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Abstract- Do you ever blame your database for not delivering 

the BI capabilities you expect or for failing to handle 

increased volumes gracefully? Perhaps it is not inherently the 

database’s fault. Could it be an infrastructure problem? There 

may be a better way to match the database and your BI 

workloads. 

Database physical designs vary widely. Designs are always 

implemented within a set of requirements or constraints such 

as performance, budgets, or enterprise hardware standards. 

Over time, physical designs may be optimized for specific 

applications, but they can stretch only so far. One physical 

design might perform well in an OLTP environment but fall 

short of the full potential of a business intelligence 

implementation. A data warehouse will operate most 

efficiently when the BI workload and logical data models are 

matched with the optimal physical database architecture. 

For the BI practitioner, this article will expose physical 

database design for BI workloads such as operational BI, 

management BI, and analytics. For the DBA, it will describe 

techniques to optimize a database for their own workloads and 

deliver a best-fit data  

 

Key Words-  Databases, Data warehouse, OLTP, DBA, 

Logical Data Model. 

 

I. INTRODUCTION 

Data warehouse experts are keenly aware of the role they play 

in bridging the abstract (business requirements for 

information) and the concrete (the technological resources at 

hand). Data warehousing projects often reflect this 

environment, as business analysts and data architects meet 

with business users to understand objectives. The same 

analysts and architects convene to translate the results of these 

conversations into a logical model. Eventually they develop 

technical specifications that their colleagues in the data center 

can parse.   

This hand off between business database specialists can work 

smoothly, but more often than not, something is lost in 

translation. Designing the right technical specifications for a 

successful project depends on understanding how (and under 

what circumstances) the physical database environment 

bolsters or weakens the data warehouse’s performance. 

For data warehouse architects, there are four main models to 

consider:  

Symmetric Multi-Processing (SMP), 

Cluster,  

Massively Parallel Processing (MPP), and  

Grid. 

These different approaches all address the same goal: 

processing large amounts of data. The challenge is to provide 

enough disk space, processing power, and network bandwidth. 

SMP systems have multiple CPUs to provide scalable 

processing capability and have external storage servers, 

typically connected over the network.  

Clusters are multiple servers attached to storage, where all 

components operate as a single virtual server. 

 MPP systems have multiple CPUs directly attached to storage 

that operate as coordinated yet independent components. 

 Grids are collections of heterogeneous computers whose 

resources are invoked to work in parallel on a complex 

problem or massively distributed data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following section examines three types of BI-related work 

and how they pose different challenges to the CPU power, 

disk space, and connectivity balance. Understanding these 

challenges is the key to selecting the best physical architecture 

model for your particular data warehousing project. 

Business Requirements Expressed as BI Workload     

Databases have their own architectural challenges, especially 

when the dimensions of time and data volume are considered. 

The data warehouse must serve more users who are 

performing a greater variety of tasks. Meanwhile, the 
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transaction database is under pressure to deliver operational 

reporting in near real time. 

We will look at three types of workloads for data warehouses 

in terms of the physical design challenges they present: 

operational BI, enterprise BI, and historical BI. Most of the 

work involving the data warehouse (or variations such as 

operational data stores and data marts) falls into one of these 

three categories.  

These categories do not include the high-transaction, 

operational database, nor OLTP-only systems, although in 

practice, these systems are asked to handle some BI tasks. 

When BI workloads are viewed from the perspective of the 

demands placed on the physical architecture, these 

characteristics stand out: 

  Data volume 

 Number of users 

 Types of queries 

 Frequency and timing of access 

 Latency requirements 

While there are many categories of BI activities, these five 

workload characteristics most clearly expose how a database’s 

physical architecture affects the data warehouse. Table 1: 

Maps out types of work that data warehouses may perform 

and the architecture models that best match their requirements. 

The “Physical Architecture Models” section later in this article 

provides details on how the architecture models process data 

and how this affects data warehouse capabilities. 

Operational BI 

TDWI defines operational BI this way: “Operational BI 

delivers information and insights to a broad range of users 

within hours or minutes for the purpose of managing or 

optimizing operational or time-sensitive business processes.” 

