CAP 4630
Artificial Intelligence

Instructor : Sam Ganzfried
sganzfri@cis.fiu.edu



nttp://www.ultimateaiclass.com/
nttps://moodle.cis.fiu.edu/

HW1 was due on Tuesday 10/3

I Remember that you have up to 4 late days to use throughc
the semester.

A HW?2 outlast weekdue 10/17

A Midterm on10/19

I Covering search (uninformed, informed, local, adversarial,
CSP), logic, and optimization

I Review during half of class on 10/17

o To T




Upcoming lectures

A 10/5: Continue CSP

A 10/10: Wrap ugCSP, start logic (propositional logic, firstder
logic)

A 10/12: Wrapup logic (logical inference), start optimization
(integer, linear optimization)

A 10/17 Wrap up optimization (nonlinear optimization), midterm
review

A 10/19:Midterm

A 10/24: TA will go over midterm and homework solutions in
lecture

A Planning lecture will be after midterm 40/26



HW1

A Will be back before midterm
A Received 29 omoodle(33 students enrolled)

A Will be lenient regarding late days for HW1 due to the
hurricane

I 0-24 hours late: O late days

I 1-3 days late: 1 late day

I 3-5 days late: 2 late days

I >5 days late: 3 late days



HW?2

A Due10/17 at 2:05 in class (or 2pm on Moodle)
A Severakxercises from textbook

A Logic puzzles that you must formulate models for as
search/optimization problems using two different
approaches (e.g., could be CSP, logical inference,
Integer programming). You can solve them using bull
In Python solver libraries (e.g., for CSP and ILP) or
build your own solver (possibly for extra credit). Oper
ended question and many possible correct answers ¢
approaches.

A http://www.logicpuzzles.org/



Quizzle

players colors hometowns

Braddyville
Oakland Acres
Yorktown

scores

5. Donald

6. The contestant from Yorkton
gherthan the conte

points higher than Evan.

hometowns

8. The contestant who threw the
higher than the p

y

white




CSP summary

Constraint satisfaction problemsrepresent a state with a set of variable
value pairs and represent the conditions for a solution by a set of constrail
on the variables. Many realorld problems can be described as CSPs.

A number of inference techniques use the constraints to infer which
variable/value pairs are consistent and which are not. These include node
arc, path, and-konsistency.

Backtracking search a form of deptHirst search, is commonly used for
solving CSPs. Inference can be interwoven with search.

Theminimum-remaining valuesanddegreeheuristics are domain
Independent methods for deciding which variable to choose next in a
backtracking search. Theastconstraining valueheuristic helps in
deciding which value to try first for a given variable. Backtracking occurs
when no legal assignment can be found for a vari&aaflict-directed
backjumping backtracks directly to the source of the problem.

Local search using thmin-conflicts heuristic has also been applied to
constraint satisfaction problems with great success. 7



Logical agents

A Theproblems ol vi ng (search) agent
a very limited, inflexible sense. For example, the transition
model for the Suzzled knowledge of what the actionsalas
hidden inside the domaspecific code of the RESULT
function. It can be used to predict the outcome of actions but
to deduce that two tiles cannot occupy the same space or tha
states with odd parity cannot be reached from states with eve
parity, etc. The atomic representations used by probng
agents are also very limiting. In a partially observable
environment, an agentos onl
knows about the current state is to list all possible concrete
state® a hopeless prospect in large environments.



Logical agents

A Constraint satisfaction introduced the idea of representing sta
as assignments of valusvariables; this is a step in the right
direction, enabling some parts of the agent to work in a demai
Independent way and allowing for more efficient algorithms. W
now take this step to its logical conclusiowe develodogic as
a general class of representations to support knowleasged
agents. Such agents can combine and recombine information
suit myriad purposes. Often this process can be quite far
removed from the needs of the monéeas when a
mathematician proves a theorem or an astronomer calculates
earthos | 1 fe e xbpsecagentsalyacce n c
new tasks in the form of explicitligescribed goals; they can
achieve competence quickly by being told or learning new
knowledge about the environment; and they can adapt to
changes in the environment by updating the relevant knowledt



