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Phonon-glass electron-crystal

[Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 407-

440 (CRC, Boca Raton, FL USA, 1995).]

Phonon-glass electron crystal (PGEC)

• Cage forms regular periodic lattice in

which electrons or holes move freely

• Loosely bound rattler scatters phonons

reducing thermal conductivity to

glass-like values

• Skutterudites, clathrates, cobaltates



Phonon-glass electron-crystal

LaFe4Sb12 & CeFe4Sb12

• Powder measurements on 

IN4 & IN6 at the ILL

• See well defined phonons

• Quasi-harmonic coupling 

between guest & host lattice

[Koza, M. M., et al., Breakdown of phonon glass paradigm in La- and Ce-

filled Fe4Sb12 skutterudites. Nature Mater. 7, 805-810 (2008).]
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Avoided crossing in clathrates

[Christensen, M. et al., Avoided crossing of rattler modes in thermoelectric 

materials. Nature Mater. 7, 811-815 (2008).]

Ba8Ga16Ge30

• Ba guest atoms in cages of Ge & Ga

• Spring model describing interaction 

between guest atoms  and cage walls  

• Avoided crossing of acoustic phonon 

of the cage and flat mode of the guest

• Single-crystal Inelastic Neutron 

Scattering data from RITA-II at PSI
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P-type thermoelectric oxides

• Sodium cobaltate better than semiconductors already at high temperatures!

[Terasaki et al. Phys. Rev. B 56 R12685 (1997); Wang et al. Nature 423, 425 

(2003); Lee et al. Nature Mater. 5, 537 (2006).]



P-type thermoelectric oxides

Thermal conductivity

[Supplementary Information Lee et 

al. Nature Mater. 5, 537 (2006)]

• NaxCoO2 a few W/mK for high x

• NaCoO2 much higher 
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 Tunable number of Na+ ions 

 x = 0  to 1 per CoO2

Na can occupy A or C position

allowed positions

Na1 if C position

Na2 otherwise

Crystallographic structure

Na can occupy B or C position



• Vacancies potential varies as 1/d

• Promotion of a Na2 to a Na1 site

• Lowers surface energy

• Drives vacancy droplet formation

Vacancy clustering

• Large clusters become unfavourable

• Na1 core cost too high



Neutron diffraction

• Are the Na ions inside multi-vacancy 

clusters rattlers inside cages?

• Are they responsible for low thermal 

conductivity?

Roger et al., Patterning of sodium ions and the control of electrons

in sodium cobaltate. Nature 445, 631 (2007)



Inelastic X-ray Scattering (IXS)

ID28 at the ESRF

• Study sub-millimetre single crystals throughout Brillouin zone

• Energy resolution ~ 1meV



Inelastic X-ray Scattering (IXS)

• Typical IXS data in the square phase at T ~ 200 K

• Sharp energy line shapes show that it is not a phonon glass

ΓМ

Q = (1.17,0,0)

Better for Na0.8CoO2
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Inelastic X-ray Scattering (IXS)

• Typical IXS data in the square phase at T ~ 200 K

• Sharp energy line shapes show that it is not a phonon glass

M

Q = (1.5,1.5,1)

Lose some sharp peaks 



Inelastic X-ray Scattering (IXS)

• Typical IXS data in the square phase at T ~ 200 K

• Sharp energy line shapes show that it is not a phonon glass

Off axis

Q = (1.175,1.174,1.084)

Data from 9 detectors 



Inelastic X-ray Scattering (IXS)

Low energy transfer

Q = (1.25,1.25,1)

Arrows indicate position 

of rattling mode 

• Typical IXS data in the square phase at T ~ 200 K

• Sharp energy line shapes show that it is not a phonon glass



Inelastic X-ray Scattering (IXS)

• Phonon dispersion determined by IXS

• CASTEP calculation for NaCoO2
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Phonon modes

• Rattling mode observed using IXS

• Na 2b ions have large-amplitude vibrations



Phonon modes

• Effect of rattlers on a typical optical phonon

• Na 2b ions have large vibrational amplitude



Phonon density of states

• Rattler only affects modes below E ~ 40 meV

• Transfer from sharp peaks to low energy



Anharmonicity

• Frozen phonon calculation for rattling mode

• Asymmetry indicates anharmonicity



Phonon lifetimes

• Frozen phonon calculation for rattling mode

• Asymmetry indicates anharmonicity



Thermal conductivity

Thermal conductivity given by

• Quantitative understanding of thermal conductivity



Composition dependence

Previous IXS experiment

[Rueff et al., PRB 74, 020504 

(2006)]

• Na0.7CoO2 crystal of unknown 

superstructure

• Rattling mode is golden line

• Rattling modes persist over wide 

composition range



Temperature dependence

• Renormalisation to lower energy

• Broadening of energy line width

Q = (1.1,1.1,1) 



Temperature dependence

• Rattling mode persists to elevated temperatures

• Important for power recovery applications 

Square phase T = 200 K



Temperature dependence

• Rattling mode persists to elevated temperatures

• Important for power recovery applications 

Striped phase T = 320 K



Temperature dependence

• Rattling mode persists to elevated temperatures

• Important for power recovery applications 

Disordered phase T = 400 K



Conclusions

[D.J. Voneshen et al., Suppression of thermal conductivity by rattling 

modes in thermoelectric sodium cobaltate. Nature Mater. 12, 1028 

(2013)]

• We have directly observed an Einstein-like  rattling mode

• Quantitatively account for observation of low thermal conductivity

• Next stages:

- Apply these techniques to other materials

- Study anharmonicity in this way

→ First principles calculation of thermal conductivity


