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Abstract—The ability to measure software defect can be 

extremely important for minimizing cost and improving the 

overall effectiveness of the testing process. The major amount 

of faults in a software system are found in a few of its 

components. Although there is variety in the definition of 

software quality, it is truly accepted that a project with many 

defects lacks the quality of the software. Knowing the causes 

of possible defects as well as identifying general software 

process areas that may need attention from the initialization of 

a project could save money, time and working effort. The 

possibility of early estimating the probable faultiness of 

software could help on planning, controlling and executing 
software development activities. Different data mining 

methods have been proposed for defect analysis in the past, but 

few of them manage to deal successfully with all of the above 

issues. Regression models estimates are difficult to interpret 

and also provide the exact number of faults which is too risky, 

especially in the beginning of a project when too little 

information   is available. On the other hand  classification  

models  that  predict  possible  faultiness can be specific, but 

not so much use full to give  clue  about  the  actual  number  

of faults. Many researcher used many techniques with different 

dataset that predict faultiness.  But there are so many 
classification rule algorithms that can be effective      to predict 

faultiness. All these issues motivates to our research in these 

field  of software defect prediction. In order to improve the 

efficiency and quality of software development, we can make 

use of the advantage of data mining to analysis and predict 

large number of defect data collected in the software 

development. This paper reviewed the current state of software 

defect management, software defect prediction models and 

data mining technology briefly.  Then proposed an ideal 

software defect management and prediction system, researched 

and analyzed several software defect prediction methods based 

on data mining techniques and specific models(NB, Logistic, 
PART, J48G) 

Keywords—Rule Mining; Classificaion; Software defect 

Detection, Data Mining. 

I.  INTRODUCTION 

There has been a huge growth in the demand for 
software quality during recent ages. As a consequence, 
issues are related to testing, becoming increasingly 
critical. The ability to measure software defect can be 

extremely important for minimizing cost and improving 
the overall effectiveness of the testing process. The major 
faults in a software system are found in a few of its 
components. 

Although there is variety in the definition of software 
quality, it is truly accepted that a project with many 
defects lacks the quality of the software. Knowing the 
causes of possible defects as well as identifying general 
software process areas that may need attention from the 
initialization of a project could save money, time and 
working effort.  

The possibility of early estimating the probable 
faultiness of software could help on planning, controlling 
and executing software development activities. A low 
cost method for defect analysis is learning from past 
mistakes to prevent future ones. Today, there exist several 
data sets that could be mined in order to discover useful 
knowledge regarding defects. 

Different data mining methods have  been proposed for 
defect analysis in the past,       but few of them manage to 
deal successfully with all of the above issues. Regression 
models estimates are difficult to interpret and also provide 
the exact number of faults which is too risky,  especially in 
the beginning of a project when too little information   is 
available. On the other hand  classification  models  that  
predict  possible  faultiness can be specific, but not so much 
use full to give  clue  about  the  actual  number  of faults. 
Many researcher used many techniques with different 
dataset that predict faultiness.  But there are so many 
classification rule algorithms that can be effective      to 
predict faultiness. All these issues motivates to our research 
in these  field  of software   falult/defect prediction. 

II. RELATED WORK 

In 2006, Bibi,Tsoumakas, Stamelos, Vlahavas, apply 
a machine learning approach to the problem of estimating 
the number of defects called Regression via 
Classification (RvC) [4].The whole process of Regression 
via Classification (RvC) comprises two important stages: 
Firstly, the discretization of the numeric target variable in 
order to learn a classification model, and secondly, the 
reverse process of transforming the class output of the 
model into a numeric prediction. 

Menzies, Greenwald, and Frank (MGF) [5] published 
a study in this journal in 2007 in which they compared 
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the performance of two machine learning techniques 
(Rule Induction and Naive Bayes) to predict software 
components containing defects. To do this, they used the 
NASA MDP repository, which, at the time of their 
research, contained 10 separate datasets. 

In 2007, Iker Gondra [6]used a machine learning 
methods for defect prediction. He used Artificial neural 
network as a machine learner. 

In 2007, Oral and Bener [7] used Multilayer 
Perception (MLP), NB, VFI(Voting Feature Intervals) for 
Embedded software defect prediction. there they used 
only 7 data sets for evaluation. 

In 2011 Baojun, Karel [3] used classification based 
association rule named CBA2 for software defect 
prediction. In these research they used association rule 
for classification. and they compare with other 
classification rules such as C4.5 and Ripper. 

In 2011, Song, Jia, Ying, and Liu proposed a general 
frame work for software defect-proneness prediction. in 
this research they use M*N cross validation with the 
dataset (NASA, Soft lab Dataset) for learning process. 
and they used 3 classification algorithms(Naive baysed, 
One R, J48). and they compared with MGF [5] 
framework. In 2010 a research has been done by Chen, 
Sen, Du Ge, [8] on software defect prediction using 
datamining. In this research they used probabilistic 
Relational model and Baysean Network. 

III. PROPOSED WORK 

A. Overview 

In General, before building defect prediction model and 
using them for prediction purposes, we first  need to decide 
which learning scheme or learning algorithm should be 
used to construct the model. Thus, the predictive 
performance of the learning scheme should be determined, 
especially for future data.  However,  this step is  often 
neglected and so the resultant prediction model may not be 
Reliable. As a consequence, we use a software defect 
prediction framework that provides guidance to address 
these potential shortcomings. 

