word ‘hazard’ will be used in an engineering sense,
that is, it will refer to causes of adverse consequences.

4.4 Real versus Perceived Risk
The notion of real risk is controversial. Elms (1992)

describes it as the risk that would be calculated if all the
relevant information about the likelihood and consequences
of an adverse event were known. This suggests that the dif-
ference between perceived and real risk lies in the com-
pleteness and certainty of knowledge about the likelihood
and consequences. Kaplan and Garrick (1981) assert that
the notion of real risk or absolute risk always ends up being
somebody else’s perceived risk. Hence the conflict between
real and perceived risk can be thought of as conflict be-
tween risk perceptions of experts and those of the public.
The expert’s concept of risk is based on a narrow definition
of risk which is limited to the likelihood and undesirable
consequences of an event, whereas the public’s conception
of risk is much broader and includes a host of attitudes to-
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wards the event (Kasperson et al. 1988). The perception of
risk involves the beliefs, judgements, feelings and values that
people adopt towards adverse events (Pidgeon et al. 1992).
These psychological, social and cultural preferences influ-
ence attitude to risk as well as acceptance and the accept-
able level of risk. Hence they should be considered when
making decisions that affect the public. The various char-
acteristics upon which risk perception depends have been
widely discussed, (Lowrance 1976, Rowe 1977 and Elms
1992), and include:

• Voluntariness of the risk: people are more averse to
adverse events that they have no control over. In most
cases, this is the characteristic that has greatest influ-
ence on perception of risk.

• Familiarity with the event or its consequences: famil-
iarity tends to reduce the perceived risk.

• Extent of damage or loss: reaction to a single disaster
that leads to monumental loss tends to be much stron-
ger than that of a similar loss, which is scattered over
several events. Hence risk due to the former is perceived
to be greater.

• Cultural context: culture which shapes people’s values,
beliefs and their attitudes to loss in turn biases their per-
ception of risk due to particular events;

• Personal context: the relative vulnerability of the pub-
lic to consequences of an event amplifies its perceived
risk, while its importance and anticipated benefits di-
minish its perceived risk.

• Nature of communication: when descriptive commu-
nication of adverse events emphasizes consequences at
the expense of benefits, it increases their perceived risk
and vice versa.

• Long-term versus short-term exposure: long term ex-
posure is considered to be more serious than short-term
exposure because the risk has to be lived with all the
time. Hence risks associated with the former are per-
ceived to be greater.

• Immediacy of consequences: there is greater aversion
to events with consequences that are immediate than
to those that manifest themselves at a later time.

• Availability of alternatives: risk associated with situations
for which there are no practical alternatives is perceived
more favorably than where alternatives exist.

• Reversibility of consequences: irreversibility of conse-
quences tends to amplify the perceived risk and vice-
versa.

• Whether exposure is essential: when exposure is nec-
essary, such as in medical treatment, the risk is per-
ceived more favorably than when the exposure is a
luxury.

• Certainty with which risk is known: the natural aver-
sion towards events with risks that are not well under-
stood amplifies their perceived risk.

It is evident from the foregoing discussion that the ques-
tions: “Who is perceiving the risk?” and “Why they are
perceiving it?” are very important. Therefore, analyses of
risk due to uncertainty in spatial data should consider and
specify the parties affected by the consequences of the un-
certainty and accordingly account for their perception of
risk. Such specification will determine the scope for use of
the risk information, that is, whether it is relevant only to
the user or to the broader community as well.

5. Quantitative Evaluation of Risk
Typically, an adverse event has multiple scenarios each

with a corresponding likelihood and loss. Therefore a risk
analysis entails asking the following three questions:

• What can happen or what can go wrong? (defining the
scenario)

• How likely is it to happen? (estimating the likelihood)
• If it does happen, what are the consequences or losses?

(estimating the impact)

Unfortunately, there are no neat mathematical relation-
ships to assist risk analysis that can satisfactorily define the
relationships between all possible scenarios, their likelihoods
and their consequences. Instead, the typical approach is to
arrange the different scenarios in order of increasing sever-
ity and then plotting the consequences against their cumu-
lative likelihood. Smoothing the resulting staircase function
produces a risk curve (Figure 3), which is the preferred por-
trayal for many types of risk such as those due to natural
hazards, pollution and engineering structure failures (Starr
1965, McDonald 1995).

