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Abstract 

Cereal farming is a major economic activity for farmers in most parts of the world. In Kenya, where the 

agricultural sector is the backbone of the economy, cereal production is a major source of income to the 

farmers as it is used for both human and livestock consumption. A common sight in cereal crop farms is 

cereal aphids whose population has been on the rise, aided by various environmental factors that may 

have favoured their increase. The frequent outbreak of aphids and the extent of damage they cause on 

these farms have laid precedence to undertake studies aimed at understanding their population 

dynamics. This study analysed the impact of biological control on cereal aphid population. The study 

developed a mathematical model of the impact of predation on cereal aphid’s population which can 

project stable systems of control. It also determined the extent of effectiveness of the model by 

comparing after modification, stability of the models. Two sets of models based Rosenzweig-

MacArthur prey-predator were developed, through adjusting the function representing the prey-predator 

interaction. It was determined that one model demonstrated the ability to capture a more accurate 

analysis of data compared to the other. After finding the local stability of each, a suitable Lyapunov 

function was developed and used to analyze the global stability of the system. 

Keywords: Qualitative analysis; Mathematical model; Biological control; Cereal aphid; Population 
dynamics.

Introduction 

Cereals include wheat, rice, maize, barley, 

oats, rye, millet, sorghum, buckwheat and mixed 

grains [1-4]. Cereals are important crops in the 

world and the apparent increase of cereal pests 

and diseases over the past years has necessitated 

the need to study cereal pests. Any loss of yields 

caused by pests has serious consequences, both 

locally and internationally [5-9]. Cereal aphids 

can cause considerable losses to yield in some 

years. Their abundance usually varies from year 

to year [3] and from place to place [10]. For 

effective advisory service knowledge of loss of 

yields relative to aphid density and the growth of 

aphid population, are needed [3] Cereal crops are 

seriously affected by different species of aphids. 

According to [11], the most common ones are 

Rhopalosiphum padi (Oat Bird-Cherry, Bird 

Cherry Oat Aphid), R. maidis (Corn Leaf 

Aphid), Sitobion avenae / Syn Macrosiphu 

avenae (Grain Aphid / English Grain Aphid), 

Schizaphis gramium (Green bug), 

Metopolophium dirhodum / Syn Acrythosiphon 

dirhodum (Rose Wheat Aphid / Rose Grass 

Aphid) and Diuraphis noxia (Russian Wheat 

Aphid).  

There have been several studies undertaken 

to understand population dynamics of cereal 

aphids, by looking at their lifecycles. Others 

have taken keen interest on the impact pest 

control has on them. According to [11] the 

damage cereal aphid does to crops include: a) 

transmit virus diseases which cause weakened 

plants and reduced yields; b) feed on shoots of 

host plants; c) suck the sap from leaves which 

then curl and wilt; d) feed on leaves of crops 

causing yellowing and other phytotoxic effects; 
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e) feed on developing ears of crops; f) some 

produce a toxin which may kill young plants. 

This damage on crops has brought about the 

need to control cereal aphid’s population.  

The methods used for controlling cereal 

aphids are mainly divided into three categories: 

chemical control, which involves use of 

insecticides; biological control for example 

breeding resistant crops, release of predators [12] 

and cultural control which involves management 

of the physical or biological environment of the 

crop, an example is crop rotation. The method 

chosen for pest control and management has to 

be considered carefully.  

Chemical insecticides are the most common 

method of pest control in agriculture. On one 

hand, the disadvantages of pesticides are [13] a) 

increased resistance by pest resulting into 

reduction of efficiency; b) high negative impact 

over beneficial insect population; c) new and 

more pest surges; d) reduction of natural pest 

control due to destruction of natural enemies; 

e)incidence of secondary pests;  f) chemical 

residues in crops; g) long term chemical residues 

in the agricultural ecosystem; h)ecological 

accidents; i) long term ecological residues in the 

agricultural ecosystem; j) high number of 

accidents that intoxicate human beings and in 

some cases result into death.  On the other hand, 

in the presence of optimal conditions under 

which aphids have the ability to rapidly multiply, 

the use of insecticides may be necessary. 

Biological control is often effective when aphid 

number is low [14-17].  

The specific objectives of this study have 

been: To develop a mathematical model(s) that 

can show the effect of biocontrol on aphid 

population dynamics, and to carry out qualitative 

analysis of the models. 

