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Highlights
SOXopathies are rare, severe disorders
resulting from mutations in the SOX
genes. They have been associated to
date with half of the 20 SOX family mem-
bers and the numbers of genes involved
and pathogenic variants are still on the
rise.

Most SOXopathies result in develop-
mental defects and are syndromic, in-
cluding such severe defects as sex
reversal, intellectual disability, skeletal
dysmorphism, and cardiovascular
anomalies.
The SRY-related (SOX) transcription factor family pivotally contributes to deter-
mining cell fate and identity in many lineages. Since the original discovery that
SRY deletions cause sex reversal, mutations in half of the 20 human SOX
genes have been associated with rare congenital disorders, henceforward called
SOXopathies. Mutations are generally de novo, heterozygous, and inactivating,
revealing gene haploinsufficiency, but other types, including duplications, have
been reported too. Missense variants primarily target the HMG domain, the
SOX hallmark that mediates DNA binding and bending, nuclear trafficking, and
protein–protein interactions. We here review key clinical and molecular features
of SOXopathies and discuss the prospect that the disease family likely involves
more SOX genes and larger clinical and genetic spectrums than currently
appreciated.
SOXopathies can be caused by many
types of gene alterations, and most mu-
tations are de novo, heterozygous, and
loss-of-function, thus exposing gene
haploinsufficiency.

Missense variants are almost exclusively
located in the HMG domain, a distinctive
and multifunctional feature of all SOX
proteins.
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Defining SOXopathies
A seminal discovery was made in 1990 with the cloning of SRY (see Glossary), the gene that oc-
cupies and defines the sex-determining region on the Y chromosome and whose inactivation un-
derlies disorders of sex development (DSDs) [1]. SRY encodes a transcription factor with a high-
mobility group (HMG)-type DNA-binding domain. This discovery prompted a search for close rel-
atives, with the vision that SRY-related HMG box (SOX)-containing genes would also have critical
roles. Major cloning efforts and completion of genome sequencing projects made it clear by the
turn of the 21st century that humans and most mammals possess 19 SOX genes, in addition
to SRY [2]. Both forward and reverse genetic approaches have uncovered pivotal functions for
most SOX genes, such that it is now well recognized that the SOX family exerts master roles in
many developmental, physiological, and pathological processes by governing cell type-specific
genetic programs in both stem/progenitor cells and highly specialized cell types [3]. Thanks to
major advances in genetic testing procedures, mutations in half of the SOX genes have been as-
sociated to date with congenital diseases. Several of these associations were made very recently,
and the numbers of reported pathogenic mutations have been increasing exponentially over the
years (Figure 1). SOX mutation-driven diseases affect various processes, but most are develop-
mental disorders and due to de novo alterations inactivating one SOX allele. We henceforward
refer to them as SOXopathies, just as RASopathies, for instance, are due to mutations in compo-
nents of the RAS/MAPK pathway [4] and collagenopathies are primarily due to mutations in col-
lagen genes [5]. We here review these diseases clinically and genetically and in the context of
current knowledge of SOX functions. While focusing on developmental disorders due to germline
mutations in SOX genes, we also briefly discuss other diseases, such as cancers, which may be
triggered or influenced by somatic mutations in SOX genes or by factors altering SOX gene or
protein activities. We end with a discussion on the perspective that SOXopathies likely involve
more SOX genes and exhibit larger clinical and genetic spectrums than are currently known.
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Glossary
De novo: refers to gene deletions or
variants detected in a child, but not in the
biological parents.
DNA bending: ability of the HMG
domain to induce a strong bend of the
DNA helix. This property is believed to
have an architectural role in the
formation of enhanceosomes
(complexes of transcription factors
bound to enhancer sequences).
Dominant negative: refers to a
heterozygous mutation that results in a
variant protein that negatively interferes
with the activity of the wild type protein.
Haploinsufficiency: term referring to a
gene located on an autosomal
chromosome that is unable to fully
achieve its normal functions when one of
its alleles carries a loss-of-function
mutation.
HMG domain: DNA-binding domain
originally identified in HMGB proteins,
which are members of the superfamily of
nonhistone chromatin proteins that
exhibit high mobility in SDS-PAGE. This
domain also characterizes the SOX and
TCF/LEF families.
SOX: acronym for SRY-related HMG
box-containing gene or protein. SOX
proteins share at least 50% similarity in
the HMG domain with SRY and with one
another. The SOX family counts 19
members in addition to SRY in humans
and most mammals.
SOX motif: DNA sequence specifically
recognized and bound by the HMG
domain of SOX proteins. This motif
corresponds to or resembles the C[A/T]
TTG[A/T][A/T] sequence. Interactions
occur at the level of A/T pairs in theminor
groove of the DNA helix.
SRY: gene located in the sex-
determining region of the Y
chromosome. SRY is the founder (first
identified member) of the SOX family.
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Shared and Unique Features of SOX Proteins and Genes
SOX proteins, like TCF/LEF proteins, share significant identity in their DNA-binding domain with
HMGB proteins (Figure 2A). The latter are ubiquitous chromatin architectural factors that run in
SDS-PAGE with a high mobility [6], whereas SOX and TCF/LEF proteins are classical transcrip-
tion factors expressed in discrete cell types. The HMG domain forms three α-helices that fold
into an L-shaped structure, penetrates the minor groove of DNA, and sharply bends DNA
(Figure 2B). Key residues responsible for these properties and for nuclear trafficking are conserved
amongHMGB, SOX, and TCF/LEF proteins, but the degree of residue identity is much higher within
than across families (Figure 2A). Differences account for DNA sequence specificities and bending
angles. SOX factors preferentially bind sequences matching or resembling C[A/T]TTG[A/T][A/T],
referred to as SOX motif. DNA bending is critical for transcriptional activity, likely by facilitating
enhanceosome assembly [7]. As further described later, missense variants in many HMG-domain
residues cause SOXopathies, showing how important the domain and many of its residues are.