As noted earlier, the definition of risk as likelihood
times consequences enables its quantification, which in
turn aids comparison. However, the aggregation of likeli-
hood and consequences into a single metric leads to loss
of information and has been described by Rasmussen
(1981) and Schneider (1987) as simplistic. The main com-
plaint with this characterization of risk is that it equates
low-likelihood and high-consequence scenarios with high-
probability and low-consequence ones. To overcome this
issue, alternative methods may be used which involve plac-
ing different weights on the consequences according to
their unacceptability in the context of the decision to be
made. Nonetheless, the simple multiplication of likelihood
by consequences is effective in many cases, and this value
in turn is multiplied by the degree of utility of the data
used in the decision (with the utility value varying between
zero and one).

Of course, the estimation of risk itself is subject to un-
certainty for the following reasons:

• simplicity in the definition of risk;
• inevitability of subjective judgements in the analysis of risk;
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• uncertainty in estimates of likelihood, consequences and
any other variables (such as value of life) that may be
used in estimating risk;

• poor identification of scenarios and their ranges; and
• the inability to exhaust all possible scenarios, including

the inclination to focus on scenarios that are amenable
to quantification at the expense of those that are not,
which leads to underestimation of risk.

The main problem with uncertainty in risk estimates is
not that it exists, but rather whether its magnitude is known
and reported. Okrent (1982) warns that it is essential for risk
analyses to provide statements of assumptions made in arriv-
ing at values used in the analysis and to point out any known
uncertainties in the risk estimates. Evidently the same rea-
sons used to argue for reporting uncertainty in spatial data
under the concept of “truth in labeling”, also apply to re-
porting uncertainty associated with risk estimates. It is clear
that satisfactorily accounting for all sources and quantifying
the uncertainty in risk is an elusive goal. In order to estimate
the uncertainty associated with risk due to uncertainty in
spatial data, meta-uncertainty of the data as well as the un-
certainty associated with estimates of consequence scenarios
are necessary. Unfortunately, this data is often not available.

Having identified the different adverse event scenarios,
a risk analysis proceeds to estimate their likelihoods and
consequences. Analysis of risk due to uncertainty in spatial
data requires two sets of information:

• a report on uncertainty in the spatial data (data quality
report); and

• the relationship between the magnitude of uncertainty
and consequences, which is used to estimate the conse-
quences of each scenario.

This shows that likelihood is the risk parameter directly
associated with uncertainty in data, and that a typical data
quality report provides only part of the information neces-
sary for risk analysis. Probability, in the widest sense of the
term, is invariably used as the measure of likelihood when
estimating risk. Accordingly, the preferred representation
of uncertainty is in probabilistic terms. However, not all
types of spatial data uncertainty are modeled on probabil-
ity theory. (Shi 1995) and Stoms (1987) categorize uncer-
tainty in spatial data into three classes according to the
theories suitable for modeling them. They include:

• uncertainties due to randomness or variability of error;
• incompleteness of evidence, such as when sampling has

been applied or surrogate variables employed; and
• vagueness, which may result due to imprecision in taxo-

nomic definitions.

Theories appropriate for modeling these uncertainties
include: probability theory, Dempster-Shafer’s theory of
evidence and fuzzy set theory. Probability theory, which has
a rigorous foundation, enjoys a long tradition dating as far
back as the 17th century whereas Dempster-Shafer’s theory
and fuzzy set theory are relatively recent (introduced in 1967
and 1965 respectively). The Dempster-Shafer theory, or the
mathematical theory of evidence, recognizes the existence
of ambiguity or ignorance due to incomplete information.
The absence of evidence to support a hypothesis is not as-
sumed to constitute evidence against it. This means that
what is known and what is not known are explicitly evalu-
ated. The theory is based on complementary measures,
namely belief and plausibility, and the interval between
them¾belief interval. The scarcity of reports documenting
application of the theory in GIS suggests that it has not yet
attracted widespread use. However, some of the reported
applications show that it has been applied in the classifica-
tion of multi-spectral scanner data (Lee et al. 1987) and in a
GIS application for finding optimal routes for military he-
licopters (Garvey 1987). In recognition of the importance
of this theory in modeling uncertainty due to incomplete
evidence (information), appropriate classifiers are now sup-
ported in recent versions of some software products such as
IDRISI.