Research methodology 

In this study, we have extended the 

mathematical background given by Rosenzweig-

MacArthur prey-predator model using the work 

done by [7]. We have formulated two sets of 

Rosenzweig-MacArthur prey-predator model 

with one predator and the prey, and then solve 

them analytically. The second set of the model 

seeks to modify and thus give a more accurate 

analysis of data compared to the first set of the 

model 

 

Results and discussions 

Cereal aphid population dynamics 

We adopt the model developed by [7-9,14] 

that shows in a simplified form the dynamics of 

aphid population dynamics. This model is a 

combination of a logistic model with a variable 

‘carrying capacity’ and a cumulative density 

model. It is given by: 

,                (1) 

, (2) 

The carrying capacity is assumed to be varying 

between  and  following a cosine 

function, 

                           (3) 

Where k is the carrying capacity, b(t) is the 

cumulative density of aphids at time t, x(t) is the 

density of aphids at time t, a is the scaling 

constant relating aphid cumulative density to its 

own dynamics, and r the maximum potential 

growth rate of the aphids. In the logistic model 

with variable carrying capacity that has been 

incorporated above, the distinctive feature of the 

aphid dynamics is that the decline in numbers 

mainly arises by its own dynamics rather than by 

other species.  

The varying nature of the soluble nitrogen in 

the host plants, which is a good indicator of host 

quality, explains the assumption of the varying 

carrying capacity. On the other hand, in the 

cumulative density model incorporated above, 

the assumption is that the cumulative density is 

the regulatory term that slows down the 

instantaneous rate of increase. This is pegged on 

the assumption that it is the sum of the number 

of individuals multiplied by their life span, 

which determines the slowing down of the 

instantaneous rate of increase. Thus it could 

influence food quality and hence slow down 

population rate of increase. The advantage of the 

Kindlmann model is that it gives the most 

flexible model. However, its limitation is that 

there is the problem of how to measure the time 

varying carrying capacity. 

Biological control 

The focus of this project is predation as a 

means of pest control. We particularly look at 

Coccinellidae (ladybird beetles) as our predator. 
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Coccinellid (ladybird beetles) 

Many studies have been conducted on 

ladybirds as aphid predators because they are 

visible and also have economic importance to a 

variety of crops. The larvae and adults of 

coccinellids feed on the same type of prey 

species and occur in identical habitats [18]. The 

lifetime fecundity of Coccinellid varies greatly 

between species and may range from slightly 

more than 100 to more than 1500 eggs per 

female. Developmental times varies greatly 

between species and is influenced by 

temperature, the amount of food consumed and 

prey species. Coccinellids usually search their 

environment for plants with aphid prey randomly 

rather than systematically, as demonstrated by 

their frequent returns to the same site [4]. When 

searching for oviposition sites, females respond 

to the amount and quality of the prey they 

encounter. In this way, adults ensure that aphids 

will not become scarce before the larvae 

complete their development. Ladybirds seem to 

avoid laying eggs in colonies with high risk short 

term extinction. However, a certain threshold of 

aphid density seems to be necessary to elicit 

adult oviposition behaviour [19].  

The presence of potential competitors may 

also negatively affect oviposition decision. Most 

aphidophagous ladybird species are able to 

develop on a variety of aphid prey. There are, 

however, size constraints. Small species 

consume small aphids and early instar ladybird 

larvae prefer early larval stages of their prey 

species. There is controversy on how large the 

impact of ladybird is, in reducing aphid 

populations. On one hand, many species of 

coccinellid share several characteristics of 

successful predators, such as high searching 

capacity, high voracity, appropriate food range, 

and the capacity to develop on alternative food if 

aphids are scarce [6] implying that ladybirds are 

able to rapidly reduce high aphid densities, and 

especially if both aphid and ladybird peaks 

coincide. On the other hand, it has been argued 

that a lack of synchronization and the restriction 

to one or to two generations per year, limits the 

efficiency of ladybirds in biological control [7]. 

Nevertheless, coccinellids are important 

predators of aphids, especially in cereals and in 

maize, where they contribute to a significant 

reduction in populations of economically 

important aphids [20].   

Prey-Predator model description 

To investigate the effect of ladybird 

predation on cereal aphid’s population, we 

develop two sets of models. The two sets of 

models can be called Case I and Case II for the 

first and the second set of models respectively. 

