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“Big data” has revolutionized every industry. Massive datasets on the human genome have enabled sig-
nificant advances in DNA sequencing, which will lead to breakthroughs in disease diagnosis and treatment;
data on users’ preferences have enabled recommendation systems that provide highly accurate predictions
for purchases of new products; and traders capitalize on historical datasets to effectively predict future price
trajectories of stocks.

The field of “data science” has produced valuable tools that have enabled these dramatic advances.
These tools, which draw primarily from the fields of machine learning and statistics, extract as much signal
as possible from the enormous, complex, and noisy datasets, and produce sophisticated inferences from
historical data to make highly accurate predictions about the future.

We are now in the midst of an arms race that has fueled a massive bubble permeating industry and
academia. Researchers and practitioners of “data science” are slugging it out to obtain larger and larger
datasets and more efficient algorithms that can extract every last ounce of signal from them. It is inevitable
that this bubble will burst, unless major measures are taken. Soon every bit of useful information will be
sucked out of your purchase history on Amazon and Netflix to predict what you will enjoy next. Algorithmic
traders have already begun to feel the pressure of this arms race; strategies that traded on a millisecond and
even microsecond time scale based on pure speed advantages and statistical models have begun to suffer in
favor of longer-term strategies that take into account fundamental economic principles. The marginal returns
will soon be felt everywhere, and the bubble will burst dramatically, unless the approaches are combined
with core theoretical principles that can withstand the test of time.

In many important situations that involve multiple self-interested agents, the goal is not simply to make
a prediction about the future from the data: it is to make better strategic decisions based on these complex
inferences and predictions. Data-driven predictions alone do not tell us what the optimal security threshold
should be to prevent phishing attacks by hackers, how to optimally randomize security screens in airports,
or whether to call a large all-in bet on the river with two pair; we must also reason about the strategy the
opponents are employing, reason about the reasoning they are employing about our own strategy, and so
on. In order to ultimately make better-informed decisions in complex multiagent environments, we must
incorporate the tools of economic theory, and particularly, game theory.

Take no-limit Texas hold ’em poker for example. The game has 10165 states in its game tree, and making
good strategic decisions is on par with reasoning in domains with extremely complex datasets. A “big data”
approach would be to apply sophisticated machine learning algorithms to databases of historical data from
prior games, to predict how a future opponent will play in similar situations; then we could exploit such
an opponent by playing an appropriate response to this strategy. However, this approach has limitations.
It assumes that the future opponents encountered are identical to the past ones depicted in the database;
if the training and testing data are from completely different pools of the population, then this approach
would have no performance guarantees. As agents are constantly improving and modifying their play, we
would expect, for example, the current year’s poker competition agents to be significantly stronger than prior
agents: even the best approaches for learning from historical data could fare quite poorly against stronger
opposition than what was trained on.

It would be preferable to employ a more robust approach that is not entirely dependent on a particular
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dataset of historical play. We would like to perform well against a wide variety of agents, including agents
that can be significantly stronger than the ones in the dataset, who may be deceptive and adaptive.

In theory, there exists a single strategy for this game (and for any two-player zero-sum (i.e., competitive)
game) that would guarantee being unbeatable against all opposing agents, regardless of their skill level,
level of deception, or, generally, their strategy. This result is due to the Minimax Theorem, one of the
fundamental results in game theory, and the “optimal” strategy is called a Nash equilibrium. If we were
able to compute a Nash equilibrium for two-player no-limit Texas hold ’em, then we would guarantee that
against any opponent we would either win or tie (in expectation). This would be true tomorrow, two weeks
from now, or fifty years from now.

From a complexity-theoretic perspective, computing this strategy is easy; there exists a polynomial-time
algorithm based on a linear programming formulation. However, this algorithm only scales to games with
108 states. More recently algorithms have been developed for approximating equilibrium strategies (they
converge to equilibrium in the limit) that scale to 1015 states [1]. However, even this is a far cry from
10165, the size of the version of two-player no-limit Texas hold ’em played in the AAAI Annual Computer
Poker Competition. Approximating Nash equilibrium strategies in a domain of that magnitude involves,
at a minimum, approaches for approximating the full 10165 game tree with a significantly smaller game
of 1015 states that retains much of the strategic structure of the original game (i.e., automated abstraction
algorithms [1, 11, 12]), approaches for interpreting actions for the opponent that have been removed from
the abstraction [10], and additional approaches for extrapolating the equilibrium strategies from the abstract
game to the full game [1, 14].

