

AK Bhaduri

earlier.

Load on UPPCL (Description)	KW	Load on GTG	KV
		(Description)	
Township-2&1	1150	PH Plant Feeder 4XA	20
Non Plant Bldg 5XB&5XA	500	Urea-1 CW pump 08MP01B	11(
PH Plant Feeder 4XB	250	BFW Motor GA-101C (P. Plant)	10
Borewell FDR-2&1	250	Urea-2 CW Pump MP4801B	13
Raw water Feeder 2XB& 2XA	684	New 3.3 KV Switchboard of CEP S/S I/C-A&B	25
Fire water Feeder 2X C	210	Ammonia-1 MCC FDR 1&2	12
CT Expansion feeder-2	500	Ammonia-1 3.3KV FDR-1&2	10
DM plant Feeder 1 X D	800	MP1801B & C Amm-1	22
		Ammonia-2 CW pump MP 3801C	13
		Ammonia expansion feeder -1&2	52
		Inst.Air Compressor Feeder 3XC	5
		Power Plant TR 1XB&1XA	10

ISA Delhi Section

Case A-Trip of one GTG --the expected scenario

All urea streams 11/21/31/41 will trip. (3.3 KV motors)
Initially all motor driven CW pumps of Urea-I & Urea-II plants will trip. Immediately one CW pumps of Urea-I shall be started.
Turbine driven CW pump of Urea-II plant shall be started immediately, if it was not running earlier.
Ammonia-II CW turbine shall be started, if required, and one motor driven CW pump shall be stopped to conserve power,
CO₂ Compressor of all urea streams 11/21/31/41 will be on vent mode and kept on running. Power to LT motors (lube oil pumps and Condensate Pumps) will be available.
Hence CO2 Compressors will not trip.
Trip of one GTG -- actions required at Power Plant, Utilities & Electrical

In-case any GTG trips, start command to both AMF sets will go automatically. It is required subsequently to oversee

IFFCO

ISA Delhi Section

its operation. If auto start does not take place then AMF set(s) will be started manually.

• Tripping of AMF set at high temperature of lube oil/cooling water shall be avoided by way of quick changeover within 5 minutes to fire water header.

• Turbine driven CW pump start shall be ensured for Ammonia-I & Ammonia-II plants.

•IGV of running GTG is to be put on manual mode and opened completely within 3 minutes time. This will make the machine suitable to take more load steps than specified for 4MW without getting tripped on high exhaust air temperature.

•Load setting of UPPCL to be kept at 10MVA. Feeders are to be managed as per table 3 above to save Ammonia plants

AK Bhaduri

Case-B . Trip of both GTGs—Minimum UPPCL Power to sustain Ammonia plants

Ammonia-I		Ammonia-II		Other Plants		
Description	Load(KW)	Description	Load(KW)	Description	Load(KW)	
All LT Motors	1255	All LT Motors	800	Power Plant Auxiliaries+ Lighting+ A/C	300	
PGR	20	Inst.Air Compr	600	Off-sites-Auxiliaries+ Lighting+ A/C	100	
AC +UPS	195	AC +UPS	200	Urea-I - Auxiliaries+ Lighting+ A/C	300	
Lighting	200	Lighting	250	Urea-II - Auxiliaries+ Lighting+ A/C	300	
CT fans (2Nos.)	160	CT fans (2Nos.)	160	PH - Auxiliaries+ Lighting+ A/C	200	
Air Dryer	140	Air Dryer + off-sites	220	T/S & Bore-wells	1000	
Total	1965		2230		2200	
Overall Total					6395	

AK Bhaduri

IFFCO

Trip of both GTGs -- expected scenario and actions required—Urea, Electrical

To ensure survival of both Ammonia plants on UPPCL power following scenario will exist.

•No power will be available to Urea Plants, hence all urea streams including cooling tower pumps and CO2 Compressors will trip.

•To take safe shutdown of the plant, emergency power supply to 11/21/31/41 MP24A/B, 11/21/31/41 MP25, barring device, 11/21/31/41MP-5A/B, 11/31MP-6A/B, 11/31MP-10A/B, 11/31MP-11A/B and Prilling Tower lift shall be made available.

•In case of tripping of both GTGs, we can draw power up to maximum 9 MW(10MVA setting) for a shorter period which may be helpful for the survival of both Ammonia Plants and handling emergencies. Further, it shall be reduced up to 4.5 MVV manually, at the earliest possible after managing plant requirement.