The difference between the two sets of models 

arises from the functional response term, 

representing the interaction between the predator 

and the prey. In Case I, the interaction is given 

by   , whereas in Case II it is given by  

 . This implies that the variable N, which 

is the prey density, has been introduced, and 

added to the denominator value in Case II. Case 

II Model actually modifies and improves Case I 

Model. The two sets of models are then used to 

analyse the effect of the predator on the prey, 

and a comparison is then made to see how 

effective Case II Model is, more than the Case I 

Model. So, we expect Case II model to give a 

more accurate analysis of data as compared to 

Case I model. We use the Rosenzweig-

MacArthur predator-prey model which has a 

predator depending on the prey. The model we 

develop shows the logistic growth and the 

cumulative density, b, of the prey.  

The predator’s increment rate depends on its 

growth rate µ, and its conversion efficiency ( ), 

as exhibited in the function that represents prey-

predator interaction. All these characteristics of 

the predator and prey are incorporated in this 

model to study their dynamics. This model has a 

Holling Type II functional response, that is, the 

number of prey consumed per predator initially 

rises as the density of the prey increases but then 

levels off with further increase in predator 

population. 

Prey-Predator model characteristics 

The prey-predator model usually exhibits the 

following characteristics: the prey and the 

predator’s populations are periodic in nature; an 

increase in the prey’s population is followed by 

an increase in the predator’s population or a 

decrease in the prey population is followed by a 

decrease in the predator population. When we 

vary (either as small or large) the population of 

variables, N and P, in the functional response 

term in either of the two Cases,   or    

we observe a number of characteristics that 
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apply to both Models. The variables N and P can 

be varied, these variations in turn have an effect 

of either increasing or decreasing the population 

of either the prey or the predator. The variations 

can take the form:  

i.) N-small and P-large 

ii.) N-large and P-large, 

iii.) N-small and P-small and 

iv.) N-large and P-small. 

Hence, a summary of characteristics that arise 

from the variation of these two parameters as 

pointed out above include:  

a.) A small number in predators results in an 

increase in prey numbers; 

b.) A large number in predators results in a 

decrease in prey numbers; 

c.) A large number of prey results in 

increases in predators, and 

d.)  A small number of preys results in a 

decrease in predators. 

The periodic nature of the predator-prey 

populations often results into a situation whereby 

the peak of prey population occurs some time 

before the predator’s population peak.  

Assumptions of the model 

The following assumptions are made to 

formulate the model: 

i. There is a logistic growth of the prey in the 

absence of the predator with carrying 

capacity, K and the intrinsic growth rate, r. 

ii. The predator consumes the prey according 

to the functional response   for Case I 

Model and  for Case II Model and 

grows logistically with intrinsic growth rate 

µ. 

iii. Predator would go extinct if prey were 

absent, due to lack of prey. 

iv. The proportional rate of increase of prey 

decreases as the number of predator 

increase. 

v. The growth rate of the predator increases 

with the increase in the number of prey. 

The Prey-Predator model formulation 

The model formed from the interaction 

between the prey and predator is as follows [8]. 

Case I: 

 
      (4) 

 
 

Case II: 

 (5) 

 
Without loss of generality we simplify the 

models by taking, ah = 1. Hence the above 

equations (4) and (5) respectively in Case I and 

Case II respectively can be written as indicated 

in equations (6) and (7) below, 

Case I: 

         (6)                                                                      

 
Case II: 

  (7) 

 
Where N>0 and P>0, respectively. This implies 

that all the parameters in the model are positive. 

We then perform non-dimensionalization to 

reduce the number of parameters in the model in 

equation (6) and (7) by reducing ,   and  into 

non-dimensional form using, 

 
Then, further by setting the 

parameters  then dropping 

the sign, we find that the equations (4) and (5) 

take the form in equations (6) and (7) 

respectively. 

Case I 

 8(a) 

              8(b) 

Case II 

 9(a) 

   9(b) 

N (0)>0 and P(0)>0, respectively. 

The effect of varying parameters N and P on 

prey/ predator population 

The parameters in our analysis of the prey-

predator interaction, which we have gotten from 
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a previous study, give us fixed values for these 

parameters. However, the time span and the 

densities of the prey/ predator vary. The 

variation of initial prey’s density, N, or the initial 

predator’s density, P, have an effect on the both 

the prey and predators population. We explore 

four possible variations illustrated as (i), (ii), (iii) 

and (iv), below: 

i. N-small, P-large 

When the number of predators largely 

exceeds that of prey, the result is a decrease in 

prey population and a decrease in predator 

population. This is because more predators will 

be depending on a small number of prey for 

food, implying that the predator’s consumption 

rate is higher than the prey’s growth (increase) 

rate. 