The SOX family comprises eight groups, SOXA to SOXH (Figure 2A,C). SOX proteins share al-
most 100% identity in the HMG domain with same-group relatives, but only about 50% with
other-group members. They also share significant identity with same-group members outside
the HMG domain, especially in functional domains, which include homodimerization,
transactivation, and transrepression domains, but share virtually no identity with other-group
members outside the HMG domain. One would expect that missense variants would cause dis-
eases even if located outside the HMG domain, but as described later, only a few cases have
been described so far.

SRY is located on the Y chromosome in a region ancestrally related to a segment of the X chro-
mosome containing SOX3. The other SOX genes are spread across autosomal chromosomes
(Figure 2D). Same-group SOX genes have identical exon–intron structures. The SOXA, SOXB,
and SOXC genes are made of a single exon, whereas SOXD genes comprise at least 15 coding
exons and multiple 5′ untranslated ones, and SOX5 and SOX6 are spread over hundreds of kb.
The other SOX genes are small and feature two to five exons. Regardless of body size, most SOX
genes are separated from coding neighbors by dozens to thousands of kb. These flanking re-
gions typically house multiple enhancers that underlie complex modes of gene regulation. Ac-
cordingly, mutations in these regions have been shown in multiple cases to cause diseases.
The expression pattern of each SOX gene is unique, typically including several cell types, but
overlaps with that of same-group members, allowing the genes to exert additive or redundant
functions. This property implies that inactivating mutations often cause disease only in processes
where key roles of a gene cannot be compensated by those of a coexpressed close relative.

SOXopathies Reveal Key Roles for Human SOX Genes during and beyond
Development

SRY

To date, several hundreds of distinct SRYmutations have been reported to cause disease, more
than for any other SOX gene, likely because SRY is a master determinant of sex determination
(Figure 3), is present at only one copy, and has no SOXA relative to share its functions with.
Most SRY mutations cause XY sex reversal (Table 1, Key Table) [8,9]. They include full or partial
gene deletions as well as point mutations affecting protein integrity [10,11]. Disease-causing mis-
sense variants have been identified in almost every HMG-domain residue, but rarely outside this
domain [12]. This is explained by the fact that SRY has no functional domain other than its HMG
motif. SRY translocations from the Y to the X chromosome also cause DSDs. In these cases, in-
dividuals carrying SRY on an X chromosome develop as males (XX sex reversal), and individuals
with an SRY-depleted Y chromosome develop as females (XY sex reversal) [13]. Mouse models
Trends in Genetics, September 2019, Vol. 35, No. 9 659
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Figure 1. Timeline of SOXopathy Discovery. Cumulative graph showing the numbers of distinct pathogenic alterations identified within and around SOX genes over
time. Filled symbols and unbroken lines represent validated gene-disease associations, whereas unfilled symbols and broken lines represent suggested associations. Links
made through genome-wide association studies are not included because of undefined variants and numbers.
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have confirmed and explained the master role of SRY in sex determination: XY mice lacking Sry
develop as females, and XX mice carrying an Sry transgene develop as males [14,15]. Sry is tran-
siently expressed in the embryonic gonad and its main role is to activate Sox9, which then acti-
vates other male sex differentiation genes, including Sox8 [16].