These approaches produced two-player no-limit Texas hold ’em Tartanian7 that won the most recent
AAAI Annual Computer Poker Competition, defeating each opposing agent with statistical significance (16
agents were submitted). An improved agent called Claudico competed against the strongest human players
in the 2015 Brains vs. Artificial Intelligence competition. This was the first ever man vs. machine no-limit
Texas hold ’em competition; the humans won by a margin that was statistically significant at the 90% confi-
dence level, but not at the 95% level. An important feature of Claudico was a novel approach for computing
strategies in real time in the portion of the game tree we have reached to a higher degree of accuracy [12]
(the abstraction and equilibrium approaches described above are performed offline, in advance of game-
play). Doug Polk, a participant in the competition and widely regarded as the best two-player no-limit Texas
hold ’em player in the world, commented that the “endgame solver” was the strongest part of the agent. I
have recently written an article that puts the event into perspective within both the poker and academic com-
munities, highlights the strengths and weaknesses of Claudico, and describes the key takeaways and future
research directions, both in terms of computer poker and more broadly [5]. While the main goal was to
produce the strongest possible poker agent, there are deeper theoretical questions related to each component
of the agent. Endgame solving has been proven to have theoretical guarantees in certain games while it can
lead to strategies with high exploitability in others (even if the full game has a single Nash equilibrium and
just a single endgame is considered) [12]; it would be interesting to prove theoretical bounds on its perfor-
mance on interesting game classes, perhaps classes that include variants of poker. Empirically the approach
appears to be very successful on poker despite its lack of theoretical guarantees. The main abstraction algo-
rithms that have been successful in practice are heuristic and have no theoretical guarantees (it is extremely
difficult to prove meaningful theoretical guarantees when approximating a game with 10165 states by one
with 1015 states). Recent work has presented an abstraction algorithm with bounds on the solution quality;
however, it only scales to a tiny poker game with a five-card deck. It would be very interesting to bridge
this gap between heuristics that work well in practice for large games with no theoretical guarantees, and
the approaches with theoretical guarantees that have more modest scalability. There are also many exciting
theoretical questions related to the action translation [10] and post-processing approaches [14].

Scalable algorithms for computing Nash equilibria have diverse applications, including cybersecurity
(e.g., determining optimal thresholds to protect against phishing attacks), business (e.g., auctions and ne-
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gotiations), national security (e.g., computing strategies for officers to protect airports), and medicine. For
medicine, algorithms that were created in the course of research on poker have been applied to compute ro-
bust policies for diabetes management [2]; recently it has been proposed that equilibrium-finding algorithms
are applicable to the problem of treating diseases such as the HIV virus that can mutate adversarially [15].
My research has been cited by and applied to research on jamming attacks and cyber security, trading agent
design, security games for the protection of resources, dynamic resource allocation, sequential auctions,
automated guidance for taxi service, robot planning, disease management, and emergency response.

This is not to say that the “game-theoretic” approach is wholly free of flaws. For one, the Minimax
Theorem does not apply to games that are not zero sum or have more than two agents. These games can
have many equilibria, each assigning different payoffs to the agents; if the opponents do not follow the equi-
librium strategy that we have computed, then we can perform arbitrarily poorly. Furthermore, computing
a Nash equilibrium in these game classes is challenging computationally (it is PPAD-complete and widely
conjectured that no efficient algorithms exist). Despite this worst-case hardness result, I have developed ap-
proaches that provably computed an ε-equilibrium for very small ε in a three-player poker tournament [6, 7].
I have proven that some of these approaches can only converge to a Nash equilibrium (though they may not
converge at all). However, even these very close approximations of Nash equilibrium have no performance
guarantees against unknown opponents.

Even in two-player zero-sum games, the Nash equilibrium is not the end of the story (even if we are
able to compute one exactly without requiring approximation). Against suboptimal opponents who are not
playing an equilibrium strategy, we can often obtain a significantly higher payoff than the value of the game
by learning to exploit their mistakes as opposed to following a static equilibrium strategy; for instance, if the
opponent has played Rock in each of the first thousand iterations of rock-paper-scissors, it seems desirable
to put additional probability mass on Paper beyond the equilibrium value of 1
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Thus, for all game classes, there is a need to capitalize on the “big data” approach and learn from his-

torical data. In order to make robust decisions in large-scale multiagent environments, we must integrate
the “game-theoretic” and “big data” approaches, creating agents that obtain high payoff against weak op-
ponents who make mistakes, yet also perform well against strong opponents who may be dynamic and
adaptive. These agents will stand the test of time: they will take advantage of crucial data when it is
available, though they will not be overfit to the latest trend due to their underlying foundations based on
economic principles. This is the thesis statement of my dissertation [4]. I have already made significant
progress in achieving this ambitious goal, and have developed approaches for robustly integrating learning
with the game-theoretic approaches. I developed an algorithm that is successfully able to exploit weaknesses
of opponents in extremely large imperfect-information games after only a small number of interactions [9].
It uses an approximate Nash equilibrium strategy as the prior, which is updated based on observations of
opponents’ play. This has led to a large performance improvement against a variety of opponents in two-
player limit Texas hold ’em. I have also developed new approaches with theoretical guarantees even against
strong deceptive opponents [13]. I have shown that in certain games it is actually possible to deviate from
repeatedly playing a one-shot equilibrium strategy in order to exploit perceived weaknesses of an opponent,
while still guaranteeing at least the value of the game in expectation against any opponent. Recently I have
developed the first exact algorithm for opponent exploitation in imperfect-information games in a Bayesian
setting, which utilizes the most natural prior distribution (Dirichlet) based on historical data [3].

At the end of the day we would like to enable humans to make important decisions, not produce massive
binary strategy files that are only intelligible to computers. I have designed an algorithm that exploits qual-
itative information about equilibrium structure to improve the speed of equilibrium finding and produces
strategies that are more human understandable [8]. I showed that for the final round of limit Texas hold ’em,
equilibrium strategies for any input hand distribution will conform to one of three relatively simple qualita-
tive action structures. Extracting visually-appealing representations from the massive files is an important
step towards the goal of enabling humans to make robust decisions in complex multiagent environments.
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