ii. N-large, P-large 

Given that, the number of both preys and 

predators are both large. This results into an 

increase in the population of both the prey and 

the predator. The number of predator is directly 

proportional to the number of prey, so when the 

prey increases the predators also increases 

because of the dependence. 

iii. N-small, P-small 

When the number of the number of both 

preys and predators is small, there will be a 

decrease in the population of both the prey and 

the predator. The number of predator is directly 

proportional to the number of prey, so when the 

prey decreases the predators also decreases 

because of the dependence. 

iv. N-large, P-small 

When the prey largely outnumbers the 

predators, the result is an increase in prey 

population and an increase in predator 

population. This is because the number of prey 

on which the predators feed is already high, the 

growth rate of predators increase because there is 

enough prey to feed on.  

These variations on the prey populations and 

predator numbers in the prey-predator model 

have an oscillatory character. 

Qualitative analysis of the model 

Equilibrium points of the model 

We determine the conditions for the 

existence of equilibrium points of the two 

systems of equations. The two sets of equations 

in Case I and that in Case II are almost similar, 

therefore the analysis done below will apply to 

both. The equilibrium point of E0(0, 0) is trivial, 

therefore we will not dwell on it. When we 

equate equations (8)and (9) to zero, we find that 

the system has three equilibria, that is;E1(1, 0),E2 

(0, 1) andE3 (1, 1). 

i. Existence of E1 ( , 0) with >0. 

Let P= 0. Equation (6) gives: 

 
From this we have N=1, which implies 

that  .Thus in the absence of 

predatorP, the prey population N increases 

until it reaches the carrying capacity K. 

ii. Existence of E2 ( )with  

Let N=0. Equation (6) gives: 

 
Since  it implies . This means 

that the growth rate of the predator is zero. 

If the growth rate is zero, there can be no 

increase in predator’s population. 

Therefore the predator’s population will 

tend to extinction when there is no prey. 

iii. Existence of E3 ( , ) with >0 and >0. 

Equation (6) gives: 

 
and 

 
From these we have,  

 and 

 
Thus, E3( , ) = 

E3  

This exists if, and . Therefore the 

equilibrium exists if, 

                                              (10)                                  

                                               (11) 

Condition (10) implies that prey’s cumulative 

density b, which is the regulatory term, must be 

less than its growth rate r, whereas condition 

(11) implies that, , that is, the predator’s 

mortality rate must be less than the quotient of 

the maximum killing rate the sum of saturation-

constant and the population of the prey. 
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Therefore, E3 ( , ) exists only if conditions (10) 

and (11) are in place. 

Local stability of the equilibrium points 

The system of equations for our model is 

nonlinear therefore we use the Jacobian matrix 

which enables us to linearize the system and 

determine the characteristic equation. We get the 

characteristic equation by calculating  

where J is the Jacobian matrix and Λi the identity 

matrix. We then find the roots of the 

characteristic function which enables us to 

determine the stability of the equilibrium 

solution. 

The stability of each equilibrium point is 

studied by computing the Jacobian matrix and 

finding the eigen values evaluated at each 

equilibrium point. We only focus on finding the 

local stabilities for then on-trivial equilibrium 

points. If all real eigen values are negative then 

the equilibrium point is stable. If there is a 

positive eigenvalue or an eigenvalue with a 

positive real part, then the equilibrium is 

unstable. From equations (7), the Jacobian 

matrix is given by 

                             (12) 

When we work out the values of each individual 

element in the Jacobian matrix we get, 

          (13) 

Where the value of, 

 
The local stability for each equilibrium point is 

analysed as follow: 

i. E1 ( , 0) = E1(1, 0). The Jacobian matrix 

evaluated at E1 gives 

        (14) 

We then take the determinant of the matrix and 

subtract the identity matrix λI to obtain 

 

The eigen values of the matrix J(E1) are 

 and . 

These eigen values are negative if,  

and  If eigen values λ1 and λ2 are 

both negative, the equilibrium is stable. 

If  and then at least one of 

the two eigen values is positive. If at least one of 

the eigen values is positive, the equilibrium 

becomes unstable.  

ii. E2( )=  

The Jacobian matrix evaluated at E2is 

                      (15) 

Taking the determinant of the matrix and 

subtracting the identity matrix λI we obtain 

 
The eigen values of the matrix J(E2) are 

 and .  Since, , and 

from existence of equilibrium points, we found 

out that ,implying that  We also 

know that   which means that the 

eigenvalue  is positive, hence the equilibrium 

is unstable. 

iii. E3 ( , ) =  

E3  

The Jacobian matrix evaluated at E3 is 

                            (16) 

Where 

 

 
The determinant of the matrix is found by  

 
This gives , 

       (17) 

According to the quadratic formula, the solutions 

are 
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The eigen values are positive if the value 

generated by the radical is less than , and with 

all parameter values positive, and the eigen 

values are negative if the value generated by the 

radical is more than   Hence, we have stable 

equilibrium when the eigen values are negative 

and an unstable equilibrium when the eigen 

values are positive.  