The framework consists of two components: 

 scheme evaluation  

 defect prediction. 

 
Figure 1 contains the details. At the scheme 

evaluation stage, the performances of the different 
learning schemes are evaluated with historical data to 
determine whether a certain learning scheme performs 
sufficiently well for prediction purposes or to select the 
best from a set of competing schemes. 

From  figure 1, we  can see that the historical data are 
divided into two  parts:  a training set for building 
learners with the given learning schemes, and a test set 

for evaluating the performances of the learners. It is very 
important that the test  data are not used in any  way  to 
build the learners.   

This is a necessary condition     to assess the 
generalization ability of a learner that is built according 
to a learning scheme and to further determine whether or 
not to apply the learning scheme or select one best 
scheme from the given schemes. 

 

Figure 1:  Proposed framework 

At the defect prediction stage, according to the 
performance report of the first stage, a learning scheme is 
selected and used to build a prediction model and predict 
software defect. From Fig. 1, we observe that all of the 
historical data are used to build the predictor here. This is 
very different from the first stage; it is very useful for 
improving the generalization ability of the predictor. 
After the predictor is built, it can be used to predict the 
defect-proneness of new software components. 

B. Scheme Evaluation 

The scheme evaluation is a fundamental part of the 
software defect prediction framework. At this stage, 
different learning schemes are evaluated by building and 
evaluating learners with them. The first problem of 
scheme evaluation is how to divide historical data into 
training and test data. As mentioned above, the test data 
should be independent of the learner construction.  

This is a necessary precondition to evaluate the 
performance of a learner for new data. Cross-validation is 
usually used to estimate how accurately a predictive 
model will perform in practice. One round of cross-
validation involves partitioning a dataset into 
complementary subsets, performing the analysis on one 
subset, and validating the analysis on the other subset. To 
reduce variability, multiple rounds of cross-validation are 
performed  using different partitions, and the validation 
results are averaged over the rounds. 

In our framework, an percentage split used for 
estimating the performance of each predictive model, that 
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is, each data set is first divided into 2 parts, and after  that 
a predictor is learned on 60% instances, and then tested 
on the remaining 40%.  

To overcome any ordering effect and to achieve 
reliable statistics, each holdout experiment is also 
repeated M times and in each repetition the data sets are 
randomized. So overall, M*N(N=Data sets) models are 
built in all during the period of evaluation; thus M*N 
results are obtained on each data set about the 
performance of the each learning scheme. 

After the training-test splitting is done each round, 
both the training data and learning scheme(s) are used 
to build a learner. A learning scheme consists of a data 
preprocessingmethod,anattributeselectionmethod,andal
earningalgorithm. Evaluation of the proposed framework 
is comprised of : 

C. Scheme  Evaluation Algoritm 

Data:  Historical Data Set 

Result: The mean performance values 

1   M=12 :No of Data Set 

      2   i=1; 

      3   while i<=M do 

4 Read Historical Data Set D[i]; 

5 Split Data set Intances using %split; 

6 Train[i]=60% of D; % Training Data; 

7 Learning(Train[i],scheme); 

8 Test  Data=D[i]-Train[i];% Test Data; 

9 Result=Test Classifier(Test[i],Learner); 

       10  end 

 

Algorithm 1: Scheme Evaluation 

D. Defect Prediction  

The defect prediction part of our framework is 
straightforward; it consists of predictor construction and 
defect prediction. During the period of the predictor 
construction: 

1. A learning scheme is chosen according to the 
Performance Report. 

2. A predictor is built with the selected learning 
scheme and the whole historical data. While evaluating a 

learning scheme, a learner is built with the training data 

and tested on the test data. Its final performance is the 

mean over all rounds. This reveals that the evaluation 

indeed covers all the data. Therefore, as we use all of the 

historical data to build the predictor, it is expected that the 

constructed predictor  has stronger generalization ability.  

After the predictor is built, new data are preprocessed in 

same way as historical data, then the constructed predictor 
can be used to predict software defect with preprocessed 

new data. 

IV. RESULTS AND DISCUSSION 

Depending on Accuracy, Sensitivity, Specificity, 
Balance performance we choosen 6 Algoritms: Naïve 
Bayes Simple, Logistic, J Rip, PART, J48 and J48Graft 

 

 

Figure 2. Performance Comparison of algorithms 

 

Figure 3:  ROC Area 

 

V. CONCLUSION 

In our research work we have attempted to solve the 
Software defect prediction problem through different 
Data mining (Classification)  algorithms. In our research 
NB and Logistic algorithm gives the overall better 
performance for defect prediction. PART and J48 gives 
better performance than OneR and JRip. 

From these results, we see that a data 
preprocessor/attribute selector can play different roles 
with different learning algorithms for different datasets 
and that no learning scheme dominates, i.e., always 
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outperforms the others for all data sets. This means we 
should choose different learning schemes for different 
datasets, and consequently, the evaluation and decision 
process is important. 

In order to improve the efficiency and quality of 
software development, we can make use of the advantage 
of data mining to analysis and predict large number of 
defect data collected in the software development. This 
paper reviewed the current state of software defect 
management, software defect prediction models and data 
mining technology briefly.  Then proposed an ideal 
software defect management  and prediction system, 
researched and analyzed several software defect 
prediction methods based on data mining techniques and 
specific models(NB, Logistic, PART, J48G) 
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