SOXE Genes
The SOXE genes, SOX8, SOX9, and SOX10, were next after SRY to be associated with diseases.
They encode transcriptional activators with critical functions in many processes.

Mutations inactivating one SOX9 allele were first shown in 1994 to cause campomelic dysplasia
(CD) [17,18]. The disease owes its name to the bending (campo) of limbs (melic), one of many fea-
tures of this neonatally lethal skeletal dysplasia. The few individuals that have survived to adult-
hood presented such clinical features as mental retardation and hearing loss, in addition to
short stature and generalized skeletal malformations [19]. SOX9 is a master regulator of chondro-
genesis [20]. It is highly expressed in skeletal progenitor cells and throughout chondrocyte differ-
entiation, and activates most chondrocyte-specific genes [21,22]. Its heterozygous inactivation in
mice reproduces human CD and its homozygous inactivation precludes chondrogenesis [23,24].
Nonskeletal defects of CD patients reflect important functions of SOX9 in other processes, but
based on data from homozygous mutant mice, they reveal only the ‘tip of the iceberg’ regarding
SOX9 functions. As indicated earlier, SOX9 is also a master of sex determination. Two-thirds of
XY CD patients are sex reversed, and 17q duplications that include SOX9 cause XX sex reversal
[25]. In mice, Sox9 homozygous inactivation causes XY sex reversal, as does Sox9 heterozygous
inactivation in a Sox8-null background [26,27]. More than a hundred different mutations affecting
SOX9 have been shown to cause disease. They are described in depth in Box 1 as a paradigm of
the wide spectrums of mutations and diseases that can be associated with a SOX gene. In brief,
CD with XY sex reversal is due to de novo heterozygous SOX9 mutations that delete the gene
body, translocate most of the upstream regulatory region, or preclude expression of a functional
660 Trends in Genetics, September 2019, Vol. 35, No. 9
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(See figure legend at the bottom of the next page.)
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Figure 3. Examples of Key Roles of SOXGenes in Development Derived Primarily from Experiments In Vitro and in Animal Models. Drawingswere created
using BioRender.
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protein. Missense variants are almost always located in the HMGand homodimerization domains,
the latter allowing high-affinity binding of SOX9 to pairs of DNA recognition sites. Microdeletions
and translocations occurring far upstream or downstream of SOX9 cause milder diseases,
namely acampomelic dysplasia, Pierre Robin sequence (PRS), and DSD without skeletal dyspla-
sia, while duplications of specific upstream regions have been shown to cause XX sex reversal.
While nonsense mutations affecting the C terminal transactivation domain cause CD and XY
sex reversal, proving the critical role of this domain, missense mutations in this domain only
cause testicular dysgenesis. The reason is likely that transactivation domains are intrinsically dis-
ordered and may thus tolerate missense variants better than the highly structured HMG and di-
merization domains.

SOX8 inactivation was initially proposed to contribute to mental retardation in alpha-thalassemia/
mental retardation (ATR-16), a syndrome caused by deletions or unbalanced translocations
Figure 2. Shared and Distinctive Features of SOX Proteins and Genes. (A) Alignment of the HMG domain sequences (including three flanking residues on each
side) of the human HMGB and TCF/LEF proteins with those of a few SOX proteins (top) and all human SOX proteins (bottom) highlights full conservation (greyish blue) and
semi-conservation (cyan blue) of specific residues. Residues involved in DNA binding, DNA bending, α-helices, nuclear localization signals (NLS), and nuclear export signal
(NES) are indicated. (B) 3D solution NMR structure of the human SRYHMGdomain complexed to DNA shows that the HMGdomain is characterized by three α-helices (H1
to H3 from the N to the C terminus) that position themselves into an L-shape, contact DNA exclusively in the minor groove, and force bending of the DNA helix. This
schematic was generated by SWISS-MODEL according to [94]. (C) Domain structure organization of the human SOX proteins. (D) Chromosomal distribution of the
human SOX genes. Abbreviations: cc, coiled coil; DIM, homodimerization domain; HMG, HMG domain; PQA, PQA-rich domain; TAC, C terminal transactivation
domain; TAD, transactivation domain; TAM, middle transactivation domain; TRD, transrepression domain.
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Key Table

Table 1. Currently Known SOXopathies and Types of Mutations Involved
Group Gene Disease Type of mutations

