Mathematics Manipulatives Mania!

MA+:

MA+:

Sarah R. Powell, Ph.D.

Professor
College of Education The University of Texas at Austin

$x A+\dot{N}$

Introduce yourself.

Describe your strengths in supporting mathematics.

Describe an opportunity for growth.

Operations and Place Value

Fractions and Decimals

Integers and Algebra

Geometry

Instructional Platform

INSTRUCTIONAL DELIVERY

INSTRUCTIONAL STRATEGIES

MA+!

Modeling Fractions with Cuisenaire Rods

bit.ly/srpowell

Operations and Place Value

Fractions and Decimals

Integers and Algebra

Geometry

Unifix cubes Snap cubes

Math links

Mini motors

Two-color counters

Dice

Dominoes

100 addition facts

Single-digit addends sum to a single- or doubledigit number

$$
\begin{aligned}
5 & \text { (addend) } \\
+\quad 4 & \text { (addend) } \\
\hline 9 & \text { (sum) }
\end{aligned}
$$

Count one set, count another set, put sets together, count sum

$$
2+3=5
$$

Change

Start with a set, add the other set, count sum

$$
2+3=5
$$

Parts put together into a total

Karly saw 4 cardinals and 5 blue jays. How many birds did Karly see?

Change
An amount that increases or decreases

Premila had \$4. Then they earned \$5 for cleaning their room. How much money does Premila have now?

Total Change

$$
\begin{aligned}
& 7+4= \\
& 5+8= \\
& 9+2=
\end{aligned}
$$

Which representations would you use to help students understand addition?

100 subtraction facts
Subtrahend and difference are single-digit numbers and minuend is single- or double-digit number

Start with a set, take away from that set, count difference

$$
5-3=2
$$

Compare two sets, count difference

$$
5-3=2
$$

Change

An amount that increases or decreases

Bronwyn had 9 cookies. Then they ate 2 of the cookies. How many cookies does Bronwyn have now?

Greater and lesser amounts compared for a

Rachel has 9 apples. Jodie has 2 apples. How many more apples does Rachel have? (How many fewer does Jodie have?)

Change
 Difference

$$
13-5=
$$

$$
12-9=
$$

$$
15-8=
$$

Which representations would you use for subtraction?

Unifix cubes Snap cubes

Place Value Disks

Math links

Hundred Chart

Base-10 Blocks

Hundred Pop it

MA+

Tens and Ones

Count sets with 019 items in the set using a ten frame.

Determine how many sets of ten. Determine how many ones.

Read as:
14 is 1 ten and 4 ones.

Tens and Ones

Count sets with 019 items in the set using items that can be linked or connected.

Determine how many sets of ten. Determine how many ones.

Read as:
14 is 1 ten and 4 ones.

Tens and Ones

Use a hundred chart to identify patterns with tens and ones.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Standard Form and

Expanded Notation
Roll dice to create numbers with tens and ones.

Write in standard
form and expanded form.

Hundreds, Tens, and Ones

Proportional materials

Non-proportional materials

$x A+1 \cdot 1$

Hundreds, Tens, and Ones

Show numbers 0999.

Determine how many hundreds, tens, and ones.

Read as:
342 is 3 hundreds, 4 tens, and 2 ones.

hundreds	tens	ones

Hundreds, Tens, and Ones

Show numbers 0999.

Determine how many hundreds, tens, and ones.

Read as:
534 is 5 hundreds, 3 tens, and 4 ones.

Show:
14
41
163
596

Which representations would you use for place value?

Addition Computation
$24+35=$
$64+29=$

standard

$x A+1 \dot{1}$

Partial Sums

A.

