Calculus 3 - Double Integrals - Polar

Last class we considered the problem of finding the volume under the

paraboloid z = 2 — x* — y? and inside the cylinder x> + y*> = 1, forz > 0
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As the region of integration is a circle, we indicated that maybe using po-
lar coordinates might be the best way to tackle this problem. Recall we

introduced polar coordinates where

x =rcosf, y=rsinb, (1)
and
X’ +y*=1%, tanf = % (2)

We said that sweeping out the region of the circle that

r=0—1, 6=0—2m 3)

and asked, how would the double integral change if we used r and 6 in-

stead of x and y? Would it becomes easier?



Double Integrals in Polar Coordinates

We consider the double integral

V= //f(x,y)dA.

R

This integral has three main parts:

1. the integrand
2. dA

3. limits

1. The integrand

For this part, we simplify substitute in
x =rcosf, y=rsinb,

into f(x,y) and simplify. So, in general,

V://f(x,y)dA://f(rcosé,rsiné)dA.

So if the integral was say

1 pvV1—x2
— /1 — x2 — 12
V—/_1/_ - 1 —x? —y? dydx.

then

vz//mcm

(4)

(5)
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2.dA
In cartesian coordinates, this is dA = dxdy. What about in terms of dr and
d0? Let us consider where the dxdy came from. It came from a small area
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Figure 1: Cartesian region of integration
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Figure 2: Polar region of integration

Now from our arc length formula where s = rf then ds = rdf. The

3



change is r is dr and we have

dA = rdf x dr 9)

3. Limits of Integration

These ultimately come from the picture of the region itself.
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Figure 3: Cartesian region of integration
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B [ro(0)
/ / f(rcos8,rsinf)rdrdf (10)
a Jri(6)

where r = r;(0) is the inner curve and r = r,(0) is the outer curve.

Example 1. Find the volume under the paraboloid z = 2 — x* — y* and
inside the cylinder x*> + y*> =1, forz > 0

Soln. The surface is given by z = 2 — 2 (this is the integrand). We are



integrating over a circle of radius 1 so the volume we seek is given by

2t pl
V= / / (1 —7r*)rdrdd
o Jo

27T 1
= / / r — r3drdd
0o Jo

= /2n L2 11’4‘1 a6 (11)
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Example 2. Find the volume between the cone z = \/x? + y? and the half

sphere z = /8 — x2 — y2.

Soln. The surfaces are

The intersection of the two surface will give the region of integration so

V8 —x2—12=/x2+y2 = 8-y =2+ (12)



or

x2+y2:4

(13)

As there are two surfaces, there will be two in the integrand. The setup is

as follows:

21
V = / / V8 — 12 — r rdrd@

2 2
23
—/ —1 8 — 2 /—1r’d9
3 0

3
— ?(\/E— 1) Om do
= 13—6(\/5— 1)27

(14)

Example 3. Find the volume of the tetrahedran bound by the planes x +

y+z=1x=0,y=0and z = 0.

Soln. The surfaces are




The setup for this problem is

/A s 941—sin9 .
/ / (1 —rcos@ —rsin@) rdrdd (15)
0 0

Clearly, Cartesian is the way to go.

Example 4. Pg. 995, #18 Evaluate

2 VA2
/ / xdydx (16)
0o Jo

Soln.
We first draw the region. We integrate with respect to y first so we go from

a bottom curve to a top curve and in this case
y=0 = y=v4-—x° (17)

Next we integrate with respect to x and so this is a left point and right
point

x=0 = x=2 (18)




Now the setup

/2
/ / rcos @ rdrdf =

cos 0 do (19)

/ r2 cos O drde
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Example 4. Pg. 995, #24 Evaluate

4 py/ay—y?
/ / Y x*dxdy (20)
0 Jo

Soln.
We first draw the region. We integrate with respect to x first so we go from

a left curve to a right curve and in this case
x=0 = x=,/4y—y> (21)

Next we integrate with respect to y and so this is a bottom point and top
point

y=0 = y=4 (22)

To get an idea of what the right curve is
x=J4y—y2 = x*+y*—4y=0, (23)

SO

r2_4rsjn9 =0 = r=4sinb. (24)



Now the setup
/2 r4sinf ’ /2 r4sinf
/ / (rcos@)” rdrdf = / / r3 cos? 0 rdrd
o Jo o Jo

/7‘(/2 14
= -r
0 4

w/2
— 43 / sin* 6 cos? 0 do
0

4sin@ 5
cos” 0 do
0

(25)

:43-3—2=2n.



