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5	GeV	electron	plasma	accelerator as	an	
European	research	infrastructure
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• EuPRAXIA is	a	conceptual	design	study	for	a					
5	GeV	electron	plasma	accelerator	as	an	
European	research	infrastructure

• 125	scientists	work	in	38	international	partners
• 16	EU	laboratories	are	beneficiaries
• 22	associated	partners	contribute	in-kind

• EuPRAXIA is	an	EU	Horizon	2020	project
• One	of	two	accelerator	related	design	studies	

funded,	other	is	EuroCirCol (FCC)	from	CERN

• Develop	plasma	technology	for	user	readiness:
• Incorporate	established	accelerator	technology	for	

optimal	quality
• Combine	expertise	from	accelerator	and	laser	

labs,	industry,	and	international	partners

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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• 15	scientific	reports	produced	in	first	18	months

• Final	Conceptual Design	Report	published
in	October	2019

European	Plasma	Research	Accelerator	
with	eXellence In	Applications



Horizon	2020

Livingston	Curve
EuPRAXIA as	stepping	stone	to	users	readiness

2
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F3iA,	12/2016
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Livingston	Curve
EuPRAXIA as	stepping	stone	to	users	readiness

2

R.	W.	Assmann
F3iA,	12/2016

• Plasma accelerators	reach	energy	regime	of	ongoing construction	projects	
• Acc.	length	of	9	cm	instead	of	100	m	for	multi	GeV	e- beams	[1]
• EuPRAXIA is	required	stepping	stone	to	bring	plasma	accelerators	to	user	readiness

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

[1]	Leemans et	al.,	Phys.	Rev.	Lett. 113,	245002	(2014)
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Why	use	plasma	accelerators?

• RF	accelerators	are	an	amazing	success	story:	30,000	accelerators	are	in	
use	all	over	the	world	(started	by	R.	Widerøe 90	years	ago)

• Many	further	applications	imaginable	but	some	are	constrained	by	
practical	concerns	such	as	size	and	cost
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E	=	100	GV/m
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• Ultra-compact	FEL’s	at	universities		
• Laser-driven	electron	beams	as	

medical	imaging	sources	in	hospitals
• Compact	electron	irradiation	

• Portable	industrial	appl.	for	X-ray	
inspections

• HEP	table-top	test	beams
• Compact	plasma	HEP	collider
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practical	concerns	such	as	size	and	cost

• Plasma	accelerator	techniques	offer	an	innovative	path	to	reduced	size	
and	cost	with	applications	such	as:

• “Compact/table-top”	sources	=	10’s	of	meters	rather	than	a	kilometer
(fits	on	a	trailer	of	a	truck)
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E	=	100	GV/m
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Plasma	accelerator	concepts:
example	one

4

PLASMA	ACCELERATOR
with	uniform	plasma	(e.g.	H)

Electron	bunch
accelerated	&	beam	quality	preserved	

ΔE
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depleted

RF	
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beam	

Electron	
bunch
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P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

• Plasma	accelerators	can	be	driven	by	lasers	or	electron	beams
• EuPRAXIA studies	5	different	approaches
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EuPRAXIA Plasma	Accelerator	Scheme
The	5	EuPRAXIA configurations

4

1)	RF	electron	injector	+	laser	plasma	accelerator	(LPA)
(LWFA	with	external	injection	from	an	RF	accelerator)

2)	LPA	with	electron	bunch	created	in	plasma	directly
(LWFA	with	internal	injection)

3)	LPA	electron	injector	+	LPA
(LWFA	with	external	injection	from	a	LPA)

4)	RF	electron	bunch	as	beam	driver	in	LPA
(PWFA	with	an	RF	electron	beam)

5)	RF	electron	bunch	as	driver	in	a	hybrid	stage
(PWFA	with	LWFA	produced	electron	beam	or	Trojan	Horse	scheme)

PLASMA	ACC.
e- created	&	accelerated	

ΔE

depleted

Laser	beam Electron	beam

PLASMA	ACC.
Q	preserved	&	accelerated	

ΔE

depleted

LPA

PLASMA	ACC.
e- created	&	accelerated	

ΔE

depleted

RF

PLASMA	ACC.
e- created	&	accelerated	

ΔE

depleted

LPA

PLASMA	ACC.
Q	preserved	&	accelerated	

ΔE

depleted

RF

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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e- created	&	accelerated	
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depleted