74
B.

18
+80
$+12$ 92

$$
\begin{array}{r}
725 \\
+\quad 365 \\
\hline 1,000 \\
+\quad 80 \\
\hline 1,090
\end{array}
$$

Opposite Change

$$
\text { A. } \begin{array}{r}
74 \xrightarrow{-4} 70 \\
+\quad 18 \xrightarrow{+4}+22 \\
\hline 92
\end{array}
$$

8. $\quad 725 \xrightarrow{+5} 730$ $+365^{-5} \xrightarrow[1,090]{1,360}$

Show:
$24+35$
$64+29$

Which representations would you use for addition computation?
standard

$$
\begin{array}{rr}
5 & 29 \\
82 & \begin{array}{r}
2915 \\
-\quad 17 \\
\hline 45
\end{array} \\
\hline-909
\end{array}
$$

Partial Differences

$$
\text { ar } \begin{array}{r}
62 \\
-\quad 17 \\
\hline+50 \\
-\quad 5 \\
\hline 45
\end{array}
$$

Same Change

$$
\text { A. } \begin{array}{rr}
62 \stackrel{+3}{\longrightarrow} 65 \\
-\quad 17 \xrightarrow{+3}-20 \\
\hline 45 & -\quad 96 \xrightarrow{+4}-100 \\
\hline 209
\end{array}
$$

Add Up

A.

$$
\begin{array}{llr}
62 & 17 & \\
17 & 20 & 3 \\
& 60 & 40 \\
& 62+2 \\
\hline
\end{array}
$$

8. 305
96

96
100 300200 $305+5$ 209

Show:
75-42
61-38

Which representations would you use for subtraction computation?

MA+ +

100 multiplication facts

Multiplication of single-digit factors results in a single- or double-digit product

$$
\begin{aligned}
2 & \text { (factor) } \\
\times 3 & \text { (factor) } \\
\hline 6 & \text { (product) }
\end{aligned}
$$

Show the groups, show the amount for each group, count product

$3 \times 2=6$

Show the groups, show the amount for each group, count product

$$
3 \times 2=6
$$

Comparison

Show a set, then multiply the set

$$
3 \times 2=6
$$

Equal Groups

Groups multiplied by number in each group for a product

Rhiannon has 2 boxes of crayons. There are 12 crayons in each box. How many crayons does Rhiannon have altogether?

Comparison

Set multiplied by a number of times for a product

Vivienne had 12 stickers. Jessica had 2 times as many stickers as Vivienne. How many stickers did Jessica have?

Equal Groups

Comparison

$2 \times 5=$
$3 \times 4=$
——
$6 \times 2=$

Which representations would you use to help students understand multiplication?

Division

90 division facts

Divisor and quotient are single-digit numbers and dividend is single- or double-digit number

$$
\begin{aligned}
& 8 \div 4=4 \\
& \text { (dividend) } \\
& \text { (divisor) } \\
& \text { (quotient) }
\end{aligned}
$$

Show the dividend, divide equally among divisor, count quotient

Show the dividend, make groups of the divisor, count groups

Division

Groups multiplied by number in each group for a product
Stefanie has 12 pencils. She wants to share them equally among her 2 friends. How many pencils will each friend receive?

Nicole has 12 pencils. She put them into pencil pockets with 6 pencils each. How many pencil pockets did Nicole use?
(Partitive Division)
(Quotative Division)

$$
\begin{aligned}
& 10 \div 5= \\
& 12 \div 4= \\
& 8 \div 2=
\end{aligned}
$$

Which representations would use to help students understand division?

Addition

 subtractionBuild fluency with math facts.

- Addition: single-digit addends
- Subtraction: single-digit subtrahend
- Multiplication: single-digit factors
- Division: single-digit divisor

DAILY

BRIEF

Work on small sets of facts
Work on unknown facts
(in combination with known facts)

Dice

Beach Ball

4 plus 6 equals 10.

7 plus 6 equals 13.

2 plus 2 equals 4.

Dominoes

2 times 4 equals 8 .

6 times 9 equals 54.

7 times 1 equals 7 .