Logical agents

A Thewumpusworld is a cave consisting of rooms
connected by passageways. Lurking somewhere in tl
cave Is the terribleyumpus a beast that eats anyone
who enters its room. Thegumpuscan be shot by an
agent, but the agent has only one arrow. Some room
contain bottomless pits that will trap anyone who
wanders into these rooms (except forwhanpus
which is too big to fall in). The only mitigating feature
of this bleak environment is the possibility of finding &
heap of gold. Although theumpusworld is rather
tame by modern computer game standards, it illustra

some important points about intelligence. |



Wumpus world
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Wumpus world

A Performance measure+1000 for climbing out of the
cave with the gold;1000 for falling into a pit or being
eaten by thevumpus -1 for each action taken anti0
for using up the arrow. The game ends either when tt
agent dies or when the agent climbs out of the cave.

A Environment: A 4x4 grid of rooms. The age

nt always

starts in the square labelgdl], facing to the right. The
locations of the gold and thveumpusare chosen

randomly, with a uniform distribution, from t
other than the start square. In addition, eac

ne square
N square

other than the start can be a pit, with proba

hility 0.2.
12



Wumpus world

A Actuators: The agent can moveorward, TurnLeftby 90
degrees, ofurnRightby 90 degrees. The agent dies a miserab
death If it enters a square containing a pit or aviuenpus (It
IS safe, albeit smelly, to enter a square with a edaadpus) If
an agent tries to move forward and bumps into a wall, then the
agent does not move. The act@mb can be used to pick up
the gold if it Is In the same square as the agent. The &iltioot
can be used to fire an arrow in a straight line in the direction tf
agent Is facing. The arrow continues until it either hits (and
hence kills) thevumpusor hits a wall. The agent has only one
arrow, so only the firsbhootaction has any effect. Finally, the
actionClimb can be used to climb out of the cave, but only fror
square [1,1].

13



Wumpus world

A Sensors The agent has five sensors, each of which gives a
single bit of information:

I In the square containing tlumpusand in the directly (not diagonally)
adjacent squares, the agent will perceigtench

In the squares directly adjacent to a pit, the agent will percddveeze

In the square where the goal is, the agent will percevitter.

When an agent walks into a wall, it will perceivBamp

When thewumpusis killed, it emits a woefubcreanthat can be

perceived anywhere in the cave.

A The percepts will be given to the agent program in the form of
list of five symbols; for example, if there is a stench and a
breeze, but no glitter, bump, or scream, the agent program wil
get [Stench, Breeze, None, None, None

14



Wumpus world

A Consider a knowledgkasedvumpusagent exploring the
environment in the Figure 7.2. We use an informal knowledge
representation language consisting of writing down symbols ir
grid. The agentos i1 nitial K I
environment, as described previously; in particular, it knows tt
itis in [1,1] and that [1,1] is a safe square; we denote that witl
an AA0O and AOK, o respectivel

A The first percept isNone,None,None,None,Ndneom which
the agent can conclude that its neighboring squares, [1,2] anc
[2,1], are free of dangedsthey are OK. Figure 7.3a shows the
agent 6s state of knowl|l edge ¢

15



Wumpus world

= Agent

B =Breeze

G = Glitter, Gold
OK = Safe square

P =Pit

S =Stench
V = Visited
W = Wumpus

(a)

Figure 7.3  The first step taken I>§ the \
Uation, after percept [None, None, None. No;
None, Breeze, None, None, None].




Wumpus world

= Agent
B =Breeze
G = Glitter, Golg
OK = Safe square
P =pit
S = Stench
V = Visiteq
W = Wumpus

OK

|

(a)

(b)

. Figure 7.4 Two later stages in the progress of the ;l*‘.LlH.

|

with percept [Stench, None, None, None, None|. (b)

[Stemh Breeze, Glitter, None, None|.
‘\

(a) After the third move,
> fifth move, with percept




Wumpus world

A A cautious agent will move only into a square that it knows to
be OK. Let us suppose the agent decides to move forward to
[ 2, 1]. The agent perceives :
there must be a pit in a neighboring square. The pit cannot be
[1,1], by the rules of the game, so there must be a pit in [2,2] c
| 3,1] or Dboth. The notati on
sqguares. At this point, there is only one known square that is (
and that as not yet been visited. So the prudent agent will turr
around, go back to [1,1], and then proceed to [1,2].

