
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 64 | P a g e

Improvement in Mutation Testing using Boltzmann

Learning for Fault Prediction in Test Cases
Rakesh Ranjan1, Dr. Taresh Singh2, Praveen Kumar Gupta3

1, 3M.Tech (CSE) Scholar, 2Associate Professor

Roorkee College of Engineering, Roorkee, Uttarakhand, India

Abstract - The software engineering is the technology to

process the software and perform various operations on that

software. The testing the important application of software

engineering in which test cases are applied to detect faults

from the software . In the recent times, it is been analyzed that

faults may also arise in the test cases which are used for the

fault detection. In this work, mutation algorithm is applied for

the detection of faults from the software. To improve

performance of mutation algorithm in terms of fault detection

rate the technique of back propagation is applied which learn
from the precious experience and drive new values. The

system is tested on 10 test cases and simulation is performed

in MATLAB. The simulation results show that the fault

detection rate is increased and execution time is reduced.

I. INTRODUCTION

Software is the program or set of programs. It is different from

the program in many ways. As in software many things are
includes: as it consists of the programs, the complete

documentation of that program, the procedure that is use to set

up the software and the various operation of the software

system. Any program is the subset of the software. As on the

other hand, program is the combination of source code and

object code. Software engineering is a systematic, disciplined

and quantifiable approach to design, development and

maintenance of software within cost, time and other

constraints [1]. Systematic and disciplined means the

developer apply well understood techniques in an organized

and discipline way. Cost, time and other constraint means

software developer must ensure that software must be
produced within limited budget and time. Other constraint

means software developer must have great knowledge about

what is required to produce a system and how each activity

should take place in systematic way during development

process. As software requirement is increases day by day. So

it is necessary to maintain the good quality software. To

develop good quality software, software engineering is

required. For this, the developer’s needs to adopt the software

engineering concepts, strategies, and practices to avoid the

conflicts that are occur during the development process.

Software engineering is an approach to develop, maintain and
operate the software. The software development plays a

crucial role in software engineering. Many specific techniques

are required to develop software. The most common thing in

development process is the requirement gathering and

customer needs [2]. If a developer fails to complete the needs

of the customer than he or she may fails to develop good

quality software. Software can be said to of good quality, if it

is able to fulfill the needs of the customer. The customer can

be satisfied in terms of quality, cost and design of the system

software. Many developers adopt the techniques like

systematic and organized approach to develop software. A test

case is set of procedure use to test the software. Test case is a
set of condition under which under which a software tester

determine whether the application or software system is

working correctly or not [3]. To design a test case for

particular software the designer must design positive or

negative test case for the software. Positive test cases are

design to check software under normal condition and negative

test case are design to check software at extreme condition.

The order of test case execution affects the time, at which goal

of testing are fulfilled. If the goal is fault detection then an

improper execution order might reveal most of fault late

which leads to delay in bug fixing activity and the delivery of
software. Software testing is a procedure of testing or

comparing the actual outcome with the expected outcome.

Testing of the software is done in order to check the correct

functionality of the system or project. If the testing will not be

performed then system may lead to catastrophic or improper

results in the field. So it’s better to check or test the system

earlier, so that the excellent results can be produced. Software

Defects Prediction (SDP) includes software metrics, their

attributes like line of code etc. The main goal of software

defects prediction model includes ordering new software

modules based on their defect-proneness and classifying them
whether it is new software or not. The SDP process consists of

two parts: Data Collection and Model Construction [4].

Mutation testing is a kind of testing in which, the application

is tested for the code that was modified after fixing a

particular bug/defect. It also helps in finding out which code

and which strategy of coding can help in developing the

functionality effectively. Mutation testing is by definition a

criterion of testing: the tests are either generated by accident
until the enough numbers of mutations are killed, or the tests

are designed to purposely kill surviving mutations. In the

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 65 | P a g e

latter case, testing of mutations can be categorized as a code

based technique [5]. For this technique to be effective, a great

number of mutants must be produced in a systematic way. If

the testing is successful in determining a difference between a

program and a mutant, another one is killed. Mutation testing

is an accepted technique for improving the quality of
developed software. It is a white box testing technique that is

applicable during unit testing of program and involves

creation and execution of different versions known as mutants

of a program. In case of white-box testing, this can be done by

making systematic changes in the source code of the

component [6]. For black-box testing, the specification of the

component has to be systematically manipulated to generate

test cases. The work is focused on specification-oriented

mutant generation to validate the behavioral specification of

the component.

