Bayesian Opponent Exploitation in Imperfect-Information Games

Sam Ganzfried
Assistant Professor

Florida International University, Miami, FL
School of Computing and Information Sciences
http://www.ganzfriedresearch.com/
sam.ganzfried@gmail.com

Constructing an opponent model

E.g., if opponent has played Rock 10 times Paper 7 times Scissors 3 times, can predict he will play R with prob 10/20, etc.

In imperfect-information games more challenging but doable to approximate

- e.g., Ganzfried/Sandholm AAMAS 2011

But is it really valid to assign a single "model"? What if he isn't following that exact strategy?

- Maybe he is playing R with prob 0.49 !!

Restricted Nash Response Johanson, Zinkevich, Bowling NIPS 2007

- Suppose opponent is playing σ_{-i}, where $\sigma_{-i}\left(\mathrm{~S}_{-j}\right)$ is probability that he plays pure strategy $\mathrm{s}_{-\mathrm{j}}$ in $\mathrm{S}_{-\mathrm{j}}$

$$
\mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \sigma_{\mathrm{i}}\right)=\sum_{\mathrm{s}-\mathrm{j}}\left[\sigma_{-\mathrm{i}}\left(\mathrm{~s}_{\mathrm{j}}\right) * \mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \mathrm{~s}_{-\mathrm{j}}\right)\right]
$$

- Now suppose opponent is playing a probability distribution $\mathrm{f}_{-\mathrm{i}}$ over mixed strategies

$$
u_{i}\left(\sigma_{i}, f_{i j}\right)=\int_{\sigma_{-i}}\left[f_{j-i}\left(\sigma_{-i}\right) * u_{i}\left(\sigma_{i}, \sigma_{-i}\right)\right]
$$

- Let $\mathrm{f}^{*}{ }_{-\mathrm{i}}$ denote the mean of $\mathrm{f}_{-\mathrm{i}}$. Selects $\mathrm{s}_{-\mathrm{j}}$ with prob $\int_{\sigma-\mathrm{i}}\left[\sigma_{-\mathrm{i}}\left(\mathrm{s}_{-\mathrm{j}}\right) * \mathrm{f}_{-\mathrm{i}}\left(\sigma_{-\mathrm{i}}\right)\right]$

Theorem: $u_{i}\left(\sigma_{i}, f_{-i}^{*}\right)=u_{i}\left(\sigma_{i}, f_{-i}\right)$

Proof:

$$
\begin{aligned}
\mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \mathrm{f}^{*}{ }_{-\mathrm{i}}\right) & =\sum_{\mathrm{s}-\mathrm{j}}\left[\mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \mathrm{~s}_{\mathrm{-j}}\right) \int_{\sigma-\mathrm{i}}\left[\sigma_{-\mathrm{i}}\left(\mathrm{~s}_{-\mathrm{j}}\right) * \mathrm{f}_{-\mathrm{i}}\left(\sigma_{-\mathrm{i}}\right)\right]\right] \\
& =\sum_{\mathrm{s}-\mathrm{j}}\left[\int_{\sigma-\mathrm{i}}\left[\mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \mathrm{~s}_{-\mathrm{j}}\right) * \sigma_{-\mathrm{i}}\left(\mathrm{~s}_{-\mathrm{j}}\right) * \mathrm{f}_{\mathrm{-i}}\left(\sigma_{-\mathrm{i}}\right)\right]\right] \\
& =\int_{\sigma-\mathrm{i}}\left[\sum_{\mathrm{s}-\mathrm{j}}\left[\mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \mathrm{~s}_{-\mathrm{j}}\right) * \sigma_{-\mathrm{i}}\left(\mathrm{~s}_{-\mathrm{j}}\right) * \mathrm{f}_{-\mathrm{i}}\left(\sigma_{-\mathrm{i}}\right)\right]\right] \\
& =\int_{\sigma-\mathrm{i}}\left[\mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \sigma_{-\mathrm{i}}\right) * \mathrm{f}_{-\mathrm{i}}\left(\sigma_{-\mathrm{i}}\right)\right] \\
& =\mathrm{u}_{\mathrm{i}}\left(\sigma_{\mathrm{i}}, \mathrm{f}_{-\mathrm{i}}\right)
\end{aligned}
$$

