
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3469 | P a g e

SOFTWARE DEFECT FORECASTING BASED

ON CLASSIFICATION RULE MINING
Nafeesa Hamid1, Jyoti Arora2

1M.Tech Student, Desh Bhagat University, Mandi Gobindgarh
2Assistant Professor, Desh Bhagat University, Mandi Gobindgarh

(E-mail: nafisa_hamid@yahoo,com)

Abstract—The ability to measure software defect can be

extremely important for minimizing cost and improving the

overall effectiveness of the testing process. The major amount

of faults in a software system are found in a few of its

components. Although there is variety in the definition of

software quality, it is truly accepted that a project with many

defects lacks the quality of the software. Knowing the causes

of possible defects as well as identifying general software

process areas that may need attention from the initialization of

a project could save money, time and working effort. The

possibility of early estimating the probable faultiness of

software could help on planning, controlling and executing
software development activities. Different data mining

methods have been proposed for defect analysis in the past, but

few of them manage to deal successfully with all of the above

issues. Regression models estimates are difficult to interpret

and also provide the exact number of faults which is too risky,

especially in the beginning of a project when too little

information is available. On the other hand classification

models that predict possible faultiness can be specific, but

not so much use full to give clue about the actual number

of faults. Many researcher used many techniques with different

dataset that predict faultiness. But there are so many
classification rule algorithms that can be effective to predict

faultiness. All these issues motivates to our research in these

field of software defect prediction. In order to improve the

efficiency and quality of software development, we can make

use of the advantage of data mining to analysis and predict

large number of defect data collected in the software

development. This paper reviewed the current state of software

defect management, software defect prediction models and

data mining technology briefly. Then proposed an ideal

software defect management and prediction system, researched

and analyzed several software defect prediction methods based

on data mining techniques and specific models(NB, Logistic,
PART, J48G)

Keywords—Rule Mining; Classificaion; Software defect

Detection, Data Mining.

I. INTRODUCTION

There has been a huge growth in the demand for
software quality during recent ages. As a consequence,
issues are related to testing, becoming increasingly
critical. The ability to measure software defect can be

extremely important for minimizing cost and improving
the overall effectiveness of the testing process. The major
faults in a software system are found in a few of its
components.

Although there is variety in the definition of software
quality, it is truly accepted that a project with many
defects lacks the quality of the software. Knowing the
causes of possible defects as well as identifying general
software process areas that may need attention from the
initialization of a project could save money, time and
working effort.

The possibility of early estimating the probable
faultiness of software could help on planning, controlling
and executing software development activities. A low
cost method for defect analysis is learning from past
mistakes to prevent future ones. Today, there exist several
data sets that could be mined in order to discover useful
knowledge regarding defects.

Different data mining methods have been proposed for
defect analysis in the past, but few of them manage to
deal successfully with all of the above issues. Regression
models estimates are difficult to interpret and also provide
the exact number of faults which is too risky, especially in
the beginning of a project when too little information is
available. On the other hand classification models that
predict possible faultiness can be specific, but not so much
use full to give clue about the actual number of faults.
Many researcher used many techniques with different
dataset that predict faultiness. But there are so many
classification rule algorithms that can be effective to
predict faultiness. All these issues motivates to our research
in these field of software falult/defect prediction.

II. RELATED WORK

In 2006, Bibi,Tsoumakas, Stamelos, Vlahavas, apply
a machine learning approach to the problem of estimating
the number of defects called Regression via
Classification (RvC) [4].The whole process of Regression
via Classification (RvC) comprises two important stages:
Firstly, the discretization of the numeric target variable in
order to learn a classification model, and secondly, the
reverse process of transforming the class output of the
model into a numeric prediction.

Menzies, Greenwald, and Frank (MGF) [5] published
a study in this journal in 2007 in which they compared

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3470 | P a g e

the performance of two machine learning techniques
(Rule Induction and Naive Bayes) to predict software
components containing defects. To do this, they used the
NASA MDP repository, which, at the time of their
research, contained 10 separate datasets.

In 2007, Iker Gondra [6]used a machine learning
methods for defect prediction. He used Artificial neural
network as a machine learner.