Playing Cards

Wrap-Ups

$x A+H$

Mobi Math

9

Flash Cards

40																	40
39																	39
38																	38
37																	37
36																	36
35																	35
34																	34
33																	33
32																	32
31																	31
30																	30
29																	29
28																	28
27																	27
26																	26
25																	25
24																	24
23																	23
22																	22
21																	21
20																	20
19																	19
18																	18
17																	17
16																	16
15																	15
14																	14
13																	13
12																	12
11																	11
10																	10
9																	9
8																	8
7																	7
6																	6
5																	5
4																	4
3																	3
2																	2
1					5												1
Day	1	2			5												

Bingo

Math Bingo

12		24	100	
15	0	42	16	20
8	35		6	4
	2	40	27	7
50	10	30	48	14

8 times 10 equals...

3 times 1 equals...

Magic Squares

Magic Squares Board

1. Place the sum or product in the bottom right corner.
2. In the bottom row, create a fact with a sum or product of the bottom right corner.
3. In the right column, create a fact with a sum or product of the bottom right corner.
4. Create two columns with a sum or product of the bottom number.
5. Create two rows with a sum or product of the right column number
6. Write the created facts below

0	2	2
5	4	9
5	6	11

4	5	9
2	0	2
6	5	11

7	3	10
1	0	1
8	3	11

6	1	7
3	2	5
9	3	12

4	4	8
2	2	4
6	6	12

5	1	6
4	3	7
9	4	13

5	1	6
3	4	7
8	5	13

6	3	9
2	3	5
8	6	14

1	5	6
6	2	8
7	7	14

6	2	8
3	4	7
9	6	15

Cover, Copy, Compare

Com, comp		
	9	8
	+6	$\times 6$
	54	48
7		6
$\times 8$		+ 5
56		30
9		7
+9		$\times 9$
81		63
6		8
$\times 7$		$\times 5$
42		40
8		7
$\times 8$		$\times 7$
64		49

File Folder

$6+3=9$
$1+7=8$
$6+4=10$
$7+3=$
$2+7=$
$5+6=$
$4+7=$
$7+8=$
$6+7=$
$7+9=$
$7+6=$
$8+7=$
$7+0=$
$9+6=$
$6+0=$
$6+8=$

Taped Problems

Taped Problems

$\begin{array}{r} 8 \\ \times 8 \\ \hline 64 \end{array}$	$\begin{array}{r} 7 \\ \times 7 \\ \hline 49 \end{array}$	$\begin{array}{r} 8 \\ \times 7 \end{array}$
$\begin{array}{r} 6 \\ \times 5 \end{array}$	$\begin{array}{r} 6 \\ \times 7 \end{array}$	$\begin{array}{r} 6 \\ \times 8 \end{array}$
$\begin{array}{r} 5 \\ \times 7 \end{array}$	$\begin{array}{r} 5 \\ \times 5 \end{array}$	$\begin{array}{r} 5 \\ \times 6 \end{array}$
$\begin{array}{r}6 \\ \times 6 \\ \hline\end{array}$	$\begin{array}{r} 8 \\ \times 6 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ \times 6 \\ \hline \end{array}$
$\begin{array}{r}7 \\ \times 8 \\ \hline\end{array}$	$\begin{array}{r} 8 \\ \times 5 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ \times 5 \\ \hline \end{array}$

Games

敞 Reflex
Get your free 30 -day trial

Help your students attain math fact fluency success whether in-person, remote, or through hybrid learning

Game-based system to improve math fact fluency for grades 2-6 in less than 30 days!

*/ Games/ flashard
FAGT MONGTER

Flasheard

subtraction Level 3 1:51
13
6

DAILY

BRIEF

Work on small sets of facts
Work on unknown facts
(in combination with known facts)

Multiplication Computation
$13 \times 47=$
$123 \times 24=$

standard

$x A+1 \div$

Partial Products

$x A+1$

Area (Array)

Lattice

Show:
13×47
123×24

Which representations would you use for multiplication computation?

Standard

Partial Quotients

A. \begin{tabular}{r}
$2 \lcm{158}$

-120

\hline 38

-36

2

$|$

10

+3

\hline 13 RR
\end{tabular}

Lattice

Show:

$$
\begin{aligned}
& 804 / 12 \\
& 1,746 / 18
\end{aligned}
$$

Which representations would you use for division computation?