Corollary: $\mathrm{u}_{\mathrm{i}}\left(\mathrm{\sigma}_{\mathrm{i}}, \mathrm{p}^{*}\left(\mathrm{\sigma}_{\mathrm{i}} \mid \mathrm{x}\right)\right)=\mathrm{u}_{\mathrm{i}}\left(\mathrm{\sigma}_{\mathrm{i}}, \mathrm{p}\left(\mathrm{\sigma}_{\mathrm{i}} \mid \mathrm{x}\right)\right)$
$-\mathrm{p}\left(\sigma_{-\mathrm{i}}\right)$ denotes prior (probability distribution over mixed strategies) and $p\left(\sigma_{-i} \mid x\right)$ denote posterior given some observations x
$-\mathrm{p} *\left(\sigma_{-\mathrm{i}} \mid \mathrm{x}\right)$ is mean of $\mathrm{p}\left(\sigma_{-\mathrm{i}} \mid \mathrm{x}\right)$

- Theorem and corollary apply to normal-form and extensive-form (both perfect and imperfect information) for any number of players (can let $\sigma_{-\mathrm{i}}$ be joint strategy profile for all other agents)

Meta-algorithm for Bayesian opponent exploitation

```
Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation
Inputs: Prior distribution \(p_{0}\), response functions \(r_{t}\) for \(0 \leq\)
\(t \leq T\)
    \(M_{0} \leftarrow \overline{p_{0}\left(\sigma_{-i}\right)}\)
    \(R_{0} \leftarrow r_{0}\left(M_{0}\right)\)
    Play according to \(R_{0}\)
    for \(t=1\) to \(T\) do
    \(x_{t} \leftarrow\) observations of opponent's play at time step \(t\)
    \(p_{t} \leftarrow\) posterior distribution of opponent's strategy
    given prior \(p_{t-1}\) and observations \(x_{t}\)
        \(M_{t} \leftarrow\) expectation of \(p_{t}\)
        \(R_{t} \leftarrow r_{t}\left(M_{t}\right)\)
    Play according to \(R_{t}\)
```


Challenges

- \#1: Assumes we can compactly represent prior and posterior distributions p_{t}, which have infinite domain

```
Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation
```

Inputs: Prior distribution p_{0}, response functions r_{t} for $0 \leq$
$t \leq T$
$M_{0} \leftarrow \overline{p_{0}\left(\sigma_{-i}\right)}$
$R_{0} \leftarrow r_{0}\left(M_{0}\right)$
Play according to R_{0}
for $t=1$ to T do
$x_{t} \leftarrow$ observations of opponent's play at time step t
$p_{t} \leftarrow$ posterior distribution of opponent's strategy
given prior p_{t-1} and observations x_{t}
$M_{t} \leftarrow$ expectation of p_{t}
$R_{t} \leftarrow r_{t}\left(M_{t}\right)$
Play according to R_{t}

Challenge \#2

- Requires procedure to efficiently compute posterior distributions given prior and observations, which will involve having to update potentially infinitely-many strategies

```
Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation
Inputs: Prior distribution }\mp@subsup{p}{0}{}\mathrm{ , response functions }\mp@subsup{r}{t}{}\mathrm{ for 0}
t\leqT
    M0}\leftarrow\overline{\mp@subsup{p}{0}{}(\mp@subsup{\sigma}{-i}{})
    R }\leftarrow\mp@subsup{r}{0}{}(\mp@subsup{M}{0}{}
    Play according to }\mp@subsup{R}{0}{
    for }t=1\mathrm{ to }T\mathrm{ do
    xt \leftarrowobservations of opponent's play at time step t
    pt}\leftarrow\mp@code{posterior distribution of opponent's strategy
    given prior }\mp@subsup{p}{t-1}{}\mathrm{ and observations }\mp@subsup{x}{t}{
    M
    Rt}\leftarrow\mp@subsup{r}{t}{}(\mp@subsup{M}{t}{}
    Play according to }\mp@subsup{R}{t}{
```


\#3

Requires efficient procedure to compute mean of p_{t}

```
Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation
Inputs: Prior distribution }\mp@subsup{p}{0}{}\mathrm{ , response functions }\mp@subsup{r}{t}{}\mathrm{ for 0 }
t\leqT
    M 
    R
    Play according to }\mp@subsup{R}{0}{
    for }t=1\mathrm{ to }T\mathrm{ do
        xt & observations of opponent's play at time step t
    pt}\leftarrow\mathrm{ posterior distribution of opponent's strategy
    given prior }\mp@subsup{p}{t-1}{}\mathrm{ and observations }\mp@subsup{x}{t}{
    Mt}\leftarrow\mathrm{ expectation of }\mp@subsup{p}{t}{
    R
    Play according to }\mp@subsup{R}{t}{
```