In 2007, Oral and Bener [7] used Multilayer
Perception (MLP), NB, VFI(Voting Feature Intervals) for
Embedded software defect prediction. there they used
only 7 data sets for evaluation.

In 2011 Baojun, Karel [3] used classification based
association rule named CBA2 for software defect
prediction. In these research they used association rule
for classification. and they compare with other
classification rules such as C4.5 and Ripper.

In 2011, Song, Jia, Ying, and Liu proposed a general
frame work for software defect-proneness prediction. in
this research they use M*N cross validation with the
dataset (NASA, Soft lab Dataset) for learning process.
and they used 3 classification algorithms(Naive baysed,
One R, J48). and they compared with MGF [5]
framework. In 2010 a research has been done by Chen,
Sen, Du Ge, [8] on software defect prediction using
datamining. In this research they used probabilistic
Relational model and Baysean Network.

III. PROPOSED WORK

A. Overview

In General, before building defect prediction model and
using them for prediction purposes, we first need to decide
which learning scheme or learning algorithm should be
used to construct the model. Thus, the predictive
performance of the learning scheme should be determined,
especially for future data. However, this step is often
neglected and so the resultant prediction model may not be
Reliable. As a consequence, we use a software defect
prediction framework that provides guidance to address
these potential shortcomings.

The framework consists of two components:

 scheme evaluation

 defect prediction.

Figure 1 contains the details. At the scheme

evaluation stage, the performances of the different
learning schemes are evaluated with historical data to
determine whether a certain learning scheme performs
sufficiently well for prediction purposes or to select the
best from a set of competing schemes.

From figure 1, we can see that the historical data are
divided into two parts: a training set for building
learners with the given learning schemes, and a test set

for evaluating the performances of the learners. It is very
important that the test data are not used in any way to
build the learners.

This is a necessary condition to assess the
generalization ability of a learner that is built according
to a learning scheme and to further determine whether or
not to apply the learning scheme or select one best
scheme from the given schemes.

Figure 1: Proposed framework

At the defect prediction stage, according to the
performance report of the first stage, a learning scheme is
selected and used to build a prediction model and predict
software defect. From Fig. 1, we observe that all of the
historical data are used to build the predictor here. This is
very different from the first stage; it is very useful for
improving the generalization ability of the predictor.
After the predictor is built, it can be used to predict the
defect-proneness of new software components.

B. Scheme Evaluation

The scheme evaluation is a fundamental part of the
software defect prediction framework. At this stage,
different learning schemes are evaluated by building and
evaluating learners with them. The first problem of
scheme evaluation is how to divide historical data into
training and test data. As mentioned above, the test data
should be independent of the learner construction.

This is a necessary precondition to evaluate the
performance of a learner for new data. Cross-validation is
usually used to estimate how accurately a predictive
model will perform in practice. One round of cross-
validation involves partitioning a dataset into
complementary subsets, performing the analysis on one
subset, and validating the analysis on the other subset. To
reduce variability, multiple rounds of cross-validation are
performed using different partitions, and the validation
results are averaged over the rounds.

In our framework, an percentage split used for
estimating the performance of each predictive model, that

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3471 | P a g e

is, each data set is first divided into 2 parts, and after that
a predictor is learned on 60% instances, and then tested
on the remaining 40%.

To overcome any ordering effect and to achieve
reliable statistics, each holdout experiment is also
repeated M times and in each repetition the data sets are
randomized. So overall, M*N(N=Data sets) models are
built in all during the period of evaluation; thus M*N
results are obtained on each data set about the
performance of the each learning scheme.