RS



Wumpus world

A The agent perceives a stench in [1,2], resulting in the state of
knowledge shown in 7.4a. The stench in [1,2], means that the
must be avumpusnearby. But thevumpuscannot be in [1,1],
by the rules of the game, and it cannot be in [2,2] (or the agen
would have detected a stench when it was in [2,1]). Therefore
the agent can infer that tmumpusis in [1,3]. The notation W!
Indicates this inference. Moreover, the lack of a breeze in [1,2
Implies that there is no pit in [2,2]. Yet the agent has already
Inferred that there must be a pit in either [2,2] or [3,1], S0 this
means it must be in [3,1]. This is a fairly difficult inference,
because it combines knowledge gained at different times in
different places and relies on the lack of a percept to make on
crucial step.

19



Wumpus world

A The agent has now proved to itself that there is neith
a pit nor avumpusin [2,2], so it is OK to move there.
We do not show the agent
[2,2]; we Just assume that the agent turns and moves
[2,3], giving us 74b. In [2,3], the agent detects a glitte
so it should grab the gold and then return home.

A Note that in each case for which the agent draws a
conclusion from the available information, that
conclusion igguaranteedo be correct if the available
Information Is correct. This Is a fundamental property
of logical reasoning.

20



Logic

A Consider the situation in 7.3b: the agent has detected nothing
[1,1] and a breeze in [2,1]. These percepts, combined with the
agent 6s knowl ed gwanmpusiorld, dorestituteu |
theknowledge basdKB). The agent is interested (among othet
things) in whether the adjacent squares [1,2], [2,2], and [3,1]
contain pits. Each of the three squares might or might not
contain a pit, so (for the purposes of this example) there are
2"3=8 possiblenodels These eight models are shown in 7.5.

21



(b)

Figure 7.5  Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The
KB corresponding to the observations of nothing in [1,1] and a breeze in [2.1] is shown by
the solid line. (a) Dotted line shows models of vy (no pit in [1,2]). (b) Dotted line shows

models of a (no pitin [2,2]).




Logical agents

A The KB can be thought of a sets#intence®r as a single
sentence that asserts all the individual sentences. The KB is f
In models that contradict what the agent knoviegr example,
the KB is false in any model in which [1,2] contains a pit,
because there is no breeze in [1,1]. There are in fact just three
models in which the KB is true, and these are shown surrounc
by a solid line in 7.5. Now let us consider two possible
conclusions:
i A1l = AThere I s no pit in [1,2]0o0
I A2 = AThere I s no pit in [2,2]0
A Al and A2 are surrounded with dotted lines in 7.5a and 7.5b.
Inspection, we see the following:
I In every model in which KB is true, Al is also true.

23



Logical agents

A Hence, KB |= Al; there is no pit in [1,2]. We can also
see that

I In somemodels in which KB Is true, A2 Is false.

A Hence, KB !|= A2; the agecfinnotconclude that there
IS no pit in [2,2]. (Nor can it conclude that thesa pit
in [2,2].)

24



Logical agents

A The preceding example not only illustrates
entaillment (i.e., one sentence following
logically from another) but also shows how the
definition of entailment can be applied to deriv
conclusiond that is, to carry oubgical
Inference The inference algorithm iRigure
7.5 Is callednodel checking because it
enumerates all possibheodels(i.e., possible
Aworl dso) to check tF
models in which KB Is true, that is, that M(KB)
IS a subset of M(alpha). 25



Propositional logic

Sentence AtomicSentence | ComplexSentence
AtomicSentence — Tl"U-(?| False PI Q l RI o

ComplezSentence — ( Sentence ) 1 [ Sentence ]
- Sentence
Sentence A Sentence
Sentence V' Sentence

Sentence = Sentence

Sentence <« Sentence

OPERATOR PRECEDENCE

I, s Tz —ce ik
+ Naur h'nm) grammar of sefitences in propositiond! logic:
enees, from highest to lowest |

—




Propositional logic

1v
{llj*'
"4“,‘\(
trute JAISt

irue

[rue u

[ —

Figure 7.8 Truth tables for the five logical connectives. To use the table to co
example, the value of P v © when P is true and ( is false, first look on the left
where /IS frue and © is false (the third row). Then look in that row under the P
to see the result: frue.
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Wumpus world

