Chain Rule

Math 4315 - PDEs - Calc III review

Chain rule

Consider

$$
\begin{equation*}
u=x^{2} y \tag{1}
\end{equation*}
$$

and the change of variables

$$
\begin{equation*}
x=e^{r}, \quad y=\sin r . \tag{2}
\end{equation*}
$$

Directly substituting (2) into (1) gives

$$
\begin{equation*}
u=e^{2 r} \sin r \tag{3}
\end{equation*}
$$

Since $u=u(r)$ it makes sense to take a derivative with respect to the single variable r and so

$$
\begin{equation*}
\frac{d u}{d r}=2 e^{2 r} \sin r+e^{2 r} \cos r \tag{4}
\end{equation*}
$$

In calculus III, we were introduced to the two types of chain rules.

Type 1 Chain Rule

If $u=u(x, y)$ and $x=f(r)$ and $y=g(r)$ then $u=u(r)$ and

$$
\begin{equation*}
\frac{d u}{d r}=\frac{\partial u}{\partial x} \cdot \frac{d x}{d r}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d r} \tag{5}
\end{equation*}
$$

For the preceding example

$$
\begin{equation*}
\frac{\partial u}{\partial x}=2 x y, \quad \frac{\partial u}{\partial y}=x^{2}, \quad \frac{d x}{d r}=e^{r}, \quad \frac{d y}{d r}=\cos r \tag{6}
\end{equation*}
$$

and from (5)

$$
\begin{align*}
\frac{d u}{d r} & =2 x y \cdot e^{r}+x^{2} \cdot \cos r \tag{7}\\
& =2 e^{r} \sin r e^{r}+e^{2 r} \cos r
\end{align*}
$$

giving exactly (4).

Consider the same u in (1) but now

$$
\begin{equation*}
x=e^{r} \cos s, \quad y=e^{r} \sin s \tag{8}
\end{equation*}
$$

Directly substituting gives

$$
\begin{equation*}
u=e^{3 r} \cos ^{2} s \sin s \tag{9}
\end{equation*}
$$

and since $u=u(r, s)$ it makes sense to take derivatives with respect to r and s and here

$$
\begin{equation*}
u_{r}=3 e^{3 r} \cos ^{2} s \sin s, \quad u_{s}=e^{3 r}\left(-2 \cos s \sin ^{2} s+\cos ^{3} s\right) \tag{10}
\end{equation*}
$$

Type 2 Chain Rule

If $u=u(x, y)$ and $x=f(r, s)$ and $y=g(r, s)$ then $u=u(r, s)$ and

$$
\begin{align*}
& \frac{\partial u}{\partial r}=\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial r} \\
& \frac{\partial u}{\partial s}=\frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial s}+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial s} \tag{11}
\end{align*}
$$

For the preceding example

$$
\begin{array}{ll}
\frac{\partial u}{\partial x}=2 x y, & \frac{\partial u}{\partial y}=x^{2} \\
\frac{\partial x}{\partial r}=e^{r} \cos s, & \frac{\partial y}{\partial r}=e^{r} \sin s \tag{12}\\
\frac{\partial x}{\partial s}=-e^{r} \sin s, & \frac{\partial y}{\partial s}=e^{r} \cos s
\end{array}
$$

and so from (21)

$$
\begin{align*}
& \frac{\partial u}{\partial r}=2 x y \cdot e^{r} \cos s+x^{2} \cdot e^{r} \sin s \tag{13}\\
& \frac{\partial u}{\partial s}=-2 x y \cdot e^{r} \sin s+x^{2} \cdot e^{r} \cos s
\end{align*}
$$

and further substitution of x and y from (8) gives (10).

u Unknown

Suppose that in general $u(x, y)$ is unknown but suppose we knew that

$$
\begin{equation*}
u(x, y)=r^{2} \tag{14}
\end{equation*}
$$

if

$$
\begin{equation*}
x=r \quad y=-r, \tag{15}
\end{equation*}
$$

namely

$$
\begin{equation*}
u(r,-r)=r^{2} \tag{16}
\end{equation*}
$$

could we differentiate (16)? Namely, can we

$$
\begin{equation*}
\frac{d}{d r} u(r,-r)=\frac{d}{d r} r^{2} \tag{17}
\end{equation*}
$$

Here we will use the chain rule (5) except since we don't know the form of u will left the derivatives alone. So

$$
\begin{align*}
\frac{d u}{d r} & =\frac{\partial u}{\partial x} \cdot \frac{d x}{d r}+\frac{\partial u}{\partial y} \cdot \frac{d y}{d r} \tag{18}\\
& =\frac{\partial u}{\partial x} \cdot 1+\frac{\partial u}{\partial y} \cdot(-1)=2 r
\end{align*}
$$

Consider $u=u(x, y)$ (now unkown) and the change of variables

$$
\begin{equation*}
r=x+y, \quad s=x-y \tag{19}
\end{equation*}
$$

Could we calculate u_{x} and u_{y} in terms of u_{r} and u_{s}. Again we will use a type 2 chain rule an in this case

$$
\begin{align*}
& u_{x}=u_{r} \cdot r_{x}+u_{s} \cdot s_{x} \tag{20}\\
& u_{y}=u_{r} \cdot r_{y}+u_{s} \cdot s_{y}
\end{align*}
$$

From (19) r_{x}, r_{y}, s_{x} and s_{y} are all easy to calculate and so

$$
\begin{align*}
& u_{x}=u_{r}+u_{s} \tag{21a}\\
& u_{y}=u_{r}-u_{s} \tag{21b}
\end{align*}
$$

If the change of variables is

$$
\begin{equation*}
r=2 x y, \quad s=x^{2}+y^{2} . \tag{22}
\end{equation*}
$$

the from

$$
\begin{align*}
& u_{x}=u_{r} \cdot r_{x}+u_{s} \cdot s_{x} \tag{23}\\
& u_{y}=u_{r} \cdot r_{y}+u_{s} \cdot s_{y}
\end{align*}
$$

then u_{x} and u_{y} become

$$
\begin{align*}
& u_{x}=u_{r} \cdot 2 y+u_{s} \cdot 2 x, \tag{24a}\\
& u_{y}=u_{r} \cdot 2 x+u_{s} \cdot 2 y . \tag{24b}
\end{align*}
$$

Suppose we wanted to have the right hand side of (24) to only involve r and s only, we would have to solve (22) for x and y explicitly. As it turns out we can giving

$$
\begin{equation*}
x=\frac{1}{2}(\sqrt{s+r}+\sqrt{s-r}), \quad y=\frac{1}{2}(\sqrt{s+r}-\sqrt{s-r}) \tag{25}
\end{equation*}
$$

and these can be substituted into (24).