LPA

PLASMA	ACC.
Q	preserved	&	accelerated	

ΔE

depleted

RF• Science	&	practical	considerations	
will	determine	final	choice	of	
configuration(s)

• EuPRAXIA layout	is	being	optimized	
for	best	synergy	of	lasers	&	RF	
technology

EuPRAXIA Plasma	Accelerator	Scheme
The	5	EuPRAXIA configurations

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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Target	study	parameter	for	
electron	and	X-ray	beams

5P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

• Electron	and	X-ray	parameter	in	a	nutshell:
• 5	GeV	electron	beam	
• 1	– 0.1	nm	FEL	radiation
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• Electron	and	X-ray	parameter	in	a	nutshell:
• 5	GeV	electron	beam	
• 1	– 0.1	nm	FEL	radiation

• Detailed	tables	of	electron	and	X-ray	parameter	exist

• EuPRAXIA will	be	a	low	power	accelerator	aiming	
at	high	quality	(later	higher	rep.	rate)

Target	study	parameter	for	
electron	and	X-ray	beams

5

EuPRAXIA Deliverable	Report	1.2	
“Report	defining	preliminary	
study	concept”,	30.	October	2016

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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EuPRAXIA simulations

• It	is	a	design	study:	
• Simulations	and	design	work	at	the	core	

of	this	project
• Goal	is	start	to	end	simulations,	

demonstrating	required	performance

• Various	codes	being	used

6P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

PIC code used Users

OSIRIS IST, DESY

WARP CNRS/LPGP, CEA

CALDER-Circ LOA

SMILEI CNRS/LLR

ALaDyn, Architect
INFN_SparcLab

(PISA_ILIL)

HiPACE DESY

PIConGPU DESY
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P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

• It	is	a	design	study:	
• Simulations	and	design	work	at	the	core	

of	this	project
• Goal	is	start	to	end	simulations,	

demonstrating	required	performance

• Various	codes	being	used

Á.	Ferran Pousa,	R.	Assmann,	A.	Martinez	de	la	Ossa.	IPAC17	paper	TUPIK007.

PLASMA	ACC.
Q	preserved	&	accelerated	

ΔE

depleted

RF
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PIC code used Users

OSIRIS IST, DESY

WARP CNRS/LPGP, CEA

CALDER-Circ LOA

SMILEI CNRS/LLR

ALaDyn, Architect
INFN_SparcLab

(PISA_ILIL)

HiPACE DESY

PIConGPU DESY

Laser	pulse:	
a0 =	3.1,	λ	=	800	nm,	IFWHM =	100	fs,	
w0 =	54	μ	m,	E	=	100	J,	1	PW	peak	power

Initial	electron	beam:	
E	=	100	MeV,	
Relative	energy	spread	=	0.1	%
Norm.	trans.	emittance	=	1 mm	mrad
Q	=	1	pC,	τ =	3.3	fs	(rms),	σx =	1.3	μm

Vacuum

Electron	pulse Laser	pulse

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

• It	is	a	design	study:	
• Simulations	and	design	work	at	the	core	

of	this	project
• Goal	is	start	to	end	simulations,	

demonstrating	required	performance

• Various	codes	being	used

Á.	Ferran Pousa,	R.	Assmann,	A.	Martinez	de	la	Ossa.	IPAC17	paper	TUPIK007.
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PIC code used Users

OSIRIS IST, DESY

WARP CNRS/LPGP, CEA

CALDER-Circ LOA

SMILEI CNRS/LLR

ALaDyn, Architect
INFN_SparcLab

(PISA_ILIL)

HiPACE DESY

PIConGPU DESY

Plasma:	
Density	=	1.2	x	1017 cm-3

Length	=	2.5	cm

The	acceleration	regime:
close	to	blowout
2D	simulation:	the	3D	animation	was	
made	assuming	cylindrical	symmetry

Electron	density

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

• It	is	a	design	study:	
• Simulations	and	design	work	at	the	core	

of	this	project
• Goal	is	start	to	end	simulations,	

demonstrating	required	performance

• Various	codes	being	used

Á.	Ferran Pousa,	R.	Assmann,	A.	Martinez	de	la	Ossa.	IPAC17	paper	TUPIK007.