A Now that we have defined the semantics for
propositional logic, we can construct a knowledge ba
for thewumpusworld. We use the following symbols
for each k,y] location:

I Pxyis true if there is a pit inx}y]

I Wxy Is true If there is &umpusin [X,y], dead or alive
I Bxy Is true if the agent perceives a breeze|y]|

I Sxyis true Iif the agent perceives a stenchxig][

28



Wumpus world

A The sentences we write will suffice to derive P12 (there is no
pit in P12), as was done informally before. We label each
sentencdi so that we can refer to them:

I Thereisno pitin[1,1]: R1: P11

I A square is breezy if and only if there is a pit in a
neighboring square. This has to be stated for each square;
now, we include just the relevant squares:

A R2: B11 <> (P12 V P21)
AR3: B21 <> (P11 V P22 V P31)

I The preceding sentences are true invalnpusworlds. Now
we Iinclude the breeze percepts for the first two squares
visited in the specific world the agent is in, leading up to the
situation in Figure 7.3b:

AR4: 1B11, R5: B21 29



Wumpus world

A Our goal now is to decide whether KB |= A for some sentence
A. For example, is P12 entailed by our KB? Our first algorithn
for inference Is a modalhecking approach that is a direct
Implementation of the definition of entailment: enumerate the
models, and check that A is true in every model in which HV I
true. Models are assignmentstiafe or falseto every
proposition symbol. Returning to owmumpusworld example,
the relevant proposition symbols are B11,B21,P11,P12,P21,P
and P31. With seven symbols, there are 2"7=128 possible
models; in three of these, KB is true (Figure 7.9(. In those thre
models, P12 is true, hence there is no pit in [1,2]. On the othe
hand, P2,2 is true in two of the three models and false in one,
we cannot yet tell whether there is a pit in [2,2].

30



Wumpus world

A Figure 7.9 reproduces in a more precise form the
reasoning illustrated in Figure 7.5. A general algorithi
for deciding entailment in propositional logic is in
Figure 7.10. Like the BACKTRACKNIG&GSEARCH
algorithm for CSP, TIENTAILS? Performs a
recursive enumeration of a finite space of assignmen
to symbols. The algorithm soundbecause it
Implements direction the definition of entailment, and
completebecause it works for any KB and A and
always terminates there are only finitely many
models to examine.

31



Wumpus world

])l & 2, 1);3‘2 (. % : J R;g 11)1

=
false false | false | . false | | rue | true | true

| false | false | false | | false rue | false | true

false | | false | | false | true | false | true

false ™ false | false | false true | true | true
% ‘ : 10
false . false | | 1 true | true | true | true

. o 5 AL
false ‘ false | > | true true true true

false false false | = false fals

triLe Lrise L1116 LriLe LrLe

Figure 7.9 A truth table construct | for iowledge base given i

if 2. through 5 are true, which occurs in { the 128 rows (the on

right-hand column). In all 3 rows, I’ is no pitin [1.2]. O
there might (or might not) be a pitin [2,2]




function TT-ENTAILS (K53 o) returns o oo
inputs: KB, the knowledge base, a sentence in propositional log

] ‘ \1. .
a, the query, a sentence in propositional logic

[ ! ] 1 \ < iK' and o
symbols < a list of the proposition sy mbols in A5 ang

return TT-CHECK-ALL(AD. o, s1

function TT-CHECK-ALL(KB. av. yrmbols, model) returns true or false
if EMPTY ?(symbois) then
il PL-TRUE?(K B, model) then return PL-TRUI Hex, model)
else return true // when KB is false always return true
else do
P — FIRST(symbols)
rest «— REST(: ymbols)
return (TT-CHECK-ALL(KB. 0. rest, model
and
TT-CHECK-ALL(KB. cv. 1e st, model

Figure 7.10 A truth-table enumeration alg
(TT stands for truth table.) PL-TRruE?
variable mode! represents g partial mod
word “and” is used here as g logical

orithm for deciding prop
retumns frue if a sentence holds

el—an assignment to some of th
operation on its Wo arguments, ret

Logical inference algorithm
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Constraint satisfaction problems

A A constraint satisfaction problem consists of three
components, X, D, and C:
I Xis a set of variables, {X é ,}X
i Dis a set of domains, {p éD,}, one for each variable.

