Toronto Math Circles: Junior Third Annual Christmas Mathematics Competition

Saturday, December 17, 2016
1:00 pm - 3:00 pm
Each problem is graded on a basis of 0 to 10 points. All the necessary work to justify an answer and all the necessary steps of a proof must be shown clearly to obtain full credit. Some partial credit may be given, but only when a contestant has shown significant and substantial progress toward a solution. Calculators are not allowed.

1. Eddy is trying to guess a four letter pass code. He makes the following five attempts

$$
6087,5173,1358,3825,2531
$$

In each of his guesses, exactly two of the digits are in the correct pass code and these two correct digits are never in correct position. For example, if 1234 is a guess and 1 and 2 are in the correct pass code then 1 cannot be in the first position and 2 cannot be in the second position. Determine the correct pass code.
2. Using only a compass and a straightedge, describe a procedure to construct an 120° angle. Be sure to explain why this angle is 120°. Be sure to include a clearly labeled sketch.
3. Determine if the number $1,116,428,043$ is a perfect square.
4. In a class, there are 10 students. A teacher randomly chooses 5 students and writes their names on a list. If exactly one of the student's name is John, what is the probability that John is on this list?
5. There are n cards placed faced down in a line. A move consists of flipping a faced down card to the faced up position and also flipping the immediate card to its right. Explain why after a finite number of moves there will be no more moves to be made.

Toronto Math Circles: Senior Third Annual Christmas Mathematics Competition

Saturday, December 17, 2016
1:00 pm - 3:00 pm
Each problem is graded on a basis of 0 to 10 points. All the necessary work to justify an answer and all the necessary steps of a proof must be shown clearly to obtain full credit. Some partial credit may be given, but only when a contestant has shown significant and substantial progress toward a solution. Calculators are not allowed.

1. Denote $\lfloor x\rfloor$ to be the largest integer not greater than x. Let $\{x\}=x-\lfloor x\rfloor$. Find all triplets (x, y, z) that satisfy the system of equations

$$
\left\{\begin{array}{l}
x+\lfloor y\rfloor+\{z\}=1.1 \\
\{x\}+y+\lfloor z\rfloor=2.2 \\
\lfloor x\rfloor+\{y\}+z=3.3
\end{array}\right.
$$

2. There are n cards placed faced down in a line. A move consists of flipping a faced down card to the faced up position and also flipping the immediate card to its right. Show that after a finite number of moves there will be no more moves to be made.
3. Let x be a real number such that $0<x<\frac{\pi}{4}$. Arrange the following four numbers in ascending order.

$$
(\cos x)^{(\sin x)^{\sin x}},(\sin x)^{(\cos x)^{\sin x}},(\cos x)^{(\sin x)^{\cos x}},(\sin x)^{(\sin x)^{\sin x}}
$$

4. Let $\triangle A B C$ be an equilateral triangle inscribed in a circle. Let M be a point on the minor arc $B C$. Prove that $M A=M B+M C$. Be sure to include a clearly labeled sketch.
5. A positive integer p is called a Twin Prime Pair Base (TPPB) if p and $p+2$ are both prime numbers. The Twin Prime Conjecture states that there are infinitely many values of p that are TPPB. For this problem, assume that this conjecture is true.
Let n be a positive integer. Denote $a_{n}=b_{n+1}+1$ where b_{n} is the $n^{\text {th }}$ smallest TPPB. Consider the polynomial

$$
f(x)=x^{2 n}+a_{2 n-1} x^{2 n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

Determine if this polynomial can be factored into a product of two non-constant integer coefficient polynomials.