\#4

Requires that the full posterior distribution from one round be compactly represented to be used as the prior distribution in the next round

```
Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation
Inputs: Prior distribution }\mp@subsup{p}{0}{}\mathrm{ , response functions }\mp@subsup{r}{t}{}\mathrm{ for 0}
t\leqT
    M0}\leftarrow\overline{\mp@subsup{p}{0}{}(\mp@subsup{\sigma}{-i}{})
    R
    Play according to }\mp@subsup{R}{0}{
    for }t=1\mathrm{ to }T\mathrm{ do
    xt}\leftarrow\mathrm{ observations of opponent's play at time step }
    pt \leftarrow posterior distribution of opponent's strategy
    given prior }\mp@subsup{p}{t-1}{}\mathrm{ and observations }\mp@subsup{x}{t}{
    Mt}\leftarrow\mathrm{ expectation of pt
    R}\leftarrow\leftarrow\mp@subsup{r}{t}{}(\mp@subsup{M}{t}{}
    Play according to }\mp@subsup{R}{t}{
```


Can solve \#4 by using the following modification:

 $\mathrm{p}_{\mathrm{t}} \leftarrow$ posterior distribution of opponent's strategy given prior p_{0} and observations $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{t}}$```
Algorithm 1 Meta-algorithm for Bayesian opponent ex-
ploitation
Inputs: Prior distribution }\mp@subsup{p}{0}{}\mathrm{ , response functions }\mp@subsup{r}{t}{}\mathrm{ for 0 S
t\leqT
 M
 R
 Play according to }\mp@subsup{R}{0}{
 for }t=1\mathrm{ to }T\mathrm{ do
 xt}\leftarrow\mathrm{ observations of opponent's play at time step t
 pt}\leftarrow\mathrm{ posterior distribution of opponent's strategy
 given prior p}\mp@subsup{p}{t-1}{}\mathrm{ and observations }\mp@subsup{x}{t}{
 Mt}\leftarrow\mathrm{ expectation of }\mp@subsup{p}{t}{
 R}\leftarrow\leftarrow\mp@subsup{r}{t}{}(\mp@subsup{M}{t}{}
 Play according to }\mp@subsup{R}{t}{
```


## Dirichlet distribution

- pdf of the Dirichlet distribution returns the belief that the probabilities of K rival events are $\mathrm{x}_{\mathrm{i}}$ given that each event has been observed $\alpha_{i}-1$ times:
$-\mathrm{f}(\mathrm{x}, \alpha)=\left[\prod_{\mathrm{xi}}{ }^{\text {aii-1}}\right] / \mathrm{B}(\alpha)$
- Normalization $B(\alpha)$ is beta function
$-\mathrm{B}(\alpha)=\prod_{\mathrm{i}} \Gamma\left(\alpha_{\mathrm{i}}\right) / \Gamma\left(\sum_{\mathrm{i}} \alpha_{\mathrm{i}}\right)$, where $\Gamma(\mathrm{n})=(\mathrm{n}-1)$ ! is Gamma function
- $E\left[x_{i}\right]=\alpha_{i} / \sum_{k} \alpha_{k}$
- Assuming multinomial sampling, the posterior distribution after including new observations is also a Dirichlet distribution with parameters updated based on the new observations.


## Dirichlet distribution

- Very natural distribution, has been previously used for modeling in large imperfect-information games
- Dirichlet is conjugate prior for multinomial distribution, and therefore posterior is also Dirichlet
- Opponent plays in proportion to updated weights
- So simple closed form for mean of posterior
- Alg 1 gives exact efficient algorithm for computing Bayesian Best Response [Fudenberg/Levine '98]
- "Fictitious play" [Brown "51]