I C Is a set of constraints that specify allowable combination:
of values.

34



Example problem: Map coloring

A Suppose that, having tired of Romania, we are looking at a m
of Australia showing each of its states and territories. We are
given the task of coloring each region either red, green, or blu
In such a way that no neighboring regions have the same colc

A To formulate this as a CSP, we define the variables to be the
regions: X ={WA, NT, Q, NSW, V, SA, T}

A The domain of each variable is the setQred, green, blue}.

A The constraints require neighboring regions to have distinct
colors. Since there are nine places where regions border, ther
are nine constraints: C = {SAI=WA, SAI=NT,SA!=Q, etc.}

A SAI=WA is shortcut for ((SA,WA),SAI=WA), where SAI=WA
can be fully enumerated in turn asdd,green(red,blug , é }

35



Integer programming

A Special case of a CSP where domain set for each
variable Is a set of integers

Iroften 1t 15 finite {0,1, 2,
{0,1,2, 3, ¢é..}

I Often it is just binary {0,1}

A Constraints are all LINEAR functions of the variables
i E.g., 4X1+3X2<=9
I -2.5X1 + 2X21 19X3 <= 22

I Cannot raise variables to powers or multiply variables
together

36



Objective functions

A In most CSP examples we saw, the goal was just to
find a single assignment of values to variables that
satisfied all the constraints, and it did not matter whic
solution was found. We also considered the more
general setting where we
which are encoded as costs on individual variable
assignments, leading to an overall objective function
that want would like minimize, subject to all of the
constraints being adhered to.

37



CSP variations

A The constraints we have described so far have all been absolu
constraints, violation of which rules out a potential solution.
Many reatworld CSPs includereference constraints
Indicating which solutions are preferred. For example, in a
university classcheduling problem there are absolute constrair
that no professor can teach two classes at the same time. But
also may allow preference constraints: Prof. R might prefer
teaching in the morning, whereas Prof. N prefers teaching in tr
afternoon. A schedule that has Prof. R teaching at 2 p.m. woul
still be an allowable solution (unless Prof. R happens to be the
department chair) but would not be an optimal one.

38



CSP variations

A Preference constraints can often be encoded as cost
Individual variable assignmeddor example,
assigning an afternoon slot for Prof. R costs 2 points
against the overall objective function, whereas a
morning slot costs 1. With this formulation, CSPs witl
preferences can be solved with optimization search
methods, either pathased or local. We call such a
problem aconstraint optimization problem, or COP.
Linear/integer/nonlinear programming problems do
this kind of optimization.

39



Integer programming

A Special case of a CSP where domain set for each (ol
some) variable Is a set of integers

Iroften 1t 15 finite {0,1, 2,
{0,1,2, 3, ¢é..}

I Often it is just binary {0,1}

I Some variables do not have integer restrictions and can be
any real number

A Constraints are all LINEAR functions of the variables
i E.g.,4X1 +3X2<=9
I -2.5X1 + 2X2I 19X3 <= 22
I Cannot raise variables to powers or multiply variables

A Obijective function of the variables to optimize



Integer linear programming

A Often the constraints and the objective are both
LINEAR functions of the variables, and we referring t
Integer programming (IP) as integer linear
programming in this case (ILP). One could also
consider other forms for the constraints and objective
(e.g., quadratic prograrguadraticallyconstrained
program, conic program). Specialized algorithms exis
for these as well, though more attention has been giv
to the linear case and typically those algorithms are
much more effective in practice.

41



Manufacturing site selection

A A manufacturer is planning to construct new buildings at four
local sites designated 1, 2, 3, and 4. At each site, there are th
possible building designs labeled A, B, and C. There is also tr
option of not using a site. The problem is to select the optimal
combination of building sites and building designs. Preliminan
studies have determined the required investment and net ann
Income for each of the 12 options. This information is shown I
Table 7.1 with Al, for example, denoting design A at site 1. Tl
company has an investment budget of $100 million ($100M).
The goal Is to maximize total annual income without exceedin
the investment budget. As the optimization analyst, you are
given the job of finding the optimal plan.