II. LITERATURE REVIEW

Xiaoxing Yang et.al (2015) explained in this paper that

construction of previous work, and further study whether the

idea of directly optimizing the model performance measure

can benefit software defect prediction model construction. The

work includes two aspects: one is a novel application of the

learning-to-rank approach to real-world data sets for software

defect prediction, and the other is a comprehensive evaluation

and comparison of the learning-to-rank method against other
algorithms that have been used for predicting the order of

software modules according to the predicted number of

defects. The empirical studies demonstrate the effectiveness of

directly optimizing the model performance measure for the

learning-to-rank approach to construct defect prediction

models for the ranking task [7]. Shaik Nafeez Umar et.al

(2013) described in this paper that statistical model, how it

will accurately predict the defects for upcoming software

releases or projects. They have used 20 past release data

points of software project, 5 parameters and build a model by

applying descriptive statistics, correlation and multiple linear

regression models with 95% confidence intervals (CI). In this
appropriate multiple linear regression model the R-square

value was 0.91 and its Standard Error is 5.90%. The Software

testing defect prediction model is now being used to predict

defects at various testing projects and operational releases. We

have found 90.76% precision between actual and predicted

defects [8]. Muhammad Dhiauddin et.al (2012) described in

this paper that an initial effort of building a prediction model

for defects in system testing carried out by an independent

testing team. The motivation to have such defect prediction

model is to serve as early quality indicator of the software

entering system testing and assist the testing team to manage
and control test execution activities. Metrics collected from

prior phases to system testing are identified and analyzed to

determine the potential predictors for building the model. The

selected metrics are then put into regression analysis to

generate several mathematical equations. Mathematical

equation that has p-value of less than 0.05 with Rsquared and

R-squared (adjusted) more than 90% is selected as the desired

prediction model for system testing defects. This model is

verified using new projects to confirm that it is fit for actual

implementation [9]. Mrinal Singh Rawat, Sanjay Kumar
Dubey (2012) proposed in this paper that software defects

may lead to degradation of the quality which might be the

underlying cause of failure. In today’s cutting edge

competition it is necessary to make conscious efforts to

control and minimize defects in software engineering.

However, these efforts cost money, time and resources. This

paper identifies causative factors which in turn suggest the

remedies to improve software quality and productivity. The

paper also showcases on how the various defect prediction

models are implemented resulting in reduced magnitude of

defects [10]. Christopher Henard, (2013) explained in this

paper that mass customization and economics force to design
software product line. It reuses its assets by adding more

features in it. There are many constraints which are

represented by the feature model and allow tailored software

products. It contains thousands and billions of software

products. As a result, due to large size of products, product

line is a challenging. In this paper, existing technique based on

the feature model of the product line by selecting limited set

of products. In this paper test suites are used to detect such

errors. In particular, propose two mutation operators to derive

erroneous feature models (mutants) from an original feature

model and assess the capability of the generated original test
suite to kill the mutants. Experimental results demonstrate that

dissimilar tests suites have higher mutant detection ability

than similar ones, thus validating the relevance of similarity-

driven product line testing [11].

Jan Peleska, (2013) explained in this paper that model based

testing is one of the leading technologies. The key factors are

essential for industrial scale application of MBT. Both are

identified from the feature extraction. With former view they
had described techniques for automated test cases, test data

and test procedure generation for concurrent reactive real

times system which enables for MBT. Their experience

introduced MBT approaches in MBT for testing teams. There

are many scientific problems to improve the acceptance and

effectiveness of MBT [12].

III. RESEARCH METHODOLOGY
The model based mutation analysis is the technique which

generates complex and faulty test data to perform automated

testing. In the presence of faulty data, it is very difficult to

perform efficient testing and analyze system robustness. In

this work, the faults from the generated test cases will be

detected using the Boltzmann learning. The Boltzmann

learning will be the improvement in the model based mutation

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 66 | P a g e

analysis to remove faults from the generated test cases which

will lead to increase system’s testing efficiency. Boltzmann

machines are systems of symmetrically connected units that

settle on stochastic decisions about whether to be on or off.

They have a simple learning algorithm that permits them to

discover complex distributions behind observed data.
Learning or inference in Boltzmann machines is imperative

for many scientific tasks. For inference problems, the weights

on connections and thresholds are settled and are utilized to

represent a cost function. Inference in the Boltzmann

machines is frequently utilized as a tool for some

advancement problems, including troublesome combinatorial

problems that have a place with NP finish or - hard issue

classes, for example, the traveling salesman issue. Learning in

Boltzmann machines requires expectations of one unit as well

as correlations between two units. Accordingly, the precise

estimation of the correlations is essential. The fault prediction

is the technique which is applied to predict the percentage of
faults in the test cases. This work is based on to detect faults

from the test cases using learn-to-rank algorithm. The learn-

to-rank algorithm is based on three steps. The first step is

selection of population. The second step is calculation of

mutation value. The last step is calculation of fitness value.

The calculation of fitness value depends upon the initial

population value which is selected randomly. In this work,

Back Propagation technique is applied in which system learns

from the experience values and derives new values. The

selection of population value is not random. It depends upon

the system condition which is derived using back propagation
algorithm.