AK Bhaduri

Conclusion

The present up-gradation has been done without any investment at all. Rather innovative idea of hardwired connection was used to avoid the delays of old generation data highways and get the best within existing system itself.

Since the implementation of the first step of modifications itself there has been at least 03 occasions of trip of one GTG but no incident of tripping second GTG (total power failure) nor there has been outage of Ammonia Plants. In other words with the above modifications has been successful -- the reliability of the Power System of the complex has improved a lot.

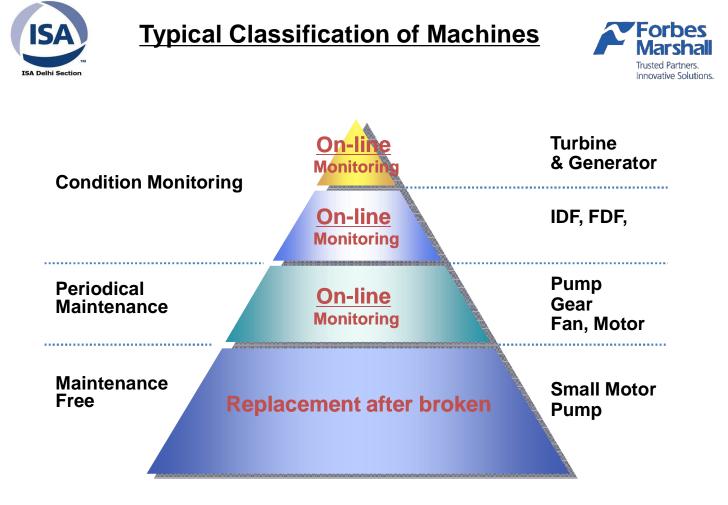
AK Bhaduri

IFFCO

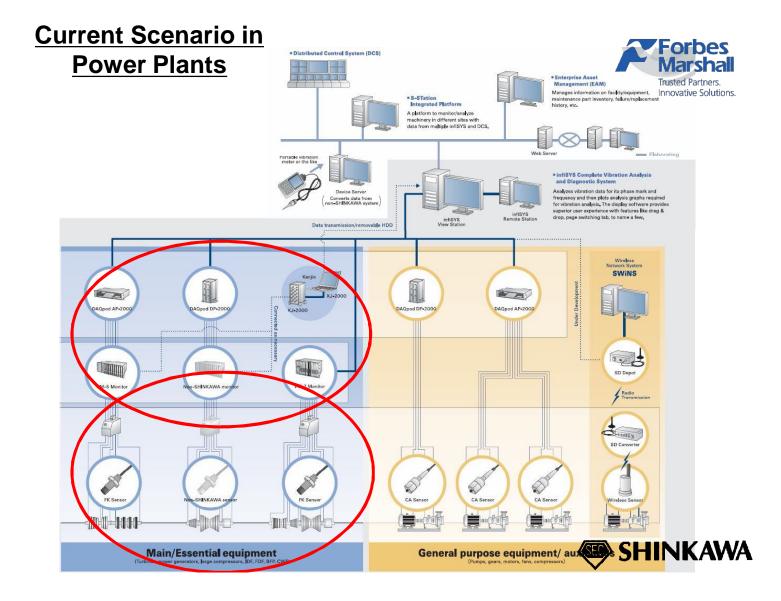
AK Bhaduri

Vibration Monitoring A Case Study By Mukesh Vyas Business Unit Head Forbes Marshall

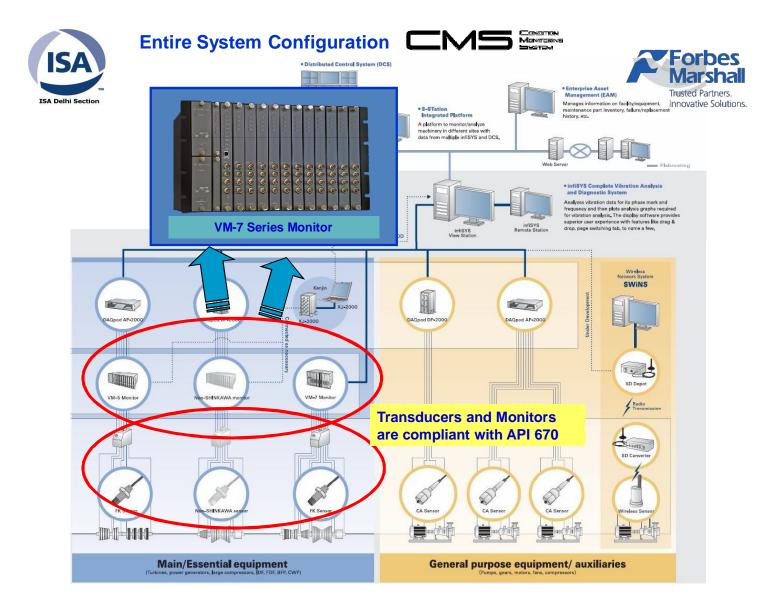
- Introduction
- Current TSI, VMS & Analysis & Diagnosis System Scenario & Solution.
- New Solution for Power Plant TSI & VMS Monitoring.
- Remote Vibration Analysis A Case Study
- Future of TSI, VMS & Analaysis Solutions.
- Conclusion

