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Constructing an opponent model

E.g., if opponent has played Rock 10 times Paper 

7 times Scissors 3 times, can predict he will play 

R with prob 10/20, etc.

In imperfect-information games more challenging 

but doable to approximate 

– e.g., Ganzfried/Sandholm AAMAS 2011



But is it really valid to assign a single “model”? 

What if he isn’t following that exact strategy?

– Maybe he is playing R with prob 0.49!!



Restricted Nash Response
Johanson, Zinkevich, Bowling NIPS 2007



• Suppose opponent is playing σ-i, where σ-i(s-j) is 

probability that he plays pure strategy s-j in S-j

ui(σi, σ-i) = ∑s-j [σ-i(s-j) * ui(σi, s-j)]

• Now suppose opponent is playing a probability 

distribution f-i over mixed strategies

ui(σi, f-i) = ∫σ-i [f-i(σ-i) * ui(σi, σ-i)]

• Let f*-i denote the mean of f-i. Selects s-j with prob

∫σ-i [σ-i(s-j) * f-i(σ-i)]



Theorem: ui(σi, f*-i) = ui(σi, f-i) 

Proof: 

ui(σi, f*-i) = ∑s-j [ui(σi, s-j) ∫σ-i [σ-i(s-j) * f-i(σ-i)]]

= ∑s-j [∫σ-i [ui(σi, s-j) * σ-i(s-j) * f-i(σ-i)]]

= ∫σ-i [∑s-j [ui(σi, s-j) * σ-i(s-j) * f-i(σ-i)]]

= ∫σ-i [ui(σi, σ-i) * f-i(σ-i)]

= ui(σi, f-i) 



Corollary: ui(σi, p*(σ-i|x)) = ui(σi, p(σ-i|x)) 

– p(σ-i) denotes prior (probability distribution over 

mixed strategies) and p(σ-i|x) denote posterior given 

some observations x

– p*(σ-i|x) is mean of p(σ-i|x) 

• Theorem and corollary apply to normal-form 

and extensive-form (both perfect and imperfect 

information) for any number of players (can let 

σ-i be joint strategy profile for all other agents)



Meta-algorithm for Bayesian 

opponent exploitation



Challenges

• #1: Assumes we can compactly represent prior and 

posterior distributions pt, which have infinite domain



Challenge #2

• Requires procedure to efficiently compute posterior distributions 

given prior and observations, which will involve having to 

update potentially infinitely-many strategies



#3

Requires efficient procedure to compute mean of pt



#4

Requires that the full posterior distribution from one 

round be compactly represented to be used as the prior 

distribution in the next round



Can solve #4 by using the following modification:

pt posterior distribution of opponent's strategy given                  

prior p0 and observations x1, … , xt



Dirichlet distribution

• pdf of the Dirichlet distribution returns the belief that the 

probabilities of K rival events are xi given that each event 

has been observed αi - 1 times:

– f(x, α) = [∏ xiαi-1] / B(α)

• Normalization B(α) is beta function

– B(α) = ∏iΓ(αi)/Γ(∑iαi), where Γ(n) = (n-1)! is Gamma function

• E[xi] = αi / ∑kαk

• Assuming multinomial sampling, the posterior 

distribution after including new observations is also a 

Dirichlet distribution with parameters updated based on 

the new observations.



Dirichlet distribution

• Very natural distribution, has been previously used for 

modeling in large imperfect-information games

• Dirichlet is conjugate prior for multinomial 

distribution, and therefore posterior is also Dirichlet

– Opponent plays in proportion to updated weights

• So simple closed form for mean of posterior

– Alg 1 gives exact efficient algorithm for computing Bayesian 

Best Response [Fudenberg/Levine ‘98]

– “Fictitious play” [Brown ‘51]

• This applies to normal-form games and extensive-form 

games with perfect information

– Zero-sum, general-sum, and any number of players



Imperfect information

• It would also apply to imperfect-information games if 

the opponent’s private information was observed after 

each round (so we knew exactly what information set 

he took observed action from)

• But not to imperfect-information games where 

opponent’s private information is not (or is only 

sometimes) observed.

• Algorithm exists using importance sampling to 

approximate value of infinite integral [Southey et.al UAI ’05]

– Has been applied to limit Texas hold ‘em successfully

– But has no guarantees, and does not provide much intuition



• P1 given private information state xi according to distribution.

• P1 takes publicly observable action ai.

• P2 observes ai but not xi. Then P2 acts and players get payoff.



• If we observe opponent’s hand after each play, 

we could just maintain counter for each 

action/info set and update appropriate one

• But if we don’t observe his card, we wouldn’t 

know which counter to increment 



• To simplify analysis assume we never see 

opponent’s card after a hand (and also assume 

we don’t observe our payoff until the end so that 

we could not draw inferences about his card).