Eacc~100	GV/m
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6

PIC code used Users

OSIRIS IST, DESY

WARP CNRS/LPGP, CEA

CALDER-Circ LOA

SMILEI CNRS/LLR

ALaDyn, Architect
INFN_SparcLab

(PISA_ILIL)

HiPACE DESY

PIConGPU DESY

Electron	beam	after	plasma:	
Energy	=	1	GeV (initial	100	MeV)
Relative	energy	spread	=	1.5% (initial	0.1	%)
Normalized	emittance	=	0.995	μrad	m	

(initial	0.99	μrad	m)

Vacuum

Á.	Ferran Pousa,	R.	Assmann,	A.	Martinez	de	la	Ossa.	IPAC17	paper	TUPIK007.

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

• It	is	a	design	study:	
• Simulations	and	design	work	at	the	core	

of	this	project
• Goal	is	start	to	end	simulations,	

demonstrating	required	performance

• Various	codes	being	used
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EuPRAXIA simulations
One	example

6

Á.	Ferran Pousa,	R.	Assmann,	A.	Martinez	de	la	Ossa.	IPAC17	paper	TUPIK007.

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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EuPRAXIA simulations
Imperfections	of	laser	and	plasma

7

• Of	particular	importance	is	the	sensitivity	to	initial	fluctuations
• plasma	density
• alignment
• particle	beams	
• laser	pulses

• Use	of	realistic	profiles
• Simulation	work	package	is	identifying	the	role	of	non-standard	laser	

profiles	such	as	non	pure	Gaussean beams:

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

( ) ( )0 exp /I I w ar ré ù= -ë û I	=	laser	intensity,		𝝆 =	distance	,
w =	transverse	size	,	⍺ =	2	(Gaussian),
⍺ >	2	(“top-hat”)
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( ) ( )0 exp /I I w ar ré ù= -ë û I	=	laser	intensity,		𝝆 =	distance	,
w =	transverse	size	,	⍺ =	2	(Gaussian),
⍺ >	2	(“top-hat”)
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3D	design	by	Dariusz Kocoń (ELI-Beams)

plasma	
accelerators

laser	beams	from	
level	above

Layout	proposal
combining	all	configurations

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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3D	design	by	Dariusz Kocoń (ELI-Beams)

Layout	proposal
combining	all	configurations

See	poster:	B.	Cros	et	al.,	‘Electron	injector	for	multi-stage	
laser-driven	plasma	accelerators’,	IPAC’17,	WEPVA001

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

plasma	injector
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RF	gun	&	S-band	
structures

3D	design	by	Dariusz Kocoń (ELI-Beams)

plasma	
accelerator

Layout	proposal
combining	all	configurations

X-band	
structures

A.	Marocchino et	al.,	simulations with hybrid	code
Architect,	Nucl.	Instr.	Meth.	Phys.	Res. vol.	829,	2016.

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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Layout	proposal
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Accelerator	research,		
undulators and	user	
areas	are	located	on	
the	first	level

undulator hall

user	areas

accelerator	tunnel

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

See	poster:		P.A.Walker et	al.,	‘Layout	and	space	
considerations	for	EuPRAXIA’,	IPAC’17,	TUPIK012
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Layout	proposal
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May	18,	2016	at	SOLEIL	-
FranceThe	“100	cube	laser	challenge”:

• “100	cube”	=	100	J,	100	fs,	100	Hz	
=>	1PW	@	100Hz

• Not	a	complete	Ti:Sa laser	system
• Diode-pumped	solid-state	laser	scheme	
• 2nd laser	system	(Ti:Sa)	operates	at	

lower	energy	and	shorter	pulse	length

RF	and	TW	
laser	system

PW	laser	
system

RF	and	laser	
infrastructure	on	
second	level

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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Is	EuPRAXIA Accelerator	Really	Compact?

• Detailed	estimates	of	required	space	are	ongoing:	
• Acc.	tunnel	+ infrastructure	about	300	– 600	m2 for	5	GeV	(depending	on	conf.)
• Potential	factor	of	5-10	footprint	reduction	compared	to	RF	based	electron	linac
• Reduced	footprint	has	potential	to	open	many	additional	applications

10P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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• Detailed	estimates	of	required	space	are	ongoing:	
• Acc.	tunnel	+ infrastructure	about	300	– 600	m2 for	5	GeV	(depending	on	conf.)
• Potential	factor	of	5-10	footprint	reduction	compared	to	RF	based	electron	linac
• Reduced	footprint	has	potential	to	open	many	additional	applications

• Sufficient	beam	quality	required	which	is	central	goal	of	EuPRAXIA
• Improve	energy	spread		(“beam	loading”	[3]	or	“modulated	plasma	density”	[4])

• EuPRAXIA will	initially	be	low	power	and	low	wall-plug	power	efficiency
• Efforts	with	industry	and	laser	institutes	to	improve	rep.	rate	&	efficiency	of	

currently	used	laser	systems	(also	incorporate	fiber-based	lasers	with	30	%	eff.)	

