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Abstract— In this article, the issue of guarding multi-agent
systems against a sequence of intruder attacks through mobile
heterogeneous guards (guards with different ranges) is dis-
cussed. The article makes use of graph theoretic abstractions of
such systems in which agents are the nodes of a graph and edges
represent interconnections between agents. Guards represent
specialized mobile agents on specific nodes with capabilities
to successfully detect and respond to an attack within their
guarding range. Using this abstraction, the article addresses
the problem in the context of eternal security problem in
graphs. Eternal security refers to securing all the nodes in
a graph against an infinite sequence of intruder attacks by
a certain minimum number of guards. This paper makes use
of heterogeneous guards and addresses all the components of
the eternal security problem including the number of guards,
their deployment and movement strategies. In the proposed
solution, a graph is decomposed into clusters and a guard
with appropriate range is then assigned to each cluster. These
guards ensure that all nodes within their corresponding cluster
are being protected at all times, thereby achieving the eternal
security in the graph.

I. INTRODUCTION

Networked systems such as Cyber Physical Systems (CPS)
have become an indispensable part of the modern society.
Their ubiquitous presence in critical infrastructures such as
power, water, and transportation has also led to growing
concerns regarding their security against intruder attacks. An
anomalous behavior by an individual agent may propagate
and potentially result in the failure of the entire system. This
not only demands a continuous surveillance of the system,
but also the design and implementation of efficient mitigation
strategies to minimize the overall impact of attacks, thereby
motivating this study of guarding such systems.

Multi-agent systems can often be abstracted and modeled
using a graph structure in which nodes represent agents and
edges represent interconnections between these agents. This
abstraction provides a framework to understand and analyze
various system properties in terms of the underlying graph.
It also provides a plethora of tools from graph theory that
can be employed for an in-depth study of various problems
of these systems. A specific problem in this domain is the
eternal security in graphs. In this article, this notion of
eternal security in graphs, introduced in [1] and later studied
in [2]–[4], is discussed and extended.

The concept of eternal security addresses the problem of
securing all the nodes in a graph against an infinite sequence
of intruder attacks by a certain minimum number of guards.
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An intruder attack on a node refers to any malicious activity
on that node, for instance compromising a sensor node in
a CPS to send fake values of the parameter being monitored.
A guard is an agent placed on a specific node that can detect
and respond to an intruder attack within its range by moving
from one node to another along the edges of a graph. If these
guards are placed on nodes such that every node in the graph
lies within the range of at least one guard, the graph is said to
be secured against an intruder attack on any of its nodes. The
location of these guards is referred to as secure configuration.
The movement of guards along the edges from one node to
another, however, might disturb this secure configuration as
some nodes might end up not being within any guard’s range
as illustrated in Fig. 1. The notion of eternal security deals
with such situations and ensures that all the nodes are secured
against an arbitrary sequence of attacks. The objective is to
determine a number of guards of given ranges, deploy them
within a graph and outline a movement strategy such that a
secure configuration is ensured for all the nodes at all times.

In many practical systems, these mobile guards can be
thought of as unmanned devices (robots) placed at the gate-
way nodes, guarding the repeater and sensor nodes within
their guarding ranges against malicious attacks. In scenarios
like this, there may be a subset of nodes (gateways) that are
more sensitive or critical than others (sensors) and therefore
require more immediate consideration in case of an attack on
any of these nodes. Eternally securing such a heterogeneous
network requires making use of heterogeneous guards, i.e.,
guards with different ranges rather than having all guards
with the same range.