Operations and Place Value

Fractions and Decimals

Integers and Algebra

Geometry

LENGTH

AREA
SET

LENGTH
 Fractions are appropriated by length

Fraction tiles

Cuisenaire rods

Number lines

LENGTH

Fractions are appropriated by length

Fraction tiles/bars

Fractions are appropriated by length

Cuisenaire Rods

LENGTH
 Fractions are appropriated by length

Number Lines

LENGTH

Use representations to show fractions according to length.

AREA

Areas divided into equal sections

Fraction circles

Geoboards

Pattern blocks

AREA

Areas divided into equal sections

Fraction Circles

AREA

Areas divided into equal sections

Geoboards

AREA

Areas divided into equal sections

Pattern Blocks

AREA

Areas divided into equal sections

Anglegs

Legos

AREA

Use representations to show fractions according to area.

Unifix cubes Snap cubes

Counters

SET

Use representations to show fractions according to a set.

Fraction Addition and Subtraction

$\frac{\text { Problem }}{\frac{1}{5}+\frac{3}{5}}$	
$\frac{2}{8}+\frac{5}{8}$	
$\frac{1}{2}+\frac{1}{4}$	
$\frac{4}{6}+\frac{1}{3}$	
$\frac{4}{5}-\frac{1}{5}$	
$\frac{6}{8}-\frac{3}{8}$	
$\frac{7}{8}-\frac{2}{4}$	
$\frac{8}{3}-\frac{1}{3}$	

Operations and Place Value

Fractions and Decimals

Integers and Algebra

Geometry

$x A+1 \cdot 1$

Mat and counters

Two-color counters

Number line

$3+(-5)$

$3+(-5)$
$3+(-5)$

$x A+1$

$-3-4$

$-3-4$

$-3-4$

\section*{| | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | | | | | | |
| -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | | | | | | | | | | | | | | | |}

$x \mathrm{~A}+\dot{1}$

$-3-4$

\section*{| | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |}

$x A+H$

Cups and counters

Algebra tiles

Algeblocks

cups/plates and counters
 $x+2=5$

cups/plates and counters
 $x+2=5$

Equation Solving with Algeblocks		
Problem	Representations	
$x+2=5$		
$4+x=6$		
$-2=x+3$		
$-1=y-4$		
$2 x+2=6$		
$x+4=3 x$		
$2(x+3)=x+4$		
$2 x-4=1+3 x$		
$3 y-5=-y-1$		
$1-x=x+1$		

Algeblocks $\quad \mathbf{- 1}=\mathbf{y}-4$

Algeblocks

$2 x+2=6$

$2(x+3)=4$

Algeblocks Quadrant Mat

Algeblocks Quadrant Mat

Algeblocks Quadrant Mat

Algeblocks Quadrant Mat

Operations and Place Value

Fractions and Decimals

Integers and Algebra

Geometry

Cups and counters

Algebra tiles

Algeblocks

1. Tangrams

Pentominoes
3. Tessellations

1. Tangrams

Pentominoes
3. Tessellations

```
Three-Dimensional Figures
\begin{tabular}{|l|l|l}
\hline Name & Properties (Faces, Edges, Vertices) & Examples \\
\hline Re
\end{tabular}
Rectangular
Prism
Cube
\begin{tabular}{|l|l|l|} 
& & \\
\hline \begin{tabular}{l} 
Triangular \\
Prism
\end{tabular} & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Hexagonal \\
Prism
\end{tabular} & & \\
\hline
\end{tabular}
Rectangular
Pyramid
Triangular
Pyramid
\[
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Hexagonal } \\
\text { Dexuamid }
\end{array} \\
\hline
\end{array}
\]
```



```
\(\times A+\cdots\)
```


Operations and Place Value

Fractions and Decimals

Integers and Algebra

Geometry

Sarah R. Powell, Ph.D.

Professor
College of Education The University of Texas at Austin

$x A+\dot{N}$