Proposed Algorithm
Init population P (t)

 evaluate P (t);

 t := 0;

Network ConstructNetworkLayers()

InitializeWeights(Network, test cases)

For (i=0;i=testcases;i++)
SelectInputPattern(Input fault values)

ForwardPropagate(p)

BackwardPropagateError(P)

UpdateWeights(P)

End

Return (P)

 while not done do

 t := t + 1;

 P' := test case P (t);

recombine P' (t);

mutate P' (t);
 evaluate P' (t);

 P := survive P,P' (t);

 end

Fig: 1 Flowchart of Proposed Work

START

Define the system for the generation of

complex and faulty test data using model

based mutation analysis

Input the generated test cases to

remove faults from the test cases

Apply formula

Error =Desired- Actual

errors

If Error

Reduced

Apply Boltzman

learning to detect

faults from the

project

Shown final output

of number of faults

detected

STOP

Yes

No

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 67 | P a g e

IV. EXPERIMENTAL RESULTS

The proposed work has been implemented in MATLAB and

the results have been analyzed by conducting various

experiments.

Fig 2: Selection of test cases

As shown in figure 2, the proposed algorithm is applied in

which Boltzmann learning algorithm is used with the mutation

analysis. The Boltzmann learning algorithm will learn from

the previous experiences and drive new values

Fig 3: Defect Prediction values along with number of

iterations of E-Mutation

Figure 3 shows the execution graph of defect prediction

values along with number of iterations.

Fig 4: Comparison Graph

As shown in Figure 4, the proposed and existing algorithms

are compared in terms of number of faults detected. It has
been analyzed that number of fault detection is increased in

proposed algorithm as compared to existing algorithm.

V. CONCLUSION
The fault detection is the testing technique which is applied to

detect faults from the software or from the input test cases.

The Mutation is the algorithm which is applied for the faults

in the software. This algorithm selects population randomly

which reduce fault detection rate. In this work, technique of

back propagation is applied in which system learns from the

previous experiences and drive new values. This leads to
improve fault detection rate and reduce execution time. In

future technique will be proposed which is based on bio-

inspired techniques for the fault detection rate.

VI. REFERENCES

[1]. M. Mendonca, A. Wasowski, and K. Czarnecki, “Sat-based

analysis of feature models is easy” in Proceedings of the 13th
International Software Product Line Conference, ser. SPLC ’09.
Pittsburgh, PA, USA: Carnegie Mellon University, 2009, pp.
231–240.

[2]. G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon,
“Automated and scalable t wise test case generation strategies
for software product line” in ICST. IEEE Computer Society,
2010, pp. 459–468.

[3]. Mangal, B. S, “Analyzing Test Case Selection using Proposed
Hybrid Technique based on BCO and Genetic Algorithm and a
Comparison with ACO”, IJCA, 2012.

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10

Fa
u

lt
 V

al
u

e
s

Number of Iterations

Comparison

Proposed
Technique

Existing
Technique

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 68 | P a g e

[4]. Suman and Seema, “A Genetic Algorithm for Regression Test
Sequence Optimization”, International Journal of Advanced
Research in Computer and Communication Engineering Vol. 1,
Issue 7, September 2012

[5]. Bohringer, Christoph, Rutherford, Thomas F, “Integrating

Bottom-Up into Top-Down: A Mixed Complementary
Approach”, 2003

[6]. Christian Murphy, Gail Kaiser, Ian Vo, Matt Chu “Quality
Assurance of Software Applications Using the In Vivo Testing
Approach”, 2004.

[7]. Ghiduk, A. S, “A New Software Data-Flow Testing Approach
via Ant Colony Algorithms” Universal Journal of Computer
Science and Engineering Technology, 1, 64-72, 2011.

[8]. Xiaoxing Yang, Ke Tang, Senior Member, IEEE, and Xin Yao,
“A Learning-to-Rank Approach to Software Defect Prediction”,
IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1,
MARCH 2015

[9]. Shaik Nafeez Umar, “Software Testing Defect Prediction
Model- A Practical Approach”, IJRET: International Journal of
Research in Engineering and Technology, Volume: 02 Issue: 05
| May-2013

[10]. Muhammad Dhiauddin, Mohamed Suffian, Suhaimi Ibrahim,
“A Prediction Model for System Testing Defects using
Regression Analysis”, International Journal of Soft Computing
And Software Engineering (JSCSE) e-ISSN: 2251-7545
Vol.2,o.7, 2012

[11]. Mrinal Singh Rawat, Sanjay Kumar Dubey , “Software Defect
Prediction Models for Quality Improvement: A Literature
Study”, IJCSI International Journal of Computer Science Issues,

Vol. 9, Issue 5, No 2, September 2012 ISSN (Online): 1694-
0814

[12]. Christopher Henard, Mike Papadakis∗, Gilles Perrouin, Jacques

Klein, and Yves Le Traon “Assessing Software Product Line
Testing via Model-based Mutation: An Application to Similarity
Testing”, 2013