T Del Dup Inv Ms Ns/Fs

HMG Other

SOXA SRY Disorder of sex development (DSD) ✓ ✓ – – ✓ ✓ ✓

SOXB1 SOX1 – – – – – – – –

SOX2 Anophthalmia/microphthalmia syndrome – ✓ – – ✓ ✓ ✓

SOX3 Mental retardation with panhypopituitarism, X-linked – – ✓ ✓ ✓ ✓ –

Septo-optic dysplasia syndrome – – ✓ – – ✓ –

XX male sex reversal ✓ ✓ ✓ – – – –

SOXB2 SOX14 – – – – – – – –

SOX21 – – – – – – – –

SOXC SOX4 Neurodevelopmental syndrome with mild dysmorphism – – – – ✓ – –

SOX11 Coffin-Siris syndrome-like syndrome (CSSLS) – ✓ – – ✓ – ✓

SOX12 – – – – – – – –

SOXD SOX5 Lamb-Shaffer syndrome ✓ ✓ – – – – ✓

SOX6 Craniosynostosis and craniofacial dysostosisa ✓ – – – – ✓ –

SOX13 – – – – – – – –

SOXE SOX8 Alpha-thalassemia/mental retardation syndrome (ATR-16)a – ✓ – – – – –

Disorder of sex development (DSD) – – ✓ ✓ ✓ ✓ ✓

SOX9 Campomelic dysplasia (CD) ✓ ✓ – ✓ ✓ ✓ ✓

Acampomelic dysplasia ✓ ✓ – – ✓ ✓ –

Disorder of sex development (DSD) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Isolated Pierre Robin sequence (PRS) ✓ ✓ – – – – –

SOX10 Waardenburg-Hirschsprung syndrome – ✓ – – ✓ ✓ ✓

Peripheral demyelinating neuropathy, central dysmyelination, Waardenburg
syndrome, and Hirschsprung disease (PCWH)

– ✓ – – ✓ – ✓

Kallmann syndrome – – – – ✓ ✓ ✓

SOXF SOX7 – – – – – – – –

SOX17 Congenital anomalies of the kidney and urinary tract (CAKUT)a – – – – – ✓ –

Pulmonary arterial hypertension and congenital heart failure – – – – ✓ ✓ ✓

SOX18 Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome – – – – ✓ – ✓

SOXG SOX15 – – – – – – – –

SOXH SOX30 – – – – – – – –

Abbreviations: Del, Deletion; Dup, duplication; Fs, frameshift mutation; Inv, inversion; Ms, missense mutation within (HMG) or outside (Other) the HMG domain; Ns; non-
sense mutation; T, translocation.
aUnconfirmed diseases.
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within a 1-Mb 16p13.3 region that includes SOX8 [28]. However, this proposition remains
unvalidated. Recently, genome rearrangements just upstream of SOX8 and missense variants
within and outside the HMG domain were identified in males and females with a DSD spectrum
that included oligozoospermia, azoospermia, primary ovary deficiency, and XY sex reversal
[29]. Noteworthily, mental retardation was not reported. These findings establish the importance
Trends in Genetics, September 2019, Vol. 35, No. 9 663



Box 1. A Variety of Mutations Can Cause SOXopathies: An Example from SOX9

Manymutations within and aroundSOX9 have been associated with disease. The gene itself is small (5.4 kb), but embeddedwithin a 2-Mb-long region lacking any other
coding gene. This region constitutes the SOX9 topologically associated domain (TAD), that is, a higher-order chromatin interaction structure controlling SOX9 expression
(Figure IA) [95]. It comprises many enhancers driving SOX9 expression in Sertoli cells, chondrocytes, or other cell types, and translocations, deletions, duplications, and
point variants at various locations within this TAD underlie skeletal dysplasias and DSD phenotypes with various degrees of severity [1,20,27,96–100]. Mutations within
the SOX9 gene body have also been associated with SOXopathies (Figure IB). Nonsense variants result in truncated proteins retaining partial activity or being completely
inactive. Frameshift variants result in shorter or longer proteins with altered activities. Nonsense and frameshift mutations are widely distributed along the coding sequence,
whereas missense variants are largely restricted to splice sites and to the dimerization, DNA-binding, or transactivation domains. Most missense mutations and in-frame
deletions in the dimerization and HMG domains and in splice sites cause severe disease (CD with XY sex reversal), whereas missense variants outside these regions cause
mild genitalia defects without skeletal abnormalities.