10P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

[3]	S.	Van	der	Meer,	CLIC	Note	No.	3,	CERN;	PS,	‘85-65
[4]	R.	Brinkmann et	al.,	 arXiv:1603.08489,	accepted for publication in	PRL
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Is	EuPRAXIA Accelerator	Really	Compact?

• Detailed	estimates	of	required	space	are	ongoing:	
• Acc.	tunnel	+ infrastructure	about	300	– 600	m2 for	5	GeV	(depending	on	conf.)
• Potential	factor	of	5-10	footprint	reduction	compared	to	RF	based	electron	linac
• Reduced	footprint	has	potential	to	open	many	additional	applications

• Sufficient	beam	quality	required	which	is	central	goal	of	EuPRAXIA
• Improve	energy	spread		(“beam	loading”	[3]	or	“modulated	plasma	density”	[4])

• EuPRAXIA will	initially	be	low	power	and	low	wall-plug	power	efficiency
• Efforts	with	industry	and	laser	institutes	to	improve	rep.	rate	&	efficiency	of	

currently	used	laser	systems	(also	incorporate	fiber-based	lasers	with	30	%	eff.)	

• EuPRAXIA report	will	be	technical	design	report	and	project	proposal:	
• Performance,	required	tolerances,	footprint	and	cost	will	be	assessed	
• We	hope	for	significant	cost	benefit from	this	new	technology

10P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

[3]	S.	Van	der	Meer,	CLIC	Note	No.	3,	CERN;	PS,	‘85-65
[4]	R.	Brinkmann et	al.,	 arXiv:1603.08489,	accepted for publication in	PRL
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Site	study
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• EuPRAXIA design	study	is	site	independent	

• Five	possible	sites	have	been	discussed	so	far

• We	invite	the	suggestions	of	additional	sites

Eli	Beamlines
Prague,	Czech	Republic

Central	Facility
Didcot,	UnLaser ited Kingdom

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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11P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

Rigshospitalet	
Copenhagen
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11P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017

Rigshospitalet	
Copenhagen
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www.eupraxia-project.eu

#EuPRAXIA
#plasma
#accelerator

Dissemination

15

See	booth	number	20	from	The	University	of	Liverpool	for	more	information	on	EuPRAXIA.

P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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Conclusion

• EuPRAXIA is	preparing	conceptual	design	for	a	European	research	
facility with	applications	in	science,	industry	&	medicine.

• Provide	a	5	GeV	electron	beam	based	on	a	laser	and/or	a	beam	driven	
plasma	acceleration	approach.	

• Design	will	include	user	areas	for	FEL	radiation,	“table-top”	test	beam	
for	HEP	detectors	tests,	and	compact	X-ray	source	for	medical	imaging.

12P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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Conclusion

• EuPRAXIA is	preparing	conceptual	design	for	a	European	research	
facility with	applications	in	science,	industry	&	medicine.

• Provide	a	5	GeV	electron	beam	based	on	a	laser	and/or	a	beam	driven	
plasma	acceleration	approach.	

• Design	will	include	user	areas	for	FEL	radiation,	“table-top”	test	beam	
for	HEP	detectors	tests,	and	compact	X-ray	source	for	medical	imaging.

• This	is	a	Horizon	2020	project	and	we	acknowledged	the	essential	
support	from	the	EU.

• Please	visit	posters	for	more	details:
• Á.	Ferran Pousa,	“Visualization	code”,	TUPIK007
• P.	A.	Walker,	“EuPAXIA Layout”,	TUPIK012
• F.	Filippi et	al.,	“Gas-filled	capillaries”	TUPIK023
• B.	Cros	et	al.,	”Electron injector”,	WEPVA001

12P.	A.	Walker	(DESY)	- IPAC	2017	- Copenhagen,	16th	May	2017
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Thank	you	for	your	attention

The	EuPRAXIA team
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