The problem of finding the number of guards required for
the eternal security of graphs has been previously studied.
Goddard et al. [2] related this number to the domination
number of a graph, whereas [3, 6] provided bounds in terms
of the independence number of a graph. In [7], the required
number of guards is compared to the vertex cover number.
Recently, this problem is studied for the proper interval
graphs in [8], and a solution is provided in terms of the size
of the largest independent set. In all these results, a guard
was able to detect and respond to an attack only to the nodes
in its immediate neighborhood, i.e., at 1 hop (edge length)
distance. Abbas et al. [9] studied this problem for guards that
can detect and respond to attacks that are at most k hops from
them. A limitation of the previous work done in this area
has been that all guards were assumed to have same ranges,
which may not be desirable in real-world scenarios discussed
above. Besides this, all these studies have focused primarily
on finding the number of guards required for the eternal
security, paying less attention on their movement strategies,
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Fig. 1. (a) Two guards, s1 and s2, each capable of detecting and responding to an attack on an adjacent vertex are securing the vertices of a graph
through an initial secure configuration. In the case of an attack on a vertex indicated by an arrow, s1 moves towards it to counter the attack. The resulting
configuration of guards is unsecure as the circled vertices have no guard in their neighborhoods. Here, the problem is that the number of guards is not
sufficient. (b) Three guards s1, s2, and s3, each having the range 1 are deployed. After two intruder attacks, guards’ configuration is unable to secure
all the vertices. Though the number of guards are sufficient in this case, the strategy for the movement of guards to counter attacks is not appropriate to
eternally secure a graph against an arbitrary sequence of attacks. (c) Guards move to counter attacks such that the resulting configuration is always secure,
i.e., for every vertex there always exists a guard to secure it. This makes a graph eternally secure against any sequence of attacks.

an essential component in achieving eternal security.
This article studies the eternal security in graphs, address-

ing the aforementioned issues and in the process makes the
following contributions:

• addresses the eternal security through a set of hetero-
geneous guards, i.e., guards with different ranges,

• presents an algorithm for an appropriate placement and
movement strategies of these heterogeneous guards to
ensure eternal security.

The remainder of the paper is organized as follow: Sec-
tion II introduces the terms that will be used throughout the
paper. Section III formulates the problem addressed in this
paper. Section IV provides details of the proposed solution,
and also presents an algorithm for decomposing a graph into
clusters for the eternal security. Section V illustrates the
algorithm through an example and presents its evaluation.
Finally, Section VII summarizes the work presented in this
paper.

II. PRELIMINARIES

A graph G(V,E), with a vertex set V (G) and an edge set
E(G) is a simple, undirected graph. For simplicity, notations
V and E are used for the vertex set and edge set of a
graph respectively. An edge between vertices u and v is
represented by u ∼ v. Moreover, terms vertex and node
are used interchangeably. A complete subgraph is induced
by the vertex set W ⊆ V whenever u ∼ v ∈ E for all
u, v ∈W . A subset of vertices inducing a complete subgraph
is called a clique. A clique that can not be extended by
including one or more adjacent vertices is a maximal clique.
In other words, a clique not contained in any other clique
of a larger size is a maximal clique. The determination of

all maximal cliques in a graph is known as the maximal
clique decomposition of a graph. The distance between two
vertices u and v in G, denoted by d(u, v)G, is the length
of the shortest path between u and v in G. Here, the path
length is the number of edges in a path. A path length of r is
sometimes referred to as the r-hop. The diameter of a graph,
diam(G), is max d(u, v)G, ∀u, v ∈ G. The rth power of
a graph G, denoted by Gr, is a graph with V (Gr) = V (G)
and u ∼ v ∈ E(Gr), whenever d(u, v)G ≤ r.

III. PROBLEM FORMULATION

In this section, the problem of securing a network against
a sequence of intruder attacks through a set of heterogeneous
guards is formulated.

Let a network of agents interacting with each other be
represented by a graph G, in which the vertex set V repre-
sents agents, and the edge set E corresponds to interactions
between agents. Let S be a set of guards, in which each
guard si ∈ S has some sensing and response range ri and is
located on some vertex of G. A guard with the range ri can
detect and respond to an intruder attack on a vertex that is at
most ri hops away from it by marching towards the attacked
vertex. The vertex at which a guard si is present at time k
is described by the map f ,

f : (S, k) → V (1)

fk(si) is used to denote the vertex where si guard is
located at time instant k. Moreover, fk(S) = {fk(si) | si ∈
S} is defined.