TrendsTrends inin GeneticsGenetics

Figure I. Types and Distributions of Pathogenic Mutations in the SOX9 Locus. (A) SOX9 locus and flanking genes on 17q24.3, including enhancers primarily
active in chondrocytes (ChEnh, green bars), Sertoli cells (TesEnh, blue bars), embryonic mandibular region (PRSEnh, light green bars), and other cell types/tissues (brown
bars); microdeletions causing Pierre Robin sequence (PRSΔ) and XY sex reversal (XYSRΔ ); a duplication causing XX sex reversal (RevSexΔ); and translocations causing
campomelic dysplasia (dark green arrows), acampomelic dysplasia (lighter green arrows), Pierre Robin sequence (light green arrows), XY or XX sex reversal (blue
arrows), or skeletal dysplasia and XY sex reversal (teal arrows). (B) SOX9 exon/intron and protein structures, including pathogenic microdeletions (del) and nonsense
variants (*), frameshift variants (fs), and missense and splice variants (Δ). Abbreviations: DIM, Homodimerization domain; HMG, HMG domain; PQA, PQA-rich
domain; TAC, C terminal transactivation domain; TAM, middle transactivation domain.
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of human SOX8 in sex determination, like mouse Sox8. Sox8-null mice are viable and leaner than
normal [30]. Sex determination is unaffected unless, as reported earlier, the mice are also Sox9
heterozygous null. Sox8-null males, however, become infertile early in adulthood [31].

Heterozygous mutations inactivating SOX10 cause various neurocristopathies: Waardenburg
disease, characterized by hearing loss and pigmentation defects; the Hirschsprung intestinal dis-
order; PCWH, which comprises peripheral demyelinating neuropathy, central demyelinating leu-
kodystrophy, and Waardenburg and Hirschsprung diseases [32,33]; and Kallmann syndrome, a
form of hypogonadism characterized by delayed or absent puberty and olfactory defects [34].
The diseases are reminiscent of the phenotypes of mice carrying spontaneous Sox10 inactivating
mutation (e.g., Sox10DOM) or a Sox10 null allele at the heterozygous state (megacolon and pig-
mentation defect) or homozygous state (namely, lack of peripheral nervous system glia and
disrupted differentiation of oligodendroglia) [35–37]. Many aspects of these diseases reflect the
fact that SOX10 is essential to specify neural crest cells, controls the development of various
664 Trends in Genetics, September 2019, Vol. 35, No. 9
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neural crest derivatives, including Schwann cells, cardiac crest cells, sensory neurons, and
melanocytes, and is also essential for the development of oligodendrocytes from neuroectoderm
[38,39].

SOXB Genes
The SOXB group comprises SOXB1 (SOX1, SOX2, and SOX3) and SOXB2 genes (SOX14 and
SOX21), originally described as encoding transcriptional activators and repressors, respec-
tively. Recent studies, however, have shown that this functional distinction between the two
subgroups may not be as strict as initially proposed, as SOX2, for instance, represses as
many genes as it activates in neural stem cells [40]. All SOXB genes are expressed in progenitor
cells from early development and most highly in the nervous system.

Expansions of a polyalanine tract within theSOX3 coding sequence were shown in 2002 to cause
X-linked mental retardation, short stature due to growth hormone deficiency, and, occasionally,
facial dysmorphism and complete panhypopituitarism [41]. These alterations cause protein ag-
gregation and thus loss of function. Other mutations, either reducing or increasing SOX3 dosage,
may cause variants of septo-optic dysplasia, a highly heterogeneous disease that includes optic
nerve hypoplasia, corpus callosum and septum pellucidum agenesis, and panhypopituitarism
due to pituitary hypoplasia [42]. Furthermore, unique rearrangements in the SOX3 regulatory re-
gion, which likely led to ectopic expression of SOX3 in the developing gonad, were reported in
patients with XX male sex reversal [43]. Consistent with these diseases, Sox3-null mice have pro-
found growth insufficiency, weakness, craniofacial abnormalities, hypopituitarism, and midline
CNS defects [44]. They do not have sex reversal, but both males and females show severely re-
duced fertility.

SOX2 is well known for its master roles in specification, differentiation, and maintenance of
pluripotent embryonic stem cells and other progenitor cell types [45]. Various kinds of het-
erozygous loss-of-function mutations were first associated in 2003 with anophthalmia or
microphthalmia syndromes, often including craniofacial and other skeletal abnormalities,
developmental delay, learning difficulties, esophageal atresia, sensori-neural hearing loss,
and genital abnormalities [42,46]. In agreement with these data, Sox2-null mice die in
early embryogenesis from failure to form pluripotent epiblast [47]; mice with Sox2
hypomorphic mutations display a spectrum of eye and other malformations [48]; and
Sox2+/– mice show impaired development of the hypothalamo-pituitary and reproductive
axes [49].