Although operational BI is an evolving term, some of the 

ways in which it will impact the data warehouse are clear. 

Data warehouses will be called upon to serve more users, keep 

data more current, handle different types of inquiries, and tie 

into operational data applications. One characteristic of 

operational BI—driving information out to the edges of an 

organization into areas previously considered tactical—will 

impact the physical architecture. Users once satisfied by static 

Monday-morning reports are being challenged to make 

information-based decisions in real time. 

The operational BI factors most likely to challenge data 

warehouse infrastructure include: 

Data volume: Large with rapid growth 

 Number of users: Hundreds to thousands 

 Types of queries: Simple, few joins, small set of fields 

 Frequency and timing of access: Continuous with somewhat 

predictable spikes (that will follow the pattern of spikes in 

demand on operational systems) 

 Latency requirements: Near-real-time for currency of data 

and report delivery. 

Data warehouses will be called upon to serve more users, keep 

data more current, handle different types of inquiries, and tie 

into operational data applications. 

One characteristic of operational BI—driving information out 

to the edges of an organization into areas previously 

considered tactical—will impact the physical architecture. 

Users once satisfied by static Monday-morning reports are 

being challenged to make information-based decisions in real 

time. 

The operational BI factors most likely to challenge data 

warehouse infrastructure include: 

 Data volume: Large with rapid growth 

 Number of users: Hundreds to thousands 

 Types of queries: Simple, few joins, small set of fields 

 Frequency and timing of access: Continuous with somewhat 

predictable spikes (that will follow the pattern of spikes in 

demand on operational systems) 

 Latency requirements: Near-real-time for currency of data 

and report delivery. 

Operational BI will multiply the numbers of users (or Web 

services) requesting information on a daily basis and place 

“real-time” or “on-demand” pressures on data warehouses. 

Operational BI in its most basic form might be fulfilled by 

reporting solutions that ERP, CRM, and other operational 

suites already have. There is one absolute difference: data 

volume.  

The customer service representative is looking up five years’ 

worth of history, not five months’. A physical architecture 

built for OLTP simply cannot perform when handling large 

amounts of data (more than 500 GB).when grid computing is 

ready for mass adoption, it will change many of the 

assumptions underlying BI today. 

Shared Resources Not many organizations have built a 

platform for operational BI, and few will have the opportunity 

to do so, since the order of the day will be to retrofit or re-

purpose existing infrastructure. SMP will stretch only so far in 

terms of concurrent requests and refresh times. The SMP 

architecture that had performed so well will reach scalability 

and performance limits very quickly when exposed to the 

factors just described. 

Clusters might stretch further, especially if data and associated 

workloads can be distributed in a method that matches the 

way people actually use the system. The drawback here is that 

so much configuration and database optimization will be 

required that even minor changes in data or query types can 

become resource-intensive projects. 

The optimal architecture model for this level of concurrency is 

one that features shared-nothing parallel processing. MPP 

simultaneously addresses capacity and computing needs, 

which removes the most significant barriers to scalability. The 

work of many can be processed without needing to prioritize 

queries or throttle performance on some to speed others. 

Theoretically, if MPP were well-suited, grid would be better. 

However, grid computing has been implemented successfully 
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only by a handful of the most innovative, technology-rich 

organizations. When grid computing is ready for mass 

adoption, it will change many of the assumptions underlying 

BI today. 

 

Management BI  

Management BI encompasses the information services 

required by strategic decision makers, such as dashboards and 

dynamic reports with drill-down and exploratory capabilities. 

These interfaces with their push-button views of information 

are creating expectations about the freshness of data. In 

addition, the flexibility to browse through different 

dimensions and drill into details could result in more ad hoc 

querying into various data sets. 

Although management BI is the most mature type of BI 

workload, it is changing somewhat because the enterprise user 

is working with information in more varied and spontaneous 

ways, which poses its own challenges (especially in 

flexibility) to the data warehousing infrastructure. Physical 

architecture must support these requirements: 

Data volume: Slower, more controlled growth; one or two 

years of history 

Number of users: Lower hundreds 

 Types of queries: Simple, few joins, ad hoc fetches of detail 

 Frequency and timing of access: Varies widely, but can 

usually be scheduled 

 Latency requirements: Monthly to daily. 