- This applies to normal-form games and extensive-form games with perfect information
- Zero-sum, general-sum, and any number of players


## Imperfect information

- It would also apply to imperfect-information games if the opponent's private information was observed after each round (so we knew exactly what information set he took observed action from)
- But not to imperfect-information games where opponent's private information is not (or is only sometimes) observed.
- Algorithm exists using importance sampling to approximate value of infinite integral [Southey et.al UAI ${ }^{\circ} 05$ ]
- Has been applied to limit Texas hold 'em successfully
- But has no guarantees, and does not provide much intuition
- P1 given private information state $\mathrm{x}_{\mathrm{i}}$ according to distribution.
- P1 takes publicly observable action $\mathrm{a}_{\mathrm{i}}$.
- P2 observes $\mathrm{a}_{\mathrm{i}}$ but not $\mathrm{x}_{\mathrm{i}}$. Then P2 acts and players get payoff.

- If we observe opponent's hand after each play, we could just maintain counter for each action/info set and update appropriate one
- But if we don't observe his card, we wouldn't know which counter to increment
- To simplify analysis assume we never see opponent's card after a hand (and also assume we don't observe our payoff until the end so that we could not draw inferences about his card).
- This is not realistic, but no known exact algorithms even for this simplified setting
- Suspect approach can extend straightforwardly to case of partial observability
- Let $\alpha_{K b}-1$ denote number of "fictitious" times we have observed opponent play b with K according to our prior
- Now assume we observe him take action b, but don't observe his card
- Mean of posterior for probability he bets big with J:
- $\left[B\left(\alpha_{K b}+1, \alpha_{K s}\right) B\left(\alpha_{\mathrm{Jb}}+1, \alpha_{\mathrm{Js}}\right)+B\left(\alpha_{K b}, \alpha_{K s}\right) B\left(\alpha_{\mathrm{Jb}}+2, \alpha_{\mathrm{Js}}\right)\right] / Z$
- $\mathrm{Z}=\mathrm{B}\left(\alpha_{\mathrm{Kb}}+1, \alpha_{\mathrm{Ks}}\right) \mathrm{B}\left(\alpha_{\mathrm{Jb}}+1, \alpha_{\mathrm{Js}}\right)+\mathrm{B}\left(\alpha_{\mathrm{Kb}}, \alpha_{\mathrm{Ks}}\right) \mathrm{B}\left(\alpha_{\mathrm{Jb}}+2, \alpha_{\mathrm{Js}}\right)$
- $\quad+\mathrm{B}\left(\alpha_{\mathrm{Kb}}+1, \alpha_{\mathrm{Ks}}\right) \mathrm{B}\left(\alpha_{\mathrm{Jb}}, \alpha_{\mathrm{Js}}+1\right)+\mathrm{B}\left(\alpha_{\mathrm{Kb}}, \alpha_{\mathrm{Ks}}\right) \mathrm{B}\left(\alpha_{\mathrm{Jb}}+1, \alpha_{\mathrm{Js}}+1\right)$
- Recall $\mathrm{B}(\alpha)=\prod_{\mathrm{i}} \Gamma\left(\alpha_{\mathrm{i}}\right) / \Gamma\left(\sum_{\mathrm{i}} \alpha_{\mathrm{i}}\right)$, where $\Gamma(\mathrm{n})=(\mathrm{n}-1)$ ! is Gamma function


## General solution

- Assume we observe him play b $\theta_{\mathrm{b}}$ times and $\mathrm{s} \theta_{\mathrm{s}}$ times
- Mean of posterior of probability of betting big with Jack:
- $\sum_{i} \sum_{j} B\left(\alpha_{K b}+i, \alpha_{K s}+j\right) B\left(\alpha_{\mathrm{Jb}}+\theta_{\mathrm{b}}-\mathrm{i}+1, \alpha_{\mathrm{Js}}+\theta_{\mathrm{s}}-\mathrm{j}\right) / \mathrm{Z}$
- $\mathrm{Z}=\sum_{\mathrm{i}} \sum_{\mathrm{j}}\left[\mathrm{B}\left(\alpha_{\mathrm{Kb}}+\mathrm{i}, \alpha_{\mathrm{Ks}}+\mathrm{j}\right) \mathrm{B}\left(\alpha_{\mathrm{Jb}}+\theta_{\mathrm{b}}-\mathrm{i}+1, \alpha_{\mathrm{Js}}+\theta_{\mathrm{s}}-\mathrm{j}\right)+\right.$ $\left.B\left(\alpha_{\mathrm{Kb}}+\mathrm{i}, \alpha_{\mathrm{Ks}}+\mathrm{j}\right) \mathrm{B}\left(\alpha_{\mathrm{Jb}}+\theta_{\mathrm{b}}-\mathrm{i}, \alpha_{\mathrm{Js}}+\theta_{\mathrm{s}}-\mathrm{j}+1\right)\right]$


## Example

- Suppose prior is that opponent played b with K 10 times, played s with K 3 times, played b with J 4 times, played s with J 9 times.
- Now suppose we see him play b at next iteration
- Previously we thought probability of betting big with a jack was 4/13 = 0.308
- Now: $\mathrm{p}(\mathrm{b} \mid \mathrm{O}, \mathrm{J})=\mathrm{B}(11,3) \mathrm{B}(5,9)+\mathrm{B}(10,3)(6,9) / \mathrm{Z}$
- $\mathrm{p}(\mathrm{s} \mid \mathrm{O}, \mathrm{J})=\mathrm{B}(11,3) \mathrm{B}(4,10)+\mathrm{B}(10,3)(5,10) / Z$
- -> $\mathrm{p}(\mathrm{b} \mid \mathrm{O}, \mathrm{J})=\mathrm{p}(\mathrm{b} \mid \mathrm{O}, \mathrm{J}) /[\mathrm{p}(\mathrm{b} \mid \mathrm{O}, \mathrm{J})+\mathrm{p}(\mathrm{s} \mid \mathrm{O}, \mathrm{J})]=\ldots$
- $\mathrm{p}(\mathrm{b} \mid \mathrm{O}, \mathrm{J})=0.322$
- Previously we thought probability of betting with a jack was $4 / 13=0.308$
- What if we observed his card after game play and observed he had a jack?
- $\mathrm{p}(\mathrm{b} \mid \mathrm{O}, \mathrm{J})=0.322$
- Previously we thought probability of betting with a jack was $4 / 13=0.308$
- What if we always observed his card after game play and observed he had a jack?
$-5 / 14=0.357$
- What about "naïve" approach where we increment counter for $\alpha_{\mathrm{Jb}}$ by $\alpha_{\mathrm{Jb}} /\left(\alpha_{\mathrm{Jb}+} \alpha_{\mathrm{Kb}}\right)$ ?
- $\mathrm{p}(\mathrm{b} \mid \mathrm{O}, \mathrm{J})=0.322$
- Previously we thought probability of betting with a jack was $4 / 13=0.308$
- What if we always observed his card after game play and observed he had a jack?
$-5 / 14=0.357$
- "Naïve" approach: $(4+4 / 13) / 14=0.308$


## "Naïve" approach

- "Naïve" approach: $(4+4 / 13) / 14=0.308$
- It turns out that this is equivalent to just using prior

$$
\begin{gathered}
\frac{x+\frac{x}{x+y}}{x+y+1} \cdot \frac{x+y}{x+y}=\frac{x(x+y)+x}{(x+y+1)(x+y)} \\
\quad=\frac{x(x+y+1)}{(x+y+1)(x+y)}=\frac{x}{x+y}
\end{gathered}
$$

## Uniform prior over polyhedron

- Opponent playing uniformly at random within region of fixed strategy, e.g., specific NE or "population mean" strategy
- E.g., "sophisticated" Rock-Paper-Scissors opponents who play uniformly at random out of strategies with probability within [0.31,0.35], instead of completely random over [0,1].
- Ganzfried/Sandholm used similar opponents for poker, EC12/TEAC15