It remains unknown whether SOX1, SOX14, and SOX21 mutations cause diseases. It is also
unknown whether mouse Sox14 is critical. In contrast, Sox1-null mice have microphthalmia
and cataract [50] and suffer from epilepsy associated with abnormal ventral forebrain develop-
ment and olfactory cortex hyperexcitability [51], and Sox21-null mice are small, for unexplained
reasons [52], and show cyclic alopecia, explained by master roles for SOX21 in hair shaft cuticle
differentiation [53]. One can thus predict that SOXopathies may soon be revealed for these
genes.

SOXF Genes
SOX7, SOX17, and SOX18, compose the SOXF group. They encode transcriptional activators
that have been shown in animal models to be pivotal in several developmental processes, includ-
ing cardiogenesis, vasculogenesis, and angiogenesis (SOX7, SOX17, and SOX18),
lymphangiogenesis and hair follicle development (SOX18), and hemangioblastogenesis, definitive
endoderm, and gastrointestinal system formation (SOX17) [54–60].
Trends in Genetics, September 2019, Vol. 35, No. 9 665
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First described in 2003, SOX18 loss-of-function mutations cause hypotrichosis-lymphedema-
telangiectasia syndrome (i.e., sparse hair, absence of eyebrows and eyelashes, lymphatic
edema, and peripheral vein anomalies) [61]. Following this report, one patient developed
renal failure and additional patients with hypotrichosis-lymphedema-telangiectasia-renal de-
fect syndrome were found to carry pathogenic SOX18 variants [62]. Some variants were het-
erozygous and nonsense, truncating SOX18 before or within its transactivation domains. It
was proposed, but not tested, that the mutant protein could dominant-negatively affect
the wild type protein. Other variants were homozygous missense and found in consanguineous
families, in which heterozygotes were unaffected. They constitute the first and, so far, only
cases of recessive SOXopathy.

SOX17 variants were described in 2010 in patients with congenital anomalies of the kidney and
urinary tract (CAKUT) [63]. Several patients were carrying a missense variant located in a region
of unknown function and causing excessive accumulation of SOX17 protein in vitro. It was later
found in an individual that did not have CAKUT disease [64]. Other patients also had missense
variants outside the HMG domain of unknown functional impact. These SOX17 variants could
generate risk rather than causative alleles for CAKUT. Very recently, SOX17 heterozygous vari-
ants linked to pulmonary arterial hypertension (PAH) and congenital heart disease. Two studies
reported frameshift, nonsense, and missense variants, the latter affecting highly conserved resi-
dues in the HMG domain or transactivation/β-catenin-binding domain [65,66]. Several alterations
segregated with PAH in families. Further, genome-wide association studies found common ge-
netic variations associated with PAH in a critical enhancer upstream of SOX17 [67].

Mutations in SOX7 have not been firmly linked to a disease yet, but recurrent microdeletions of
8p23.1 that include SOX7 and GATA4 confer a high risk of congenital diaphragmatic hernia
(CDH) and cardiac defects [68]. CDH is partially penetrant in Sox7+/– andGata4+/–mice, suggest-
ing that combined haploinsufficiency of SOX7 and GATA4 may cause CDH.

SOXD Genes
The SOXD group comprises SOX5, SOX6, and SOX13. These genes encode proteins that
homodimerize through coiled-coil domains and bind target genes preferentially to pairs of SOX
sites. SOX5 and SOX6 are closer to one another than to SOX13, and control several developmen-
tal processes. They help either in transactivation or in transrepression, depending on the cell con-
text. Sox5 and Sox6 single-null mice are born with discrete skeletal malformations, and double-
null fetuses die in utero with a severe chondrodysplasia [69]. This is explained by cooperation
of SOX5 and SOX6 with SOX9 in activating the chondrocyte program [20,21]. In contrast,
these SOXD proteins inhibit transactivation by SOXC, SOXE, or other factors in
neocorticogenesis (SOX5), oligodendrogenesis (SOX5 and SOX6), myogenesis (SOX6), erythro-
poiesis (SOX6), and melanogenesis (SOX5) [70–75].

In 2006, a child with craniosynostosis and other dysostosis features was found to carry a bal-
anced translocation (t(9;11)(q33;p15) disrupting SOX6 (11p15) [76]. Another child, with a 9q32-
q34 deletion, had a similar phenotype but no craniosynostosis, and a third child, who inherited
a missense variant from his unaffected mother, only had craniosynostosis. The variant was lo-
cated in an N terminal region of SOX6 of unknown function. These cases concur that SOX6mu-
tations might cause craniosynostosis, but this possibility needs validation.