This is the most common usage scenario, and the supporting 

physical architecture models dominate the data warehousing 

infrastructure landscape. 

 

Balanced Resources 

The physical architecture that was designed for this usage 

context is SMP. For many organizations, it is still the best-

suited architecture. For management BI, the  

More important problem is not which model to use but how to 

select the components within the architecture. 

Although IT has the most experience in designing 

architectures to support management BI, it’s still not an easy 

task and requires careful planning, especially around capacity 

planning. Forecasting growth and choosing an architecture 

that can accommodate just-in-time demands are important to 

avoid either overbuying capacity or being caught short. 

Historical Analytics 

Historical analytics refers to the practice of analyzing data that 

has been collected over a period of time. In some industries, 

this period may span a client’s lifetime or a century. Historical 

analytics is characterized by large volumes of atomic, granular 

data that is accessed by a limited set of highly skilled users 

who execute complex queries. Typically, the work is 

scheduled and prioritized, and business cases are required to 

justify.  

Historical BI includes data mining, predictive analytics, and 

pattern detection, which presents several challenges to the 

physical architecture: 

 Data volume: Very large and constantly increasing 

 Number of users: 25 or fewer 

 Types of queries: Very complex, computing intense 

 Frequency and timing of access: Infrequent, usually planned 

 Latency requirements: Low 

Historical analytics are so resource-intensive that even the 

most powerful platforms usually support low concurrency and 

user counts. Data loads and backups must usually be 

scheduled for times when queries are not running to avoid 

overtaxing the data warehouse. 

 

More Power Needed 

The physical architecture best suited to this level of analytics 

can be summed up in one word: more. The SMP and cluster 

models, which start with the principle of one system and scale 

out from there, have too many insurmountable constraints. A 

computer with enough storage attached still faces a shortage 

of computing power and network bandwidth. 

Combining computing resources in a clustered approach 

theoretically bring enough computing power and disk capacity 

together, but the complexity (and additional computing 

resources) needed to orchestrate this work allocation makes it 

unfeasible. Only MPP and grid models have succeeded in 

supporting historical analytics to the extent that at least large 

enterprises can implement them. 

 

Physical Architecture Models 

The physical architecture of a database 

comprises the physical data model that is adapted for a  

particular database and its server and storage hardware, 

network components, and interconnectivity. 

The physical architecture facilitates optimal database 

operations, so it must be selected carefully and designed 

properly to avoid database performance problems. If the 

physical architecture is poorly designed and doesn’t match the 

database’s expected workload, it will hamper performance. 

For the management BI, the more important problem is not 

which model to use but how to select the components within 

the architecture. 

The physical architecture of a database comprises the physical  
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data model that is adapted for a particular database and its 

server and storage hardware, network components, and 

interconnectivity. he physical architecture facilitates optimal 

database operations, so it must be selected carefully and 

designed properly to avoid database performance problems. If 

the physical architecture is poorly designed and doesn’t match 

the database’s expected workload, it will hamper performance. 

One need only review the history of RDBMS to understand 

how a solid architecture might still be at the root of 

performance issues. The RDBMS was developed in the 

context of client/server computing.  

The client/server environment placed heavy emphasis on 

appropriately dividing the processing Between the client and 

the server; indeed, it took several years to move from thin-

client to fat-client and back to thin-client architectures. An 

enterprise client/server environment might include hundreds 

of clients, but commonly only one server.  

The approach to solving performance bottlenecks was to fine-

tune the workload split (by vendors) and to acquire bigger and 

better servers (by users). One of the limitations inherent in this 

system is that the communications between server and clients 

at some point had a dedicated channel and had to flow in and 

out of a few I/O channels. 

These transaction-oriented databases were designed to 

accommodate more users by leveraging more CPUs and 

shared-memory SMP servers that move a large number of 

small, 8K data blocks from storage. 

That was 20 years ago, and since then, several physical 

topographies and computing models have been developed. 

DBases have kept pace taking advantage of them, mainly by 

including new internal mechanisms that allow a database to be 

adapted to or optimized for one of those environments. 

