## Calculus 3 - Double Integrals - Polar

Last class we considered the problem of finding the volume under the paraboloid $z=2-x^{2}-y^{2}$ and inside the cylinder $x^{2}+y^{2}=1$, for $z \geq 0$


As the region of integration is a circle, we indicated that maybe using polar coordinates might be the best way to tackle this problem. Recall we introduced polar coordinates where

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{2}+y^{2}=r^{2}, \quad \tan \theta=\frac{y}{x} . \tag{2}
\end{equation*}
$$

We said that sweeping out the region of the circle that

$$
\begin{equation*}
r=0 \rightarrow 1, \quad \theta=0 \rightarrow 2 \pi \tag{3}
\end{equation*}
$$

and asked, how would the double integral change if we used $r$ and $\theta$ instead of $x$ and $y$ ? Would it becomes easier?

## Double Integrals in Polar Coordinates

We consider the double integral

$$
\begin{equation*}
V=\iint_{R} f(x, y) d A \tag{4}
\end{equation*}
$$

This integral has three main parts:

1. the integrand
2. $d A$
3. limits

## 1. The integrand

For this part, we simplify substitute in

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{5}
\end{equation*}
$$

into $f(x, y)$ and simplify. So, in general,

$$
\begin{equation*}
V=\iint_{R} f(x, y) d A=\iint_{R} f(r \cos \theta, r \sin \theta) d A . \tag{6}
\end{equation*}
$$

So if the integral was say

$$
\begin{equation*}
V=\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}-y^{2}} d y d x \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
V=\iint_{R} \sqrt{1-r^{2}} d A \tag{8}
\end{equation*}
$$

2. $d A$

In cartesian coordinates, this is $d A=d x d y$. What about in terms of $d r$ and $d \theta$ ? Let us consider where the $d x d y$ came from. It came from a small area element


Figure 1: Cartesian region of integration


Figure 2: Polar region of integration

Now from our arc length formula where $s=r \theta$ then $d s=r d \theta$. The
change is $r$ is $d r$ and we have

$$
\begin{equation*}
d A=r d \theta \times d r \tag{9}
\end{equation*}
$$

## 3. Limits of Integration

These ultimately come from the picture of the region itself.


Figure 3: Cartesian region of integration
so

$$
\begin{equation*}
\int_{\alpha}^{\beta} \int_{r_{i}(\theta)}^{r_{0}(\theta)} f(r \cos \theta, r \sin \theta) r d r d \theta \tag{10}
\end{equation*}
$$

where $r=r_{i}(\theta)$ is the inner curve and $r=r_{o}(\theta)$ is the outer curve.

Example 1. Find the volume under the paraboloid $z=2-x^{2}-y^{2}$ and inside the cylinder $x^{2}+y^{2}=1$, for $z \geq 0$
Soln. The surface is given by $z=2-r^{2}$ (this is the integrand). We are
integrating over a circle of radius 1 so the volume we seek is given by

$$
\begin{align*}
V & =\int_{0}^{2 \pi} \int_{0}^{1}\left(1-r^{2}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r-r^{3} d r d \theta \\
& =\int_{0}^{2 \pi} \frac{1}{2} r^{2}-\left.\frac{1}{4} r^{4}\right|_{0} ^{1} d \theta  \tag{11}\\
& =\frac{1}{4} \int_{0}^{2 \pi} d \theta \\
& =\left.\frac{1}{4} \theta\right|_{0} ^{2 \pi}=\frac{\pi}{2}
\end{align*}
$$

Example 2. Find the volume between the cone $z=\sqrt{x^{2}+y^{2}}$ and the half sphere $z=\sqrt{8-x^{2}-y^{2}}$.