42



Manufacturing site selection

A It is an obvious requirement here that only whole
buildings may be built and only whole designs may b
selected. To begin creating a model, variables must |
defined to represent each decision. Let | = {A,B,C} be
the set of design options, and let J = {1,2,3,4} be the
set of site options.

A Letyij = 1 if designi is used at site j, and 0 otherwise

A Also, denote byij the annual net income and aiy
the investment required for the design/site combinatit
,]. As a first try, you propose the following model for

finding the maximum of annual income:
43



Manufacturing site selection

A Maximize z = sumsum pij yij
A Subject to:

I sumsumaij yij <= 100

I yjin{O,1}foralliinlandjinJ

44



Manufacturing site selection

A Solving the model with an appropriate algorithm for
the parameter values given in the table, the optimal
solution Is:

I YA1l=yA3=yB3=yB4=yC1=1, with all other values i
equal to zero and z = 40. Of the available budget, $99M is
used.

Table 7.1 Data for Site Selection Example

_————_———-———_—_—\
Option Al A2 A3 A4 Bl B2 B3 B4 Cl 2 3 g

Net income ($M) 6. SR [ IO b TP 8 12 16 19 9
Investment ($M) 13 20 24 30 .. 3945 il e 30 44 48 55
-_— -
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Manufacturing site selection

A Your supervisor reviews the solution and questions your basic
reasoning. You seem to have omitted some of the logic of the
problem, because two designs are built on the sande thige is,
Al and C1, and also A3 and B3, are all in the solution. In
addition, your supervisor now realizes that you were not alerte
to several other logical restrictions imposed by the owners an
architect® I.e., site 2 must have a building, design A can be
used at sites 1, 2, and 3 only if it is also selected for site 4, an

most two of the designs may be included in the plans

A Your solution violates all of these restrictions and must be
discarded. The following additional constraints are needed to
guarantee a feasible solution:
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Manufacturing site selection

A Site 2 must have a buildingum yi2 = 1

A There can be at most one building at each of the othe
sites:sumyij <=1 forj=1,3,4

A Design A can be used at sites 1, 2, and 3 only if it is
also selected for site 4: yAl + yA2 + yA3 <= 3yA4.

A To formulate the constraints associated with design
selection, three new binary variables are introduced.
I Letwi =1 if design is used, O otherwise, for | = A,B,C
I At most two designs may be usedA + wB + wC <= 2

I Finally, theylj andwi variables must be tied togetheum
yij <=4wifori=A, B, C
47



Manufacturing site selection

A The new model has 15 variables and 10 constraints 1
Including the integrality requirement. Solving, you fin
that the optimal solution Is
yAl=yA4=yB2=yB3=wA=wB=1 with all other
variables equal to zero and z = 37. All the budget is
spent, but the profit has decreased.
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Traveling salesman problem

A Thetravelling salesman problem(TSP) asks the following
guestion: "Given a list of cities and the distances between eac
pair of cities, what is the shortest possible route that visits eac
city exactly once and returns to the origin @ity

A The problem was first formulated in 1930 and is one of the mc
Intensively studied problems in optimization. It is used as a
benchmark for many optimization methods. Even though the
problem is computationally difficult, a large number of
heuristics and exact algorithms are known, so that some
Instances with tens of thousands of cities can be solved
completely and even problems with millions of cities can be
approximated within a small fraction o¥dl
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Traveling salesman problem

Solution of a travelling salesman
problem: the black line shows the
shortest possible loop that connects
every red dot
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Traveling salesman problem

A The TSP has several applications even in its purest formulatic
such as planning, logistics, and the manufacture of microchip:
Slightly modified, it appears as a sptoblem in many areas,
such as DNA sequencing. In these applications, the cooitgpt
represents, for example, customers, soldering points, or DNA
fragments, and the concapstancerepresents travelling times
or cost, or a similarity measure between DNA fragments. The
TSP also appears in astronomy, as astronomers observing m
sources will want to minimize the time spent moving the
telescope between the sources. In many applications, additior
constraints such as limited resources or time windows may be
Imposed.
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Traveling salesman problem
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