On one level, these new physical blueprints can be divided 

into the “shared-everything” and the “shared-nothing” models. 

In a shared-everything model, the components operate as 

though they comprise a single machine. Because they contend 

for the same resources, work is not truly done in parallel. In 

the shared-nothing model, the components work 

independently even if they are part of a single machine and 

can process in parallel. Both offer ways to fully leverage all 

the computing resources available within an architecture, but 

with very different implications. In the shared-everything 

camp are SMP and clusters. Shared-nothing models are MPP 

and grid. 

The following sections will review each model, point out 

advantages and disadvantages, and most important, describe 

which workloads each best supports. 

 

II. DESCRIPTION OF THE MODELS  

2.1.1 SMP 

Symmetric multi-processing (SMP) systems are comprised of 

two or more CPUs working in a shared-everything 

environment . They primarily address the additional 

computing cycles that are required to process an increasing 

number of transactions. To build out an SMP system to 

support a data warehouse, one typically adds storage(either 

NAS or SAN) to accommodate data volumes. The system 

architect must balance processing capacity and storage 

resources to ensure acceptable performance. In an 

environment of fast or unpredictable data growth, this is an 

extremely challenging and involves constant tuning. 

Unfortunately, hardware tuning is usually not enough to keep 

a data ware house operating smoothly; the database usually 

requires careful design and some kind of optimization. 

While SMP scales on the computing side of the data 

warehouse infrastructure and SAN/NAS scales on the storage 

side, the system as a whole has significant scalability limits. 

Because the processing capabilities are separated from the 

actual data by a network, data is always being shuttled around 

the network. 

 Within an SMP architecture, all  data blocks must be sent to 

the database shared memory can be enhanced to provide more 

bandwidth and speed, but only at great expense and within 

uneven performance. More important, even though a network 

can be built out to support data warehouse traffic, other 

applications that rely on the network are affected to some 

extent when terabytes of data are moving through it.    

 

2.1.2 Cluster Model 

Clusters are groups of SMP servers that are unified into a 

single computing environment. Cluster are shared- every thing 

environment that supports close coordination’s of processing, 

but just as in SMP, they do complete for resource and can step 

on each other.  

At the risk of over simplifying the dynamics of innovation, the 

shortcomings of SMP in certain applications led to clusters. 

Clusters do provide the additional resources to keep pace with 

heavier processing loads. In an SMP environment, one can 

scale storage easily, and network throughout can be increased 

to a certain extent . Clustering allowed scaling of the database 

server by making available more CPUs, memory, and I/O 

cycles. Allocating more resources to a task does not 

necessarily speeds its completion. 
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2.1.3 MPP  

SMP and cluster architecture use a shared – everything model, 

which shields applications from some of the inherent 

complexity. At the same time, shared everything can result in 

significant resource contention that can't be resolved by 

installing more hardware. The nature of data warehousing 

involves working with massive amounts of data, which can 

strain any resource pool. Massively parallel processing (MPP) 

architecture was developed to address this need to combine 

resources while simultaneously dividing the work as 

efficiently as possible. Data warehouse appliance vendors 

have all gravitated to this architecture as the most efficient  

Model for Supporting large databases. 

Many of the hardware components found in MPP architecture- 

balanced CPU and disk capacity as well as system 

interconnect mechanism. The significant difference is that the 

work is divided across these resources in a very different 

manner. The work is always delegated it to CPU associated 

with a particular data range. In a data warehouses appliance, 

where Cup’s are physically located next to the disk, the 

association is straightforward. 

Once the work is allocated, the CPU, memory, I/O resources 

work exclusively on its result. Only the results are then sent 

through the interconnect and combined with other results 

before being sent over the network to the client. The 

coordination of the independently functioning components 

occurs via the system interconnect and software modules 

sitting on each of the subsystems to provide even more 

sophisticated orchestration of work than cluster offer. 

MPP ensures equilibrium between disk capacity and 

processing power, just as cluster do. However ,MPP also 

eliminates the last bottleneck- network bandwidth. First, 

because the MPP architecture creates a virtual subsystem, 

none of its internal subsystem, none of its internal 

communications consumes bandwidth on the remainder of the 

LAN or Wan. Second, MPP does not involve shifting massive 

volumes of data in order to process it . It does not fetch multi 

terabytes of data from a storage farm.  