Fuzzy set theory was introduced by Zadeh (1965) to
handle vague or imprecise concepts in a precise fashion that
a computer can handle. It allows partial membership in a
set and its basis lies in the assignment of a membership func-
tion which indicates the degree to which an observation, X,
belongs to a set, A. The membership function may also be
viewed as the measure of belief that X is an element of A, or
as an index of the relative accuracy associated with assign-
ing observation X to class A. Membership function values
(membership grades) are real numbers ranging from zero
to one, where values closer to one indicate full membership
and those close to zero indicate non-membership. The
vagueness modeled by fuzzy set theory pertains to defini-
tions of classes (or sets) into which objects or phenomena
are to be assigned. The boundaries of these classes are
gradual such that membership grades of objects gradually
transition from non-membership to full membership. On
the other hand probability theory is based on classes that
are crisp such that objects either wholly belong a class or
they do not. Fuzzy sets are increasingly being used in re-
mote sensing for image interpretation and classification, and
the results have been shown to be useful in extracting more
information than with conventional approaches based on
crisp sets (Gopal and Woodcock 1994). They have also been
applied in GIS to represent uncertainty and propagate it as
data are transformed by various GIS functions (Veregin
1989).
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6. The Risk Management Process
The overall risk management process involves a series

of tasks (Figure 4), viz.: risk identification; risk analysis; risk
appraisal; risk exposure; risk assessment and risk response.
Risk identification is considered to be the most important
step in the process on the grounds that “a risk identified is
a risk controlled”. It essentially involves determining what
may go wrong and how it may happen. Risk analysis re-
quires estimating the probabilities and expected conse-
quences for the identified risks. The consequences of an
adverse event will vary depending on the magnitude of the
event and the vulnerability of the elements affected by the
event. The outcome of risk analysis is risk exposure. Risk
exposure is the total amount of risk exposed by the adverse
event, and can be considered to be the summation of all the
individual risks identified. Risk appraisal involves determin-
ing the magnitude of risk which is considered acceptable. It
can be determined by analyzing and choosing the risk asso-
ciated with the most favorable among the possible combi-
nations of decision quality indicators, namely cost-benefits
and risks. A complication of this step is the difficulty in
quantifying the intangible benefits of a decision. Risk as-
sessment requires comparing risk exposure with the results
of risk appraisal. Depending on whether the risk exposure
is acceptable or not, the decision maker must then consider
taking an appropriate risk response. Risk response is the
final stage in the process and also the ultimate objective of
risk management—to help the decision maker make a pru-
dent response in advance of a problem. The possible re-
sponses to risk exposure include: avoidance, retention,
transfer, control, and insurance.

By way of example, we can illustrate how the risk man-
agement process might be used to assess the fitness for use

of a particular geographic data set. Consider a manager re-
sponsible for emergency response in a region who needs to
know what land parcels and residents would be threatened
by a particular magnitude flood event. In order to prepare
the emergency response plan, a DEM of the region is con-
sidered to be a key data set in the manager’s decision-mak-
ing processes, and may be assumed to have the highest
utilization factor possible. The manager wishes to establish
the fitness for use of the DEM before basing the emergency
management plan upon it. The data quality component that
the manager is particularly concerned about is the accuracy
of elevations, and the data quality statement that accompa-
nied the DEM indicates that for elevation values it has a
Root Mean Square Error (RMSE) of 7 metres.

Step 1 – Risk Identification: The manager starts by
identifying what could go wrong due to error in the data
and how it may happen. The possible adverse event arising
from uncertainty in the DEM is where locations declared
clear of flood waters in fact become inundated due to el-
evations in the DEM being greater than their true values
on the ground.

Step 2 – Risk Analysis: The manager then examines
the likelihood or probability of the adverse event and its
possible consequences. In this case, residents of properties
that have been incorrectly designated as not subject to flood-
ing will have been led to believe they are safe and may not
take precautionary measures. When the area is flooded, the
agency responsible for emergency response could find it-
self subject to compensation claims for negligence which
may have caused damage to property, loss of income and
personal injury or loss of life. The probability of the ad-
verse event occurring (that is, the flooding of areas declared
to be safe) is equivalent to the probability of the elevations
in the DEM being greater than the nominated flood level
— when in fact they are not. The consequences of the ad-
verse event then need to be quantified in appropriate units,
for instance dollars, injuries or lives lost. The magnitude of
the consequences will depend on the vulnerability of prop-
erties and residents to the adverse event; the values of the
properties; and the magnitude of the event (in this case, the
depth of inundation of the areas that were erroneously de-
clared free from flooding). All three parameters might vary
in space such that geographical analysis may need to be
applied to account for local variations when estimating the
value of the consequences.