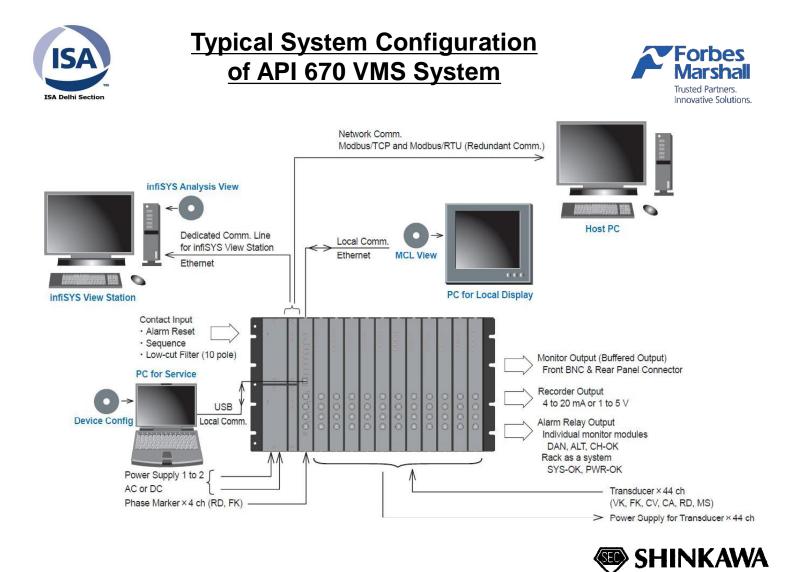


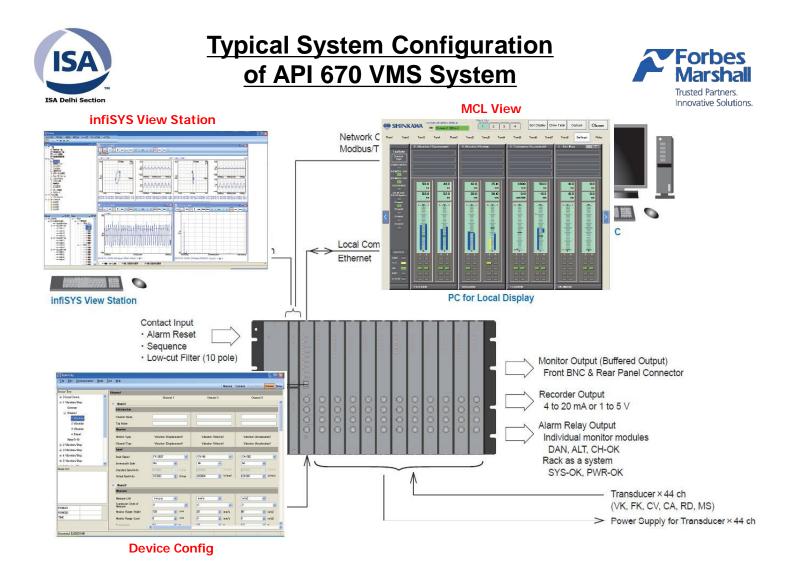
Forbes Marshall & Shinkawa Japan

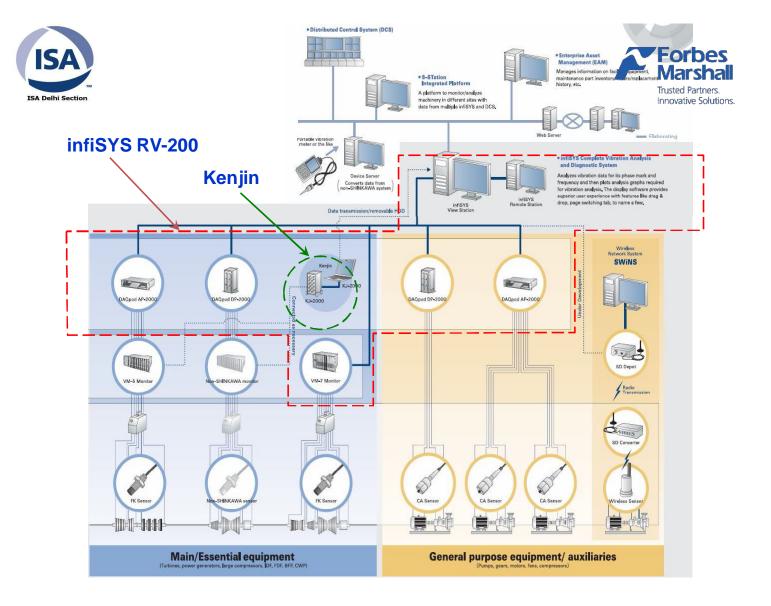


- Rs 850 Cr Company, 1200 Members, 8 JV Companies with 27 Indian Branches & 15 Global Offices.
- A Leading Indian Company in Instrumentation & Steam Engineering Field.
- Key Products VMS/TSI, SWAS, Codel Gas Analyser, Krohne Flow Meter, Arca Control Valves, FM – GGCB Valves, Gauges, DCS, Spirex Steam Traps, Boiler, FM-Solar
