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In many applications, time series may not be sampled at equally spaced intervals or they 
may contain data gaps. Measurements have variances, so the time series may also be 
unequally weighted. Time series may also contain systematic noise, such as trends and/or 
datum shifts (offsets). In certain geodynamic applications, seismic noise may contaminate 
the time series of interest or certain components of the time series may exhibit variable 
frequency, such as linear, quadratic, exponential or hyperbolic chirps. 
     Many researchers attempt to modify or edit the time series to satisfy the stringent 
requirements of the Fourier transform. The Least Squares Spectral Analysis (LSSA) is a 
powerful method of analyzing non-stationary and unequally spaced time series, however,  

Introduction 

Conceptually, the LSWA is a combination of the classical wavelet analysis (with variations) 
and the LSSA. The LSWA attempts to fit via least squares a base function (sinusoid or other 
wavelet) to segments of the time series. The segmentation of the time series is achieved 
by a translating (sliding) window whose size is characterized by the number of data points 
it includes. Its size depends on the series inverse sampling interval (𝑴), the number of 
cycles of the base function to be fitted in the segment (𝑳𝟏), the frequency 𝝎𝒌 of the base 
function (dilation) and on the desired time and frequency resolution of the final analysis. 
The (time) length of the window is variable when the series is unequally spaced to 
maintain its size (number of data points) for a specific time and frequency resolution. The 
size of the window must include a minimum number of data points to achieve a 
reasonable redundancy for the least-squares fit. We define the size of the translating 
window as follows: 

     𝑳 𝝎𝒌 =
𝑳𝟏𝑴

𝝎𝒌
+ 𝑳𝟎,  (1) 

where 𝑳𝟎 is the additional number of data points that we consider in the segmentation of 
the time series to achieve the desired time and frequency resolution in the LSWA 
spectrogram. 
     We illustrate the translating windows on an equally spaced time series and two 
different frequencies when 𝑳𝟏 = 𝟏 and 𝑳𝟎 = 𝟎 (Fig. 1). The window size decreases when 
frequency increases. The mid points of the windows coincide with 𝒕𝑗 of the time series 

(shown by vertical red lines). 

it cannot be used for time series with constituents of variable amplitude and frequency. 
     The Short Time Fourier Transform (STFT) and the Continuous Wavelet Transform 
(CWT) are useful for the analysis of equally spaced and non-stationary time series with 
constituents of variable amplitude and frequency. However, the STFT and the CWT are 
not defined for unequally spaced time series, nor do they consider non-stationarity.  
      We develop a new method that can analyze non-stationary and unequally spaced 
time series exhibiting low/high frequency and amplitude variability over time. The 
Least Squares Wavelet Analysis (LSWA) is an extension of the LSSA and can analyze 
rigorously any type of time series superseding any current time series analysis method. 

     Mathematically, if 𝒇 is the  time series of 𝒏 data points, 𝒚 is the segment of the time 
series within the window of size 𝑳 𝝎𝒌  located at 𝒕𝑗, and 𝚽 = 𝐜𝐨𝐬𝟐𝝅𝝎𝒌𝒕 , 𝐬𝐢𝐧 𝟐𝝅𝝎𝒌 𝒕  

is the design matrix of dimension 𝑳 𝝎𝒌 × 𝟐, then the LSWA spectrogram is calculated by: 

 𝐬 𝒕𝒋, 𝝎𝒌 =
𝒚𝑻𝑷𝒚𝚽(𝚽𝑻𝑷𝒚𝚽)−𝟏𝚽𝑻𝑷𝒚𝒚

𝒚𝑻𝑷𝒚𝒚
∈ 𝟎, 𝟏 , (2) 

where 𝑷𝒚 is the principal submatrix of 𝑷 (the inverse of the associated covariance matrix 

of 𝒇) with dimension  𝑳 𝝎𝒌 . When the time series has constituents of known forms, we 
can consider them as additional columns in the design matrix. We may also suppress 
them first before the LSWA is applied. 
     Assume that 𝒇 has been derived from a population of random variables following the 
multi-dimensional normal distribution. The LSWA spectrogram, Eq. (2), follows the beta 
distribution (similar to the LSSA), and a stochastic surface can be obtained above which 
the spectral peaks in the LSWA spectrogram are statistically significant. 

Fig. 2 shows the translating window 
when  𝑳𝟏 = 𝟏  and 𝑳𝟎 = 𝟐  for an 
unequally spaced time series. The 
window size does not change in 
translation, but the window length does. 
The location of the window is defined by 
the median point and not by the middle 
of the window. Notable differences 
between our approach and the classical 
wavelet analysis are in the segmentation 
of the time series to achieve maximum 
resolution in time and frequency. 

Methodology 
Fig. 2: Translating window for an unequally  

  spaced time series for one frequency 

Fig. 1: Translating windows for an equally spaced time series for two frequencies 

Example 2: We analyze an unequally spaced and weighted time series (Fig. 4a)

representing the magnitude of the brightness of V455 Andromeda (www.aavso.org). 
     The CWT (Fig. 4b) cannot account for errors in the time series nor can it considers that 
the time series is unequally spaced. The two constant cyclic frequencies (from physics) 
appear as discontinuous lines of low resolution in the CWT spectrogram (red arrows).  
     In the LSWA (Fig. 4c), the low frequencies are very clearly resolved (red arrows), and 
the presence of short duration high frequencies is clear and distinct (white arrows). The 
peaks shown by the white arrows and the two constant cyclic frequencies (red arrows) 
are statistically significant at 99% confidence level defined by the gray surface in Fig. 4d. 

Example 1: Suppose that

𝑓 𝑡 = sin(𝟓𝟎 × 2𝜋(𝑡 + 𝑡2)) + cos 𝟐𝟎 × 2𝜋𝑡 + 𝑔 𝑡 + 𝜀, where 𝜀 is white noise and 

𝑔 𝑡 =
(4 − 10𝑡) cos 𝟏𝟓𝟎 × 2𝜋𝑡  𝟎. 𝟐 ≤ 𝑡 ≤ 𝟎. 𝟒

0  𝑂. 𝑤.
The LSWA spectrogram of f with the stochastic surface (gray) at 95% confidence level in 
Fig. 3 indicates that f  contains constituents with variable amplitude and frequency. 

Conclusions 
The above examples and many other tests we performed on a large variety of synthetic 
time series (but not presented here) exemplify the power of the LSWA to analyze any time 
series in a rigorous manner and demonstrate its predominance over any spectral and 
classical wavelet analyses methods. The LSWA is particularly suitable for analyzing 
unequally spaced and strongly non-stationary and non-ergodic time series.  
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Fig. 4: A real time series and its analyses 

Fig. 3: f and its LSWA 
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