Step 3 - Risk Exposure: From the two profiles con-
structed at the end of the risk analysis stage (that is, prob-
ability vs magnitude and magnitude vs vulnerability), the
user can compute estimates of the risk exposure for each
magnitude of adverse event (that is, for different inunda-
tion depths). The exposure is the summation of identified

Figure 3. The risk curve showing the cumulative likelihood for
the consequences for each adverse event scenario as a result of
data uncertainty.
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risks and may be expressed as a combination of diverse units
depending on the nature of the consequences — for ex-
ample, dollars, injuries sustained and lives lost.

Step 4 - Risk Appraisal: The manager then estab-
lishes how much risk is tolerable. For example, this might
be the maximum amount of money that can be set aside or
for which the agency is insured to compensate victims for
the its negligence. Tolerance limits may also be set for other
consequences such as lives lost and harm to the reputation
of the agency. The procedure for determining these limits
is discussed further in Agumya and Hunter (1998).

Step 5 - Risk Assessment: This step compares out-
comes from the risk exposure and risk appraisal stages. If
the risk exposure is less than or equal to the tolerable risk
appraisal, then the DEM is fit for use. However, compar-
ing the risk exposure and tolerable risk can be complicated
by the different units in which risk exposure and appraisal
are expressed. Table 1 illustrates how this difficulty may
manifest itself, and the manager may have trouble deciding
whether the risk exposure is less than the tolerable risk. For
example, use of the DEM may yield a risk exposure of a
single loss of life and property damage worth a million dol-
lars, compared to a tolerable risk appraisal of no deaths and
up to two million dollars damage. However, criteria do ex-
ist for aggregating risk in various units into a single unit,
such as dollars. For example, the value for a lost life might
be based on an estimate of the amount of money that the
deceased would have earned during an average life expect-
ancy. At this point, there will clearly be many factors that
will impact on what is and is not tolerable with respect to
the degree of error associated with the declaration of flood
affected land.

If the risk exposure exceeds the acceptable risk appraisal,
then the manager is faced with three options regarding the
fitness for use of the DEM:

• reject it and secure another DEM of superior quality;
• retain the DEM but improve its quality; or
• use the DEM regardless of the consequences, since se-

curing a superior data set or improving upon the qual-
ity of that available are not feasible options due to cost
and/or time constraints.

At the end of the risk assessment stage the manager is
aware of the uncertainty in terms of risk that the agency is
being exposed to and will need to either reduce it or absorb
(accept) it (Bedard, 1987). The manager may then use the
knowledge gained about these risks to chose the best method
of protection from their consequences.

Step 6 - Risk Response: Finally, a decision must be
made regarding how to deal with the risk exposure. Again,
there are several options available:

• Risk Avoidance: this is where the decision maker chooses
to avoid the possibility of being exposed to risk. It is the ‘do
nothing’ option, and in the DEM example above it is not
available to the agency in question because risk avoidance
would mean that the agency would have to cease carrying
out its functions.

• Risk Retention: sometimes referred to as risk assump-
tion. This is when the decision maker bears liability for
either some or all of the consequences of an adverse event,
either deliberately (active retention such as with a de-
ductible in an insurance policy, or as in the case of some
land title registries where the correctness of the infor-
mation is guaranteed), or out of ignorance or indiffer-
ence (passive retention). Retention is appropriate
primarily for risks of low probability and relatively small
consequences. In the example given, retention does not
appear to be an appropriate choice because the conse-
quences are likely to be relatively large.

• Self Insurance: another version of risk retention
whereby parties faced with exposure to similar adverse
events pool together their exposure in order to accu-
rately predict the risks they will be exposed to. The
difference between self insurance and other insurance
operations is that the body underwriting the insurance
is also part of the one it is insuring. The availability of
this option depends on whether the agency has willing
partners with whom to pool its exposure.