After the training-test splitting is done each round,
both the training data and learning scheme(s) are used
to build a learner. A learning scheme consists of a data
preprocessingmethod,anattributeselectionmethod,andal
earningalgorithm. Evaluation of the proposed framework
is comprised of :

C. Scheme Evaluation Algoritm

Data: Historical Data Set

Result: The mean performance values

1 M=12 :No of Data Set

 2 i=1;

 3 while i<=M do

4 Read Historical Data Set D[i];

5 Split Data set Intances using %split;

6 Train[i]=60% of D; % Training Data;

7 Learning(Train[i],scheme);

8 Test Data=D[i]-Train[i];% Test Data;

9 Result=Test Classifier(Test[i],Learner);

 10 end

Algorithm 1: Scheme Evaluation

D. Defect Prediction

The defect prediction part of our framework is
straightforward; it consists of predictor construction and
defect prediction. During the period of the predictor
construction:

1. A learning scheme is chosen according to the
Performance Report.

2. A predictor is built with the selected learning
scheme and the whole historical data. While evaluating a

learning scheme, a learner is built with the training data

and tested on the test data. Its final performance is the

mean over all rounds. This reveals that the evaluation

indeed covers all the data. Therefore, as we use all of the

historical data to build the predictor, it is expected that the

constructed predictor has stronger generalization ability.

After the predictor is built, new data are preprocessed in

same way as historical data, then the constructed predictor
can be used to predict software defect with preprocessed

new data.

IV. RESULTS AND DISCUSSION

Depending on Accuracy, Sensitivity, Specificity,
Balance performance we choosen 6 Algoritms: Naïve
Bayes Simple, Logistic, J Rip, PART, J48 and J48Graft

Figure 2. Performance Comparison of algorithms

Figure 3: ROC Area

V. CONCLUSION

In our research work we have attempted to solve the
Software defect prediction problem through different
Data mining (Classification) algorithms. In our research
NB and Logistic algorithm gives the overall better
performance for defect prediction. PART and J48 gives
better performance than OneR and JRip.

From these results, we see that a data
preprocessor/attribute selector can play different roles
with different learning algorithms for different datasets
and that no learning scheme dominates, i.e., always

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3472 | P a g e

outperforms the others for all data sets. This means we
should choose different learning schemes for different
datasets, and consequently, the evaluation and decision
process is important.

In order to improve the efficiency and quality of
software development, we can make use of the advantage
of data mining to analysis and predict large number of
defect data collected in the software development. This
paper reviewed the current state of software defect
management, software defect prediction models and data
mining technology briefly. Then proposed an ideal
software defect management and prediction system,
researched and analyzed several software defect
prediction methods based on data mining techniques and
specific models(NB, Logistic, PART, J48G)

REFERENCES

[1] M. Young, The Technical Writer’s Handbook. Mill Valley, CA:

University Science, 1989.

[2] Tao Xie, Suresh Thummalapenta, David Lo, and Chao Liu. Data
mining for software engineering.Computer,42(8):55–62,2009.

[3] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu.
A general software defect-proneness prediction framework.
Software Engineering, IEEE Transactions on, 37(3):356–
370,2011.

[4] Ma Baojun, Karel Dejaeger, Jan Vanthienen, and Bart Baesens.
Software defect prediction based on association rule
classification. Available at SSRN 1785381,2011.

[5] SBibi,GTsoumakas,IStamelos,andIVlahavas.Software defect
prediction using regression via classification. In IEEE
International Conference on, pages 330–336,2006.

[6] Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining
static code attributes to learn defect predictors. Software
Engineering, IEEE Transactions on, 33(1):2–13,2007.

[7] Iker Gondra. Applying machine learning to software fault-
proneness prediction. Journal of Systems and Software,
81(2):186–195,2008.

[8] Ata¸cDenizOralandAy¸seBa¸sarBener.Defect prediction for
embedded software.In Computer and information sciences, 2007.
iscis 2007. 22nd international symposium on, pages 1–6.
IEEE,2007.

[9] Yuan Chen, Xiangng Shen, Peng Du, and Bing Ge.Research on
software defect prediction based on data mining.In Computer and
Automation Engineering(ICCAE), 2010 The 2nd International
Conferenceon,volume1,pages563–567.IEEE,2010.

[10] Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn
Mair. Data quality: Some comments on the nasa software defect
data sets.2013.

[11] [10] Stefan Lessmann, Bart Baesens, Christophe Mues, and
Swantje Pietsch. Benchmarking classification models for
software defect prediction:A proposed framework and novel
findings. Software Engineering,IEEE Transactionson,34(4):485–
496,2008.