A vertex v is secured at time k whenever it lies within a
range of at least one guard at time instant k, i.e.,

∃si : d(fk(si), v)G ≤ ri (2)
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Partition a graph G

into clusters, Ci, s.t.
d(u, v)G ≤ ri
u, v ∈ Ci

Assign a guard
si with a range
ri to a cluster

Ci

A guard si is responsible
for the eternal securitry of
the nodes in its cluster

only.

Fig. 2. A scheme for eternally securing a graph by making clusters.

If (2) is true for all the vertices in a graph, then G is
secured against an intruder at time k, and we say that fk(S)
is a secure configuration of guards in S.

In the case of an intruder attack at some vertex u ∈ V
at time k, a guard si securing u will move from fk(si) to
u along the edges of a graph to counter an intruder. This
results into a new configuration of guards, fk+1(S) at time
k + 1. If fk+1(S) is also a secure configuration, then the
graph remains secured against an intruder attack.

Definition 3.1: (Eternal Security) A graph is eternally
secure if for any k, a secure configuration of guards at time
k results into another secure configuration at time k + 1 as
a result of the movement of some guard si ∈ S from the
vertex fk(si) to fk+1(S).

Here it is assumed that at any time instant, there can be an
attack only at a single vertex, and a single guard moves to
counter this intruder. In other words, |fk+1(S) − fk(S)| ≤
1. Later, it is shown that under certain conditions, this
assumption can be relaxed to |fk+1(S)− fk(S)| ≤ |S|. The
objective is to investigate the following problem,

How can a graph be eternally secured against a sequence
of intruder attacks using a set of guards S, where guards
can have different ranges?

Thus, the notion of eternal security in graphs has three
major aspects;

(a) Existence of a solution, i.e., if it is possible to eternally
secure a graph through a given set of guards and their ranges.

(b) Appropriate deployment of guards on various vertices
in a graph.

(c) Strategy for moving a right guard to counter an intruder
attack such that the resulting configuration of guards is also
secure.

IV. PROPOSED SOLUTION

In this section, a scheme to distribute a given number
guards with various ranges, among various vertices in a
graph to make it eternally secure is presented. Let S =
[s1, s2, · · · , sσ] be a vector of given guards, and r =
[r1, r2, · · · , rσ] be a vector of their ranges, where ri is the
range of a guard si. The proposed solution starts with the
following simple observation,
Observation 1: A single guard with a range r makes a graph
G with a diameter d eternally secure, if and only if r ≥ d.

The above observation provides a systematic way of
distributing guards in S with their corresponding ranges in
r to make a graph eternally secure.

The proposed approach partitions a graph into clusters,
and assigns a guard to each cluster which is then responsible

for securing the nodes in its cluster only. These clusters are
formed such that the distance between any two nodes of
the same cluster is not greater than the range of the guard
assigned to that cluster, i.e., d(u, v)G ≤ ri, where u and v
are the vertices of the same cluster Ci, and ri is the range of
the guard si assigned to Ci. Since the distance between any
two nodes in Ci is not greater than ri, guard si sufficient for
the eternal security of all the nodes in Ci. A block diagram
of the scheme is shown in Fig. 2.

As an example, consider a graph shown in Fig. 3. Let
there be three guards, s1, s2, and s3, with ranges 1, 2 and
3 respectively. The vertices of G are partitioned into three
clusters, and guards s1, s2 and s3 are assigned to clusters
C1, C2 and C3 respectively. It is to be noted that for any
cluster Ci, d(u, v)G ≤ ri, ∀u, v ∈ Ci. Therefore, a guard si
can always detect and respond to an intruder attack on some
vertex in Ci making G eternally secure.

C1

C3 C2

s1

s3

s2

Fig. 3. An example illustrating the partitioning of graph vertices into
clusters for eternal security. The guards s1, s2, s3, with ranges 1, 2, and