College View Community Association Water Quality Report - 2021 This year, as in the years past, your tap water met all US Environmental Protection Agency and Illinois Environmental Protection Agency drinking water health standards. Our system safeguards its groundwater & well water supply and we are pleased to report that the community had **No Violations** of any contaminant level or of any other water quality standard in the previous year. This report summarizes the quality of water that we provided last year, including details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. College View Community Association provides you with this information because informed residents and neighbors are our best allies. If you have any questions about this report or concerns about your water system please contact Carl Groth, President of College View Community Association at 1-815-838-9025. If you would like to learn more, you are welcome to attend any of our regularly scheduled meetings at the Miller Field House in College View Park on the third Tuesday of every month at 6:30 pm. The College View subdivision is in Lockport Township, in the county of Will, state of Illinois, located one half mile from Rt. 53, north of Airport Road, and is supplied with water by community wells owned and operated by the College View Community Association, a not-for-profit organization. The water system consists of four shallow wells, three storage tanks, 9000 feet of water main, valves, and other related and necessary equipment needed for treatment, all located within our community. This system provides an adequate supply of water for the 190 homes in the community. In accordance with IEPA regulations, daily water samples are taken and measured for proper content of chlorine and fluoride. The association is responsible for maintenance of water mains and lines up to, but NOT including the buffalo box, service line, and shut-off valve. It is the responsibility of the homeowner to provide a service line shut-off valve that is operational and above ground level, so that in case of an emergency it may be turned off for repairs. Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, persons with HIV/AIDS, or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their healthcare providers. US EPA/CDC guidelines on appropriate means to lessen the risk of infections by cryptosporidium, and other microbiological contaminants are available from the US EPA Safe Drinking Water Hotline @ 1-800-426-4791. If present, elevated levels of lead can cause serious health issues, especially for pregnant woman and children. Lead in drinking water is primarily from materials in components in home plumbing. We cannot control the materials used in your home plumbing. There are no lead water mains or service lines in our community. When your water has been unused for several hours you can minimize the potential for lead exposure by flushing your tap for a couple of minutes before using it for drinking or cooking. If you are concerned about lead in your water you may wish to have it tested. For more information, you can call the US EPA Safe Drinking Water Hotline @ 1-800-426-4791 or on-line internet @ http://www.epa.gov/safewater/lead. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminates and its potential health effects can be obtained by calling the US EPA Safe Drinking Water Hotline @ 1-800-426-4791. The sources of drinking water (both tap water and bottled water), include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it can dissolve naturally occurring minerals and radioactive materials, and can pick up substances resulting from the presence of animals or from human activities. Possible contaminants consist of: - Microbiological contaminants such as viruses and bacteria, which may come from sewerage treatment plants, septic systems, agricultural livestock operations and wildlife. - Inorganic contaminants— such as salts and metals, which can be naturally occurring or can result from urban storm water runoff, industrial or domestic waste water discharges, oil or gas production, mining, or farming. - <u>Pesticides/Herbicides-</u> which may come from a variety of sources such as agricultural, urban storm water runoff, and residential uses. - Organic contaminants- including synthetic volatile organic chemicals which are by-products of industrial processes and petroleum production, they can also come from gas stations, urban storm water runoff and septic systems. - <u>Radioactive contaminants</u> which may be naturally occurring or be the result of oil and gas production or mining activities. In order to ensure