Soln. The surfaces are


The intersection of the two surface will give the region of integration so

$$
\begin{equation*}
\sqrt{8-x^{2}-y^{2}}=\sqrt{x^{2}+y^{2}} \Rightarrow 8-x^{2}-y^{2}=x^{2}+y^{2} \tag{12}
\end{equation*}
$$

or

$$
\begin{equation*}
x^{2}+y^{2}=4 \tag{13}
\end{equation*}
$$

As there are two surfaces, there will be two in the integrand. The setup is as follows:

$$
\begin{align*}
V & =\int_{0}^{2 \pi} \int_{0}^{2}\left(\sqrt{8-r^{2}}-r\right) r d r d \theta \\
& =\int_{0}^{2 \pi}-\frac{1}{3}\left(8-r^{2}\right)^{2 / 3}-\left.\frac{1}{3} r^{3}\right|_{0} ^{2} d \theta  \tag{14}\\
& =\frac{16}{3}(\sqrt{2}-1) \int_{0}^{2 \pi} d \theta \\
& =\frac{16}{3}(\sqrt{2}-1) 2 \pi
\end{align*}
$$

Example 3. Find the volume of the tetrahedran bound by the planes $x+$ $y+z=1 x=0, y=0$ and $z=0$.
Soln. The surfaces are


The setup for this problem is

$$
\begin{equation*}
\int_{0}^{\pi / 4} \int_{0}^{\frac{1}{\cos \theta+\sin \theta}}(1-r \cos \theta-r \sin \theta) r d r d \theta \tag{15}
\end{equation*}
$$

Clearly, Cartesian is the way to go.
Example 4. Pg. 995, \#18 Evaluate

$$
\begin{equation*}
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} x d y d x \tag{16}
\end{equation*}
$$

Soln.
We first draw the region. We integrate with respect to $y$ first so we go from a bottom curve to a top curve and in this case

$$
\begin{equation*}
y=0 \Rightarrow y=\sqrt{4-x^{2}} \tag{17}
\end{equation*}
$$

Next we integrate with respect to $x$ and so this is a left point and right point

$$
\begin{equation*}
x=0 \Rightarrow x=2 \tag{18}
\end{equation*}
$$



Now the setup

$$
\begin{align*}
\int_{0}^{\pi / 2} \int_{0}^{2} r \cos \theta r d r d \theta & =\int_{0}^{\pi / 2} \int_{0}^{2} r^{2} \cos \theta d r d \theta \\
& =\left.\int_{0}^{\pi / 2} \int_{0}^{2} \frac{1}{3} r^{3}\right|_{0} ^{2} \cos \theta d \theta  \tag{19}\\
& =\left.\frac{8}{3} \sin \theta\right|_{0} ^{\pi / 2}=\frac{8}{3}
\end{align*}
$$

Example 4. Pg. 995, \#24 Evaluate

$$
\begin{equation*}
\int_{0}^{4} \int_{0}^{\sqrt{4 y-y^{2}}} x^{2} d x d y \tag{20}
\end{equation*}
$$

Soln.
We first draw the region. We integrate with respect to $x$ first so we go from a left curve to a right curve and in this case

$$
\begin{equation*}
x=0 \quad \Rightarrow \quad x=\sqrt{4 y-y^{2}} \tag{21}
\end{equation*}
$$

Next we integrate with respect to $y$ and so this is a bottom point and top point

$$
\begin{equation*}
y=0 \Rightarrow y=4 \tag{22}
\end{equation*}
$$

To get an idea of what the right curve is

$$
\begin{equation*}
x=\sqrt{4 y-y^{2}} \Rightarrow x^{2}+y^{2}-4 y=0 \tag{23}
\end{equation*}
$$

so

$$
\begin{equation*}
r^{2}-4 r \sin \theta=0 \Rightarrow r=4 \sin \theta \tag{24}
\end{equation*}
$$



Now the setup

$$
\begin{align*}
\int_{0}^{\pi / 2} \int_{0}^{4 \sin \theta}(r \cos \theta)^{2} r d r d \theta & =\int_{0}^{\pi / 2} \int_{0}^{4 \sin \theta} r^{3} \cos ^{2} \theta r d r d \theta \\
& =\left.\int_{0}^{\pi / 2} \frac{1}{4} r^{4}\right|_{0} ^{4 \sin \theta} \cos ^{2} \theta d \theta  \tag{25}\\
& =4^{3} \int_{0}^{\pi / 2} \sin ^{4} \theta \cos ^{2} \theta d \theta \\
& =4^{3} \cdot \frac{\pi}{32}=2 \pi
\end{align*}
$$