In 2012, de novo heterozygous translocations and microdeletions disrupting SOX5 were re-
ported in patients with global developmental delay, intellectual disability, hypotonia, autistic-like
features, and mild facial dysmorphism and skeletal malformations [77]. The disorder was
666 Trends in Genetics, September 2019, Vol. 35, No. 9
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named Lamb-Shaffer syndrome and additional loss-of-function variants, including nonsense
ones, were subsequently reported in other patients [78].

SOX13 is expressed in several tissues, including kidney, pancreas, lung, liver, and spinal cord. Its
inactivation and overexpression in the mouse have revealed that it promotes gammadelta T cell
development while opposing alphabeta T cell differentiation [79], and adds to SOX5 and SOX6
to control the development of mouse spinal cord oligodendrocytes [80]. To date, however, no
human disease has yet been associated with mutations in SOX13.

SOXC Genes
SOX4, SOX11, and SOX12 form the SOXC group. They encode transcriptional activators, of
which SOX11 is the strongest and SOX12 the weakest. They are expressed in many progenitor
cell types and critically control cell survival and fate determination in response to various signaling
pathways [81,82]. Sox4-null mice die in utero from heart malformation and Sox11-null mice die at
birth with abnormalities in the heart, skeleton, and multiple internal organs, whereas Sox12-null
mice are healthy throughout development and adulthood under regular conditions [83–85].
Mouse conditional knockouts have uncovered redundant roles for Sox4 and Sox11 in many de-
velopmental processes from early organogenesis, including neurogenesis, skeletogenesis, and
outflow tract formation [86–88].

In 2014, two de novo heterozygous missense variants in the SOX11 HMG box were linked to a
Coffin-Siris syndrome-like syndrome (CSSLS) characterized by intellectual disability, growth
deficiency, facial dysmorphism, and hypoplasia of the fifth digit [89]. The variant proteins were
unable to bind DNA. Consolidating the notion of SOX11 haploinsufficiency, more de novo
heterozygous mutations were later reported in patients with similar features [90]. They included
SOX11-containing 2p25 deletions, a nonsense variant, and additional HMG-domain missense
variants.

Very recently, four de novo heterozygousmissense variants in the SOX4HMGbox were identified
in patients with intellectual disability and mild facial and digit dysmorphism [91]. Resemblance to
CSSLS is consistent with combined roles for mouse Sox4 and Sox11 in many processes. Inter-
estingly, the patients’ variants were nonfunctional in vitro, whereas all 12 variants listed in
gnomAD, a database of control individuals, were functional. Thus, while many HMG-domain var-
iants have been reported in SOX genes to cause diseases, this finding calls for caution in
interpreting diagnostic data as it implies that not every such variant should be considered
pathogenic.

To date, SOX12 has not been linked to a disease. Sox12-null mice were recently found to show
impaired regulatory T cell/lymphocyte differentiation during colitis [92]. This first finding of an im-
portant role for mouse Sox12 in vivo should encourage studies to link human SOX12 variants
to SOXopathies.

SOXG and SOXH Genes
Although SOX15 and SOX30 are classified as SOXG and SOXH genes, respectively, SOX15
shares recent ancestry with SOXB1 genes and SOX30 with SOXD genes. Neither gene has
been linked to a human disease yet, but important roles have been shown for their mouse
orthologs. Sox15-null mice develop normally and have an unremarkable adult life, except for a re-
duced ability to regenerate skeletal muscle in response to a crush injury [93]. This weakness is ex-
plained by the expression of Sox15 in satellite cell-derived myoblasts and its involvement in
myogenic determination. Sox30-null mice look normal too, but males are sterile, due to a block
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Outstanding Questions
Are all 20 human SOX genes involved
in SOXopathies? Are SOXopathies pri-
marily developmental disorders or do
they also include a broad range of
adult-onset diseases? How broad is
the spectrum of diseases associated
with any single SOX gene? Are dis-
eases the only outcome of SOX gene
variants or are there any phenotypic
advantages conferred by some rare
or common SOX gene variants to
human carriers?

Are pathogenic SOX missense and
nonsense variants primarily resulting
in null alleles? Do some confer re-
duced, increased, dominant-negative,
or ectopic activity?

Have SOX genes acquired new func-
tions or new expression level require-
ments during evolution that could
explain why several SOXopathies are
detected in humans but not in mice
upon heterozygous inactivation of
some SOX genes? In particular, as
many SOX genes are required for
brain development, has the evolution
of human brain-specific features relied
on regulatory changes in SOX gene
dosage and expression pattern?