[12] Yue Jiang, Bojan Cukic, and Tim Menzies. Fault prediction
using early lifecycle data. In Software Reliability, 2007.
ISSRE’07. The 18th IEEE International Symposium on, pages
237–246. IEEE,2007.

[13] Yue Jiang, Bojan Cuki, Tim Menzies, and Nick Bartlow.
Comparing design and code metrics for software quality
prediction. In Proceedings of the 4th international workshop

onPredictor models in software engineering, pages11–
18.ACM,2008.

[14] Hongyu Zhang, Xiuzhen Zhang, and Ming Gu. Predicting
defective software components from code complexity measures.
In Dependable Computing, 2007. PRDC 2007. 13th Pacific Rim
International Symposiumon,pages93–96.IEEE,2007.

[15] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina
Monard. A study of the behavior of several methods for
balancing machine learning training data. ACM SIGKDD
Explorations Newsletter, 6(1):20–29,2004.

[16] Charles E Metz, Benjamin A Herman, and Jong-Her Shen.
Maximum likelihood estimation of receiver operating
characteristic(roc) curves from continuously-distributed
data.Statistics in medicine, 17(9):1033–1053,1998.

[17] Qinbao Song, Martin Shepperd, Michelle Cartwright, and
Carolyn Mair. Software defect association mining and defect
correction effort prediction. Software Engineering, IEEE
Transactions on, 32(2):69–82,2006.

[18] Norman E.Fentonand Martin Neil. Acritique of software defect
prediction models.Software Engineering, IEEE Transactions on,
25(5):675–689,1999.

[19] Naeem Seliya and Taghi MKhoshgoftaar. Software qualityes
timation with limited fault data: a semi-supervised learning
perspective. Software Quality Journal, 15(3):327–344,2007.

[20] Frank Padberg,Thomas Ragg,and Ralf Schoknecht.Using
machine learning for estimating the defect content after an
inspection. Software Engineering, IEEE Transactions on,
30(1):17–28, 2004.

[21] Venkata UB Challagulla, Farokh B Bastani, I-Ling Yen, and
Raymond A Paul. Empirical assessment of machine learning
based software defect prediction techniques. In Object-Oriented
Real-Time Dependable Systems,2005. WORDS2005.10th IEEE
International Workshopon, pages 263–270. IEEE,2005.

[22] Norman Fenton, Paul Krause, and Martin Neil. A probabilistic
model for software defect prediction. IEEE Trans Software
Eng,2001.

[23] RaimundMoser,WitoldPedrycz,andGiancarloSucci.Acomparative
analysisoftheefficiency of change metrics and static code
attributes for defect prediction. In Software Engineering, 2008.
ICSE’08. ACM/IEEE 30th International Conference on, pages
181–190. IEEE,2008.

[24] Ganesh J Pai and Joanne Bechta Dugan. Empirical analysis of
software fault content and fault proneness using bayesian
methods. Software Engineering, IEEE Transactionson,
33(10):675–686,2007.

[25] Giovanni Denaro,Sandro Morasca,and Mauro Pezz`e.Deriving
models of software fault-proneness. In Proceedings of the 14th
international conference on Software engineering and knowledge
engineering,pages361–368.ACM,2002.

[26] Ling-Feng Zhang and Zhao-Wei Shang. Classifying feature
description for software defect prediction.In Wavelet Analysis
and Pattern Recognition (ICWAPR), 2011 International
Conferenceon,pages138–143.IEEE,2011.

[27] Mark Hall,Eibe Frank,Geoffrey Holmes,Bernhard
Pfahringer,Peter Reutemann,and Ian H Witten.The weka data
mining software: an update.ACM SIGKDD Explorations
Newsletter, 11(1):10–18,2009.

[28] DMW Powers. Evaluation: From precision, recall and f-measure
to roc., informedness, markedness & correlation. Journal of
Machine Learning Technologies, 2(1):37–63,2011.

28] Mark H Zweig and Gregory Campbell. Receiver-operating
characteristic (roc) plots: a fundamental evaluation too lin
clinical medicine.Clinicalchemistry,39(4):561–
577,1993.