• This is not realistic, but no known exact 

algorithms even for this simplified setting

– Suspect approach can extend straightforwardly to 

case of partial observability 



• Let αKb -1denote number of “fictitious” times 

we have observed opponent play b with K 

according to our prior 

• Now assume we observe him take action b, but 

don’t observe his card



• Mean of posterior for probability he bets big 

with J:

• [B(αKb+1, αKs)B(αJb+1, αJs) + B(αKb, αKs)B(αJb+2, αJs)]/Z

• Z = B(αKb+1, αKs)B(αJb+1, αJs) + B(αKb, αKs)B(αJb+2, αJs)

• + B(αKb+1, αKs)B(αJb, αJs+1) + B(αKb, αKs)B(αJb+1, αJs+1)

• Recall B(α) = ∏iΓ(αi)/Γ(∑iαi), where Γ(n) = (n-1)! is 

Gamma function



General solution

• Assume we observe him play b θb times and s θs times

• Mean of posterior of probability of betting big with 

Jack:

• ∑i∑jB(αKb+i, αKs+j) B(αJb+θb -i+1, αJs+θs-j) / Z

• Z = ∑i∑j[B(αKb+i, αKs+j) B(αJb+θb -i+1, αJs+θs-j) + 

B(αKb+i, αKs+j) B(αJb+θb -i, αJs +θs-j+1)] 



Example

• Suppose prior is that opponent played b with K 10 

times, played s with K 3 times, played b with J 4 times, 

played s with J 9 times.

• Now suppose we see him play b at next iteration

• Previously we thought probability of betting big with a 

jack was 4/13 = 0.308

• Now: p(b|O,J) = B(11,3)B(5,9) + B(10,3)(6,9)/Z

• p(s|O,J) = B(11,3)B(4,10) + B(10,3)(5,10)/Z

• -> p(b|O,J) = p(b|O,J)/[p(b|O,J)+p(s|O,J)] = … 



• p(b|O,J) = 0.322

• Previously we thought probability of betting 

with a jack was 4/13 = 0.308

• What if we observed his card after game play 

and observed he had a jack?



• p(b|O,J) = 0.322

• Previously we thought probability of betting 

with a jack was 4/13 = 0.308

• What if we always observed his card after game 

play and observed he had a jack? 

– 5/14 = 0.357



• What about “naïve” approach where we 

increment counter for αJb by αJb/(αJb + αKb)?



• p(b|O,J) = 0.322

• Previously we thought probability of betting 

with a jack was 4/13 = 0.308

• What if we always observed his card after game 

play and observed he had a jack? 

– 5/14 = 0.357

• “Naïve” approach: (4 + 4/13)/14 = 0.308



“Naïve” approach

• “Naïve” approach: (4 + 4/13)/14 = 0.308

• It turns out that this is equivalent to just using prior



Uniform prior over polyhedron
• Opponent playing uniformly at random within region of fixed 

strategy, e.g., specific NE or “population mean” strategy

• E.g., “sophisticated” Rock-Paper-Scissors opponents who play 

uniformly at random out of strategies with probability within 

[0.31,0.35], instead of completely random over [0,1].

– Ganzfried/Sandholm used similar opponents for poker, EC12/TEAC15



Run time of basic algorithm

• Colt Java math library for Beta computation

• Dirichlet parameters uniformly random in {1,n}

– n = 100 corresponds to 400 prior observations

– Previous work (Southey et al) used 200 hands per match

• Computation very fast but numerical instability for large n



Run time of generalized algorithm

• Tested generalized algorithm for different 

numbers of observations keeping prior fixed

• Used Dirichlet prior with all parameters equal to 

2 (as done in prior work Southey et al)

• For θb = 101, θs = 100, ran in 19 milliseconds.



Comparison to other approaches

• EBBR: our Exact Bayesian Best Response

• BBR: Bayesian Best Response

– samples strategies from prior, best responds to posterior mean

• MAP: Max A Posteriori Response

– samples from prior, computes posteriors, best response to max

• Thompson’s Response

– Sample from prior, compute posteriors, best response to sample



Generalizations

• Generalized model to n different states according to 

arbitrary distribution π and can take m actions

• Have closed-form solution, but contains number of 

terms exponential in n and m (though polynomial in T).

• Can approach or analysis be improved?



Conclusions and directions

• First exact algorithm for Bayesian opponent exploitation 

in class of imperfect-information games

• Runs quickly experimentally and outperforms prior 

approaches, but frequent numerical instability for large n

• General meta-algorithm and new theoretical framework

• Studied Dirichlet prior and uniform over polyhedron

• Future research and extensions:

– Partial observability (likely straightforward)

– General game trees with sequential actions (likely hard)

– Any number of agents (alg not specialized for 2 pl zero-sum)

– Other important and tractable prior distributions