What are the treatment options for
SOXopathies? Is gene therapy an
option? Are SOX proteins druggable?
When should therapies be initiated?
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of spermiogenesis at the round spermatid stage [40]. Based on these data, it is tempting to spec-
ulate that mutations in human SOX15 and SOX30 underlie yet-to-be-uncovered SOXopathies.

Concluding Remarks and Future Perspectives
The study of SOX genes and discovery of SOXopathies have provided seminal information on ge-
netic, cellular, and molecular mechanisms underlying fundamental processes from early develop-
ment onwards. With all the current information, we can tentatively provide a unified view of
SOXopathy disease features. Indeed, most SOXopathies are rare developmental syndromes.
Based on findings in animals, most SOXopathies only show ‘the tip of iceberg’ regarding crucial
involvement of SOX genes in human processes. Intellectual disability, DSDs, and skeletal and car-
diovascular malformations are common, but defects in virtually every system have been reported.
Additionally, most SOXopathies result from de novo heterozygous loss-of-functionmutations and
thus reveal gene haploinsufficiency. Of course, there are exceptions. For example, SRY loss-of-
function variants fully reveal SRY functions because SRY has no close relative and is expressed
from a single allele. Also, reduced fertility due to SOX8 mutations are adult rather than develop-
mental diseases; and SOX3 and SOX9 duplications, as well as SOX18missense variants outside
the HMGdomain, have been associatedwith diseases. All cases, however, reflect the importance
of proper gene dosage to achieve normalcy.

To date, the discovery of SOXopathies is merely midway completed. Many important questions
remain unanswered (see Outstanding Questions). Half of the SOX genes are still disease-
orphan and more disease associations may remain unknown for the other half. One might think
that the remaining diseases are benign, otherwise they would be known by now, but this argu-
ment is easy to counter since SOX17 was linked to PAH and congenital heart failure only in the
last year. In addition to developmental disorders, some still-elusive SOXopathies may arise only
with increasing age and in specific contexts, such as cancer, tissue repair, and immune response
(Box 2). Further research is also needed to better understand the cellular and molecular basis of
SOXopathies and, in particular, the issue of disease penetrance and severity. For this, we need to
learn how to distinguish pathogenic from risk and benign variants. To explain diseases and
Box 2. SOX Genes and Nondevelopmental Diseases

Many types of diseases implicate SOX genes, but are not due to germline SOX mutations and therefore do not classify as
SOXopathies. The great majority of these are cancers [101]. In fact, all SOX genes have been shown to be dysregulated in
at least one tumor type. Deregulation can occur at the genetic level, or at the epigenetic, transcriptional, translational, and
post-translational levels, resulting in either increased or decreased SOX activities. SOX factors being master determinants
of cell fate, their deregulation can cause drastic changes in cell stemness, survival, proliferation, migration, and differenti-
ated activities. SOX genes can be either tumor repressors or promoters depending on tumor types and environment.

Among other adult-onset and degenerative diseases, single nucleotide polymorphisms within and around SOX4 correlate
with moderate risks for osteoporosis and reduced expression of SOX4 in bone correlates with postmenopausal osteopo-
rosis [102,103]. A significant association exists between SOX5 variants and a familial form of late-onset Alzheimer’s dis-
ease [104]. Also, a single nucleotide polymorphism in SOX8 was identified as a genuine multiple sclerosis susceptibility
locus [105], a finding consistent with the importance of mouse Sox8 in oligodendrocyte myelination [106]. If confirmed,
these polymorphisms within or around SOX4, SOX5, and SOX8 could classify these disease forms as SOXopathies. Ad-
ditionally, SOX5, SOX6, and SOX9 downregulation [107] and SOX4 and SOX11 upregulation correlate with cartilage de-
generation in osteoarthritic patients [108]. Also, SOX2 downregulation is seen in brain sections from Alzheimer’s patients,
which is consistent with neurodegeneration features resembling Huntington’s and Alzheimer’s disease described in mice
with Sox2 deficiency [109].

Autoimmune diseases are another class of disorders worth mentioning. Like other transcription factors, several SOX pro-
teins are inclined to generate pathogenic autoimmune responses. For instance, SOX13 was initially discovered in humans
as an autoantigen in type 1 diabetes [110] and later in primary biliary cirrhosis [111], and SOX9 and SOX10 are vitiligo
autoantigens in autoimmune polyendocrine syndrome type I [112].
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develop therapeutic strategies, we also have to further characterize the factors that functionally
interact with SOX genes and proteins. All new knowledge will undoubtedly be very valuable to in-
form genetic counseling and to better understand and treat many other diseases, including those
in which SOX genes may intervene abnormally even if intact.
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