that tap water is safe to drink, the US EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits in bottled water, which must provide the same protection for public health. In addition to the informational section of the water quality report, we have included for your review several tables. The tables will give you a better picture of contaminants that were tested but not detected. Note: There is no maximum contaminant level for sodium but monitoring is required for information to consumers and health agents. Thank you, Carl Groth President, College View Community Association # 2021 Regulated Contaminants Detected ### LEAD AND COPPER #### Definitions: Action Level Goal (AGL): The level of a contaminant in drinking water below which there is no known or expected risk to health. AGL's allow for a margin Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | Corrosion of household plumbing systems. Erosion of natural deposits. | Z | ppb | 0 | 1.4 | 15 | 0 | 2019 | Lead | |--|-----------|-------|-------|-------------------|--------|----------------------|-------------|--------| | of household plumbing systems. | | | | | | | | | | Erosion of natural deposits; Leaching from wood preservatives; Corrosion | z | ppm | 0 | 0.16 | 1.3 | 1.3 | Copper 2019 | Copper | | | | | AL | | | | | | | | | | Over | | (AL) | | | Copper | | | | | Sites | Percentile Sites | Level | | Sampled | and | | Violation Likely Source of Contamination | Violation | Units | # | 90 ^{tth} | Action | MCLG Action 90th | Date | Lead | ## WATER QUALITY TEST RESULTS Therefore, some of this data may be more than one year old. The state requires monitoring of certain contaminants less than once per year because the concentrations of these contaminants do not change frequently Definitions: The following tables contain scientific terms and measures, some of which may require explanation - bacteria have been found in our system. Level 1 Assessment: A level 1 assessment is a study of the water system to identify potential problems and determine why (if possible) total coliform - an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions. Level 2 Assessment: A level 2 assessment is a very detailed study of the water system to identify potential problems and determine why (if possible) - Contaminant Level Goal as feasible using the best available treatment technology. Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the Maximum - health. MCLG's allow for a margin of safety. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to - mg/l: milligrams per liter or parts per million (ppm) or one ounce in 7,350 gallons of water. - ug/l: micrograms per liter or parts per billion (ppb) or one ounce in 7,350,000 gallons of water. - Avg: Regulatory compliance with some MCL's are based on running annual average of monthly samples. - Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant allowed in drinking water - to health. MRDLG's allow for a margin of safety. Maximum Residual Disinfectant Level Goal (MRDLG): The level of disinfectant in drinking water below which there is no known or expected risk - mrem: millirems per year (a measure or radiation absorbed by the body) - ppb: parts per billion or micrograms per liter or one ounce in 7,350,000 gallons of water. - ppm: parts per million or one ounce in 7,350 gallons of water. - TT or Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water | N. | | | | _ | | _ | | | | _ | | | _ | | | _ | | | | _ | | _ | | | _ | _ | | | |--|---|-----------|---|---|----------------------------------|---|---|----------------------------------|---|---|--|---|-----------|--------------------------------------|--|---|----------|--------------|--------------------------------|-----------|--|------------|-----------------|--|--|-------------|------------------|--------------------------------| | Zinc | Sodium | Nitrogen) | Nitrate
(Measured as | | | Manganese | | | Iron | | | Fluoride | | | Barium | | | Contaminants | Inorganic | (HAAS) | Haloacetic Acids | (TThm) | Trihalomethanes | Total | Chlorine | By-Products | and Disinfection | Disinfectants | | 2021 | 2021 | | 2021 | | | 2021 | | | 2021 | | | 2021 | | | 2021 | | | Date | Collection | | 2021 | | | 2021 | 2021 | | Date | Collection | | 0.11 | 81 | | 0.28 | | | 21 | | | 0.52 | | | 0.853 | | | 0.05 | | Detected | Level | Highest | | 2 | | | 7 | 0.7 | Detected | Level | Highest | | 0.016 - 0.11 | 17 - 81 | | 0 - 0.28 | | | 0-21 | | | 0 - 0.52 | | | 0.45 - 0.853 | | | 0.023 - 0.05 | | Detected | Levels | Range of | | 1.78 - 1.78 | | | 7.02 - 7.02 | 0.47 - 0.87 | Detected | Levels | Range of | | И | | | 10 | | | 150 | | | | | | 4 | | 1 电影 医多种 | 2 | | | | MCLG | the total | No goal for | נווכ נסנמו | the total | No goal for | MRDLG = 4 | | | MCLG | | И | | | 10 | | | 150 | | | 1.0 | | | 4.0 | | | 2 | | | | MCL | | 60 | | | 80 | MRDL = 4 | | | MCL | | ppm | ppm | | ppm | | | qdd | | | ppm | | | ppm | | | mdd | | | | Units | | daa | | 777 | nnh | maa | | | Units | | Z | Z | | Z | | | Z | | | z | | | Z | | | Z | | | | Violation | | Z | | | z | z | | | Violation | | This contaminant is not currently regulated by USEPA. However, the state regulates. Naturally occurring discharge from metal. | Erosion from naturally occurring deposits;