This is possible only when conditions (8) and (9) 

are put in place, that is,  and .  

, implies that prey’s cumulative density b, 

which is the regulatory term, must be less than 

its growth rate r, whereas , implies that, 

predator’s mortality rate must be less than the 

quotient of the maximum killing rate over the 

sum of half-saturation constant and the prey 

density. 

Global stability of the equilibrium points 

Definition 1: Positive definite (Hendrick and 

Girard, 2005) 

A function V(x, y) which is continuously 

differentiable is to be positive definite in a 

region  that contains the origin if 

i.) V(0, 0) = 0 

ii.) and , for all  

. 

Definition 2: The Lyapunov function  

A Lyapunov function V(x,y) is defined as 

follows; 

i.) V and all its partial derivatives   

are continuous. 

ii.) V is positive, that is, V(0, 0) = 0 if and 

only if  and    

, 

, for all  

A Lyapunov functionV(x, y) for a system is said 

to be  

i.) Positive definite if  for all 

 

ii.) Positive semi-definite if  for 

all  

iii.) Negative definite if  for all 

 

iv.) Negative semi-definite  for 

all  

Definition 3: Lyapunov stability theorem 

Let  be the equilibrium point of the 

differential equation   and   

be a continuously differentiable positive definite 

function in the neighbourhood of the origin. 

i.) If  then the 

origin is stable (Lyapunov stable). 

ii.) If  then the 

origin is uniformly asymptotically 

stable. 

iii.) If  then the 

origin is unstable. 

Therefore a function  is a Lyapunov 

function if 

i.) , only if  

ii.)  

iii.)  

If  then  is a strict Lyapunov. 

To get  for a two dimensional system, 

the following formula is used: 

 
It is easy to verify that V is zero at the 

equilibrium and is positive for all values of x and 

y, from the definitions stated above.  

The non-trivial global stabilities that we are 

going to look for are those of  and   

i. Global stability of  

We consider a Lyapunov function as 

 

Differentiating V with respect to time t we get, 

 
Substituting using equation (6) gives, 

 
For E1 ( , 0), . Thus, 

 
From this we get, 

 

This simplifies to,  

Hence   is globally asymptotically 

stable. 

ii. Global stability of  

We use the Lyapunov function  
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. 

Differentiating V with respect to time t we get, 

. 

Substituting  and  using equation (6) 

gives, 

 
From this we get, 

 
This simplifies to, 

 
Hence is Lyapunov stable. 

iii. Global stability of  E3 ( , ) 

Consider the following Lyapunov function, 

 
Differentiating V with respect to time t, we get, 

 
Substituting in the expression for   and  

 from equation (6), we get 

 
From this we get, 

 

 
This simplifies to,  

 
Therefore,  is globally asymptotically 

stable.  

Conclusion 

 In this paper, we looked at the existence of 

all the possible three equilibrium points. At each 

point, we identified conditions necessary for 

them to exist. It was found out that cereal aphids 

can exist on their own in the absence of 

ladybirds. However, their population would 

increase until it reaches the host plants carrying 

capacity K, then start to reduce all over again 

resulting into a periodic nature of population 

change. The ladybird cannot exist on their own 

in the absence of aphids, which they feed on. 

The co-existence of these two species requires  

 and   . These inequalities show 

the parameters that must be controlled for this 

co-existence to occur. The conditions for local 

and global stability were also established. The 

conditions for the local stability were in most 

cases found to be similar to those for the 

existence. The conditions for the global stability 

states  and    were established by 

developing a suitable Lyapunov function. With 

the differentiated Lyapunov function, it was 

found that   and   each gave a negative 

value, hence were globally asymptotically stable. 

 was Lyapunov stable. The conditions 

necessary for the global stability state of   are 

similar to those for existence. For the global 

stability of the co-existence of the prey and the 

predator, the prey’s death rate must be less than 

its growth rate. Also, the predator’s mortality 

rate must be less than the quotient of the 

maximum killing rate over half the sum of the 

saturation rate and the population of the prey. 
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