- Shinkawa Japan is a Leading Asian On Line & Off Line Vibration Monitoring & Sensors manufacturer having 2500 Customers in India.
- In India 850 Turbine TSI Users....as a Market Leader in Power Sector.


SHINKAWA







Advanced Analysis Software Functions

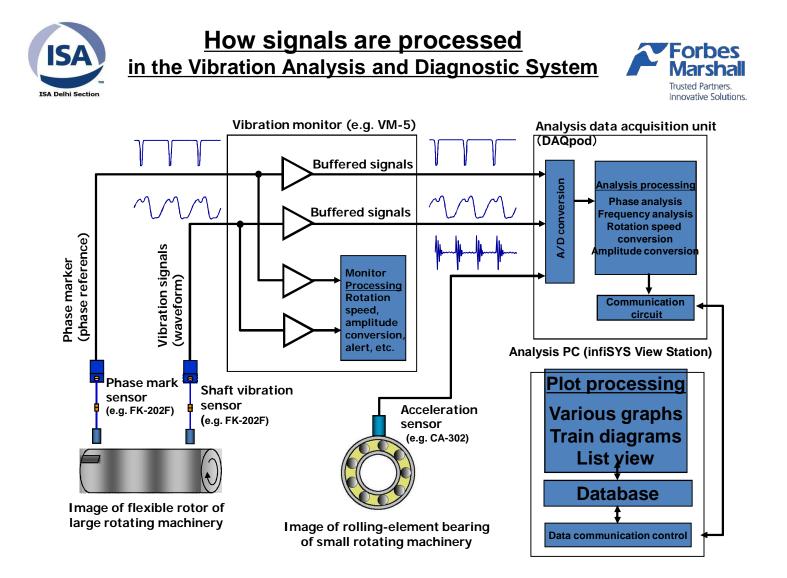
• Fits all rotating machinery

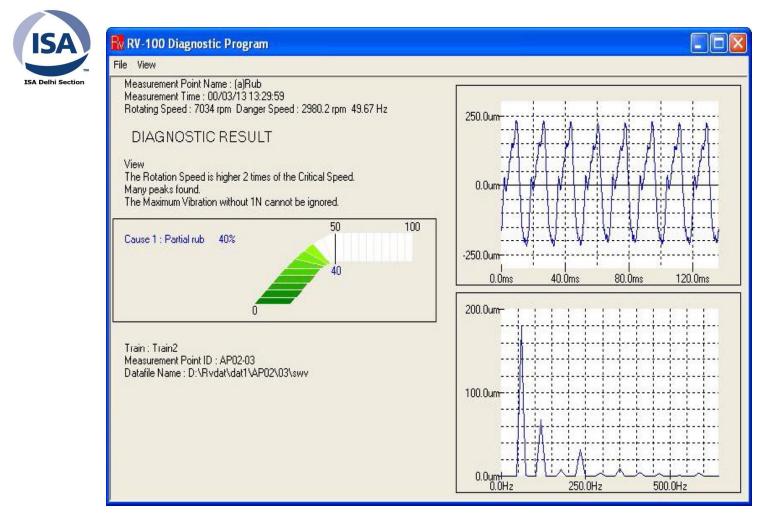
Can be used for vibration analysis and diagnostics of all rotating machinery, whether it is small (with rolling element bearings) or large (with journal bearings).