 

2.1.4 GRID 

There are many ways to define a grid. The ambiguity and 

confusion around what a grid is and how it's supposed to 

functions are probably signs of how early grids are in their 

development.  

A generally accepted definition of a grid is a large, 

heterogeneous collection of geographically dispersed 

computers whose resources are shared over a network to 

create a supercomputer. Of one computer in the grid fails, the 

grid software simply reassigns its job to another computer in 

the grid. Failed computers in a grid are repaired or replaced 

whenever it is convenient, as no single computer has a 

significant impact on the grid. Computations-intensive 

applications that draw on otherwise unused processing  

 

capacity. Using this definition, examples of grid are 

Google,IBM blue Gene, and Livermore Lab's infrastructure. 

The power of grid computing is evident- blue Gene topped the 

list of the world's fastest computes for a third year in January 

208 by performing 478.2 trillions calculations per second.  

Here the figure takes components that support other 

applications and shows how they would translate into a data 

warehouse infrastructure grid. 

Here the system inter connect is the outstanding difference 

from the previous model diagrams. In a grid, the system 

interconnect is a general-purpose WAN/ INTERNET 

connection to which the articipants have no specialized 

connection mechanism. In other words, the connection that 

combine the member components into a single system are not 

physical. They a re virtual- that is, invoked through software. 

Another difference in the diagram is that the members are 

constructed on different architectures, use incompatible 

hardware, and run different operating system. 

 

Adjusting DB internals to manage BI workloads: 

Even if there were a perfect physical architecture for data 

warehousing, chances are it would still not be perfectly suited 

to how your organization uses its data warehouse. There will 

always be a gap between the capabilities of the physical 

architecture and the requirement of the data warehouse. 

Typically we find architecture and optimizations pairings: 

Partitioning with SMP(and clusters) 

Data distribution with MPP 

 

2.2 Partitioning and Data Distribution 

 Partitioning: Partitioning was developed in response to data  
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sets that were too large for DBMS to manage. One technique 

for handling large amounts of data is to split it up into a 

collection of manageable parts. Partitioning first allows you to 

isolate data to a subset to avoid scanning large amounts of 

irreverent data. Then the database parallelism can out perform 

standard indexing. 

Another benefit of partitioning is the ability to manage data 

subsets by time. The most common partition key specified in a 

data warehouse is data range. A database partition, and its 

locally managed index, can be loaded in to data warehouse 

without interfering with other partitions. The result is parallel 

operations, with the associated performance and flexibility 

benefits. 

Data distribution: Data distribution is at the foundation of 

MPP.SMP strives to isolate data with portioning to gain 

performance; the MPP environment strives to spread the data 

evenly across all processing nodes to optimize parallel 

database operations, including data loads.  

To ensure that an MPP architecture support the type of work 

your data warehouse performs, you must consider whether 

you are served better by distributing data evenly across disks 

or distributing data according to access patterns or table sizes, 

especially as the data warehouse transitions from one type of 

primary workload to another. Trade offs are part of the 

decision-making process. Will you select a distribution key 

that offers the best performance for a percentage of you BI 

workload or you select a distribution method that offers the 

highest overall average for a mixed BI work load.  

 

 

 

 

 

 

 

 

 

 

 

III. CONCLUSION 

 There is much physical architecture available today's data 

warehouses evolved to address problems arising from limited 

CPU or disk resources. Their emphasis on different aspects of 

the architecture can have a significant impact on how a data 

warehouse performs. Under a set of conditions change, the 

data warehouse performs well. When conditions change, the 

data warehouse performs well. When conditions change, the 

data warehouses may not perform the same level. 

The key building the best infrastructure for your data 

warehouse is to match your organization's access needs with 

the most suitable physical architecture. It sounds simple. The 

challenge is that your data warehouse problem needs to 

execute most, if not all, BI workloads pace with business 

dynamics, more sophisticated users, and technology  

innovation. 
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