```
Algorithm 2 Algorithm for opponent exploitation with uni-
form prior distribution over polyhedron
Inputs: Prior distribution over vertices }\mp@subsup{p}{}{0}\mathrm{ , response functions
r}\mp@subsup{r}{t}{}\mathrm{ for 0}0\leqt\leq
 M0}\leftarrow\mathrm{ strategy profile assuming opponent i plays each ver-
 tex }\mp@subsup{v}{i,j}{}\mathrm{ with probability }\mp@subsup{p}{i,j}{0}=\frac{1}{\mp@subsup{V}{i}{}
 R }\leftarrow\mp@subsup{r}{0}{}(\mp@subsup{M}{0}{}
 Play according to }\mp@subsup{R}{0}{
 for }t=1\mathrm{ to T do
 for }i=1\mathrm{ to }N\mathrm{ do
 a
 for }j=1\mathrm{ to }\mp@subsup{V}{i}{}\mathrm{ do
 pi,j}t\leftarrow\mp@subsup{p}{i,j}{t-1}\cdot\mp@subsup{v}{i,j}{}(\mp@subsup{a}{i}{}
 Normalize the }\mp@subsup{p}{i,j}{t}\mathrm{ 's so they sum to 1
 M
 vertex vi,j}\mathrm{ with probability }\mp@subsup{p}{i,j}{t
 Rt}\leftarrow\mp@subsup{r}{t}{}(\mp@subsup{M}{t}{}
 Play according to }\mp@subsup{R}{t}{
```


## Run time of basic algorithm

- Colt Java math library for Beta computation
- Dirichlet parameters uniformly random in $\{1, \mathrm{n}\}$
$-\mathrm{n}=100$ corresponds to 400 prior observations
- Previous work (Southey et al) used 200 hands per match
- Computation very fast but numerical instability for large n

| $n$ | 10 | 20 | 50 | 100 | 200 | 500 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | 0.0005 | 0.0008 | 0.0018 | 0.0025 | 0.0034 | 0.0076 |
| NaN | 0 | 0 | 0 | 0.0883 | 0.8694 | 0.9966 |

Table 1: Results of modifying Dirichlet parameters to be $U\{1, n\}$ over one million samples. First row is average runtime in milliseconds. Second row is percentage of the trials that output "NaN."

## Run time of generalized algorithm

- Tested generalized algorithm for different numbers of observations keeping prior fixed
- Used Dirichlet prior with all parameters equal to

2 (as done in prior work Southey et al)

- For $\theta_{\mathrm{b}}=101, \theta_{\mathrm{s}}=100$, ran in 19 milliseconds.

| $n$ | 10 | 20 | 50 | 100 | 200 | 500 | 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Time | 0.015 | 0.03 | 0.36 | 2.101 | 10.306 | 128.165 | 728.383 |
| NaN | 0 | 0 | 0 | 0 | 0.290 | 0.880 | 0.971 |

[^0]
## Comparison to other approaches

- EBBR: our Exact Bayesian Best Response
- BBR: Bayesian Best Response
- samples strategies from prior, best responds to posterior mean
- MAP: Max A Posteriori Response
- samples from prior, computes posteriors, best response to max
- Thompson's Response
- Sample from prior, compute posteriors, best response to sample

| Algorithm | Initial | 10 | 25 |
| :---: | :---: | :---: | :---: |
| EBBR | $\mathbf{0 . 0 0 0 3} \pm \mathbf{0 . 0 0 0 9}$ | $\mathbf{- 0 . 0 0 2 4}$ | $\mathbf{0 . 0 0 1 2}$ |
| BBR | $0.0002 \pm 0.0009$ | -0.0522 | -0.138 |
| MAP | $-0.2701 \pm 0.0008$ | -0.2848 | -0.2984 |
| Thompson | $-0.2993 \pm 0.0007$ | -0.2760 | -0.3020 |
| FullBR | $0.4976 \pm 0.0006$ | 0.4956 | 0.4963 |
| Nash | $-0.3750 \pm 0.0001$ | -0.3751 | -0.3745 |

Table 3: Comparison of our algorithm with algorithms from prior work (BBR, MAP, Thompson), full best response, and Nash equilibrium. Prior is Dirichlet with parameters equal to 2 . For the initial column we sampled ten million opponents from the prior, for 10 rounds we sampled one million opponents, and for 25 rounds 100,000 . Results are average winrate per hand over all opponents. For initial column $95 \%$ confidence intervals are reported.

## Generalizations

- Generalized model to n different states according to arbitrary distribution $\pi$ and can take $m$ actions
- Have closed-form solution, but contains number of terms exponential in n and m (though polynomial in T ).
- Can approach or analysis be improved?


## Conclusions and directions

- First exact algorithm for Bayesian opponent exploitation in class of imperfect-information games
- Runs quickly experimentally and outperforms prior approaches, but frequent numerical instability for large n
- General meta-algorithm and new theoretical framework
- Studied Dirichlet prior and uniform over polyhedron
- Future research and extensions:
- Partial observability (likely straightforward)
- General game trees with sequential actions (likely hard)
- Any number of agents (alg not specialized for 2 pl zero-sum)
- Other important and tractable prior distributions


[^0]:    Table 2: Results using Dirichlet prior with all parameters equal to 2 and $\theta_{b}, \theta_{s}$ in $\mathrm{U}\{1, \mathrm{n}\}$ averaged over one thousand samples.