• Risk transfer: this is when the party exposed shifts the
risk to another party, other than an insurance company.
The transfer may be through a contract or a clause in
an agreement or undertaking or through hedging
(whereby the party exposed, the hedger, takes two si-
multaneous positions that offset each other so that no
matter what the outcome of an adverse event, the hedger
never loses or wins). If the agency in the example above
were to respond to risk exposure by transfer, it could if
possible secure legal liability protection, or transfer the
risk to another government body. However, this may
not be in the best interest of the reputation of the
agency. Also the agency may be liable for such losses
under statutory law.

• Loss Control (prevention and reduction): is con-
cerned with reducing the probability of occurrence and
consequences of an adverse before it occurs. In the ex-
ample given, the probability of occurrence depends on
the amount of uncertainty in the DEM. This uncer-
tainty can be reduced where possible by purchasing a
more accurate DEM or one with a higher resolution.
The consequence is dependent on the vulnerability of
the elements exposed, their value and the magnitude



42 URISA Journal • Vol. 11, No. 1 • Spring 1999

Figure 4: The risk management process.

of the adverse event. The consequence can be reduced
by taking precautionary measures in the most vulner-
able areas such as where there is high population den-
sity, high property values and where property is in
general vulnerable to damage by flooding. Loss pre-
vention is only feasible as long as the benefits realized
from the prevention are greater than the cost of the
loss prevention program. Loss reduction is intended to
diminish the consequences after the adverse event has
occurred. Since for purposes of assessing fitness for use
the user is particularly concerned with the risk posed
by the adverse event before it occurs, this option is not
relevant.

· Insurance: This represents a contractual transfer of
risk from the party exposed, to an insurance company.
Insurance is especially appropriate when the probabil-
ity of occurrence of an adverse event is low and its con-
sequences very high and is widely considered to be the
most practical method of response to a major risk. De-
pending on the cost of the policy, it may be an attrac-
tive option for the user in this example (Epstein et al.
1998).

7. Limitations of The Approach and
Further Research

Of course, the risk-based approach to quantifying and
managing uncertainty in spatial data is not immune from
problems and is itself subject to some degree of uncertainty.
For instance, the assumptions employed may be open to
challenge, and the perception and acceptance of the utility

of risk management can be clouded when factors cannot be
easily quantified in economic terms such as social issues,
environmental damage and loss of life. Indeed, placing a
value of the loss of life is one of the most vexing problems
facing risk managers, and there are wide ranging views on
how this should be performed. Furthermore, estimating the
likelihood of events may be open to dispute, especially where
it varies with location yet must be aggregated into simpler
regional values. Risk analysis also requires special skills and
can be an expensive to perform. Nevertheless, it is often
noted that undertaking risk analysis can be extremely pro-
ductive in itself and forces organizations to think deeply,
often the first time, about the possible consequences of un-
certainty in their data and its effect upon the decisions they
make with it.

At this stage there are still several outstanding research
issues that need to be resolved. The first is whether the pro-
posed risk-based method is suitable for use with spatial data
across a wide variety of applications. It may be that the ap-
proach is only viable for high-risk tasks such as in emergency
response systems, in which case we need to identify (a) the
threshold of its usefulness, (b) under what terms it becomes
feasible to employ, and (c) whether it is suited for ‘one-off’
decisions that are rarely made. For other applications it should
be determined whether the approach can be ‘short circuited’
in less important decision situations, yet still remain valid
and resource effective.

8. Conclusion
In this paper an alternative approach to using standards

for assessing the fitness for use of spatial data has been pre-
sented. The proposed risk-based method not only aids the
assessment of fitness for use, but is also valuable to users for
whom the primary concern about uncertainty in data is how
to manage its impact. Risk management is widely used as a
mechanism for dealing with consequences of uncertainty,
however risk is a complex concept that must be radically
simplified to make it quantifiable. Perception is an impor-
tant characteristic of risk yet it is not easily measurable, and
its subjectivity opens risk estimates to challenge. These fac-
tors combine to make risk estimates subjective, yet there is
a tendency to believe that they are objective, especially con-
sidering that their determination often involves rigorous
analysis. Nonetheless, risk has proven to be a very valuable
tool for managing uncertainty in other disciplines and it is
argued that further investigation of its potential for assess-
ing the fitness for use of spatial data is now warranted.
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