High speed data acquisition

Shortest acquisition interval: Trend data 1 sec, Waveform data 10 sec

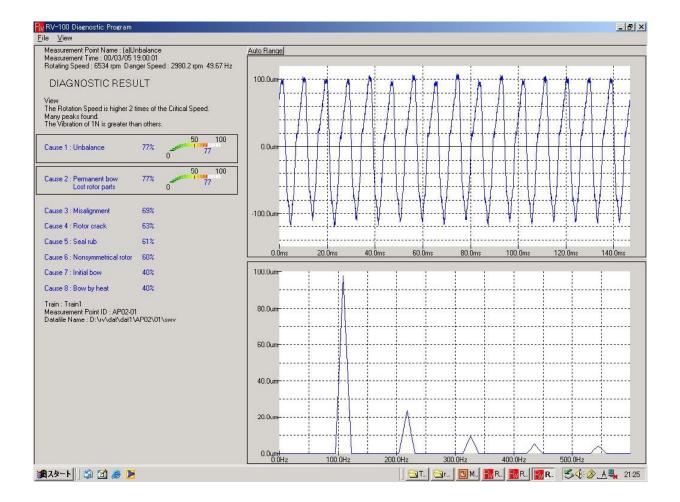
Flexible system configuration


Configurable with various condition monitors.


Sophisticated data analysis with varied graphs

The software provides multitude of analysis graphs appropriate for the type of machine or the failure condition to analyze, that satisfy vibration analysts' stringent demands.

User friendly UI and plotting functions


The display software provides superior user experience with features like drag & drop, page switching tab, to name a few.

ISA POWAT 2013 - New Delhi - 12 -13.4.2013

ISA POWAT 2013 - New Delhi - 12 - 13.4.2013

Case Study – Remote Vibration Monitoring

VIBRATION SEVERITY PER ISO 10816				R ISO 108	16	BENT ROTOR	MOTOR FAULTS	
	Machine in/s	Class I Class II Class II Vibration Monitoring		Class IV soft ation	MISALIGNMENT			
Vibration Velocity Vrms	0.01 0.28 0.02 0.45 0.03 0.71 0.04 1.12 0.07 1.80 0.11 2.80 0.18 4.50 0.28 7.10			od actory factory		IMBALANCE LUBRICATION ISSUES	MECHANICAL LOOSENESS BEARING WEAR ROTOR RUBS	
	0.70 18.0 0.71 28.0 1.10 45.0	Ĺ	unaco	aptable		SOFT FOOT Vibration	Analysis	
	Vibration Monitoring will tell about vibration Severity Level					Analysis will tell about WHY vibration severity is so High!		

Remote Vibration Monitoring Case Study – Reliance Rosa – 4 X 300 MW

- Reliance Rosa Power Plant is having capacity of 4X300 MW as Phase 1 & Phase 2.
- This units are supplied by Shanghai Electric Company Limited with On Line TSI, VMS for ID/FD/PA Fans, CWP/CEP/BFP Fans & Mill Motors along with CHP too. This system is having system as per API 670.
- Reliance Decided to have centralized Vibration Analysis & Diagnosis Center at Mumbai to guide plants by expert team.
- They have decided to have Uniform Single Software for all current plants & future upcoming plants.

Remote Vibration Monitoring Case Study – Reliance Rosa – 4 X 300 MW

- Rosa Plant was surveyed in detail by Forbes Marshall Expert team and also considered future upcoming plants and expected systems too.
- Forbes Marshall gave Demo Systems at site and proved working the system to Reliance Team.
- Reliance Team agreed on system capability and decided to deploy the system in plant and future plants to have Single Integrated system for all power plants on one plat form to guide the plant team.

RVMS Benefits

- RVMS System purely designed by Forbes Marshall in India and it is proven. Cost Effective Solution !!
- It is possible to integrate any make and model on line TSI / VMS or other systems.
- Less Hardware and simple system.
- It is based on latest software...possible to see anywhere globally by Internet by Laptop or by Smart Phones....
- Benefits Expert available 24X7, Reduce Shutdown, Reduce cost of travels and emergencies of experts from Globally....Experts will come prepared before he come at site....