Used in water softener regeneration | deposits. | Runoff from fertilizer use; Leaching from | regulates. Erosion of natural deposits. | by the USEPA. However, the state | This contaminant is not currently regulated | regulates. Erosion of natural deposits. | by the USEPA. However, the state | This contaminant is not currently regulated | from fertilizer and aluminum factories. | which promotes strong teeth; Discharge | Erosion of natural deposits; Water additive | deposits. | metal refineries; Erosion of natural | Discharge of drilling wastes; Discharge from | | | | Likely Source of Contamination | | By-product of drinking water disinfection. | | o o | By-product of drinking water disinfection. | Water additive used to control microbes. | | | Likely Source of Contamination | | | | | | | | | | Radon and Uranium | |--|-----------|-------|-----|------|-------------|----------|------------|----------------------------| | Erosion of natural deposits | z | pCi/L | 15 | 0 | 3.13 - 5.36 | 5.36 | 2021 | Gross Alpha excluding | | Erosion of natural deposits | z | pCi/L | 5 | 0 | 0-0.85 | 0.85 | 2021 | CombinedRadium226/228 2021 | | | | | | | Detected | Detected | | | | | | | | | Levels | Level | Date | Contaminants | | Violation Likely Source of Contamination | Violation | Units | MCL | MCLG | Range of | Highest | Collection | Radioactive | | | | | | | | | | | ## PFAS investigative sampling per liter or parts per trillion). There are no numerical standards for drinking water at this time, however, the IEPA has developed health based guidance levels. The IEPA guidance level for PFBS is between 3.5 - 5.2 ng/l (nanograms per liter or parts per trillion). The analyte PFOS (Perfluorooctane sulfonic acid) was also detected and slightly elevated at between 2.0 - 2.3 ng/l (nanograms sites were non-detection with the exception of two out of eighteen analytes at Tap # 1. The sampling analyte PFBS (Perfluorobutane sulfonic acid) was detected and was slightly elevated at https://www.epa.gov/pfas we recommend the installation of a whole house water filter that removes PFAS. For information on PFAS and other substances including possible health effects, visit the EPA web site 2,100 ng/l and PFOS is 14 ng/l. None of our sample results at any finished water well site exceeded any IEPA PFAS guidance levels. If you are concerned about PFAS in your home drinking water College View Subdivision again participated in the new 2021-22 PFAS (Per & Polyfluoroalkyl Substances) investigative water sampling this spring. All finished water samples at our 4 well ## Source Water Assessment protection efforts, you may access the IEPA web site at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl. version of the completed source water assessment including the importance of source water, susceptibility to contamination, determination and documentation/recommendation of source water at the Miller Field House in College View Park or call Carl Groth, President at 1-815-838-9025. The source water assessment for our supply has been completed by the IEPA. To view a summary College View Community Association wants to keep you informed about your water quality. If you would like more information, please attend our regularly scheduled monthly meetings ### Source of Water ongoing remediation that may be of concern. The IEPA has determined that the source water obtained from College View Subdivision wells #1, #2, & #3, is susceptible to contamination. This data on the wells. determination is based on a number of criteria including: monitoring conducted at the wells, monitoring conducted at the entry point to the distribution system, and the available hydrogeological Subdivision wells. Furthermore, information provided by the Leaking Underground Storage Tank and Remedial Project Management sections of the IEPA indicated several additional sites with Based on information obtained in a well site survey published in 1992 by the IEPA, nine potential sources of possible problem sites were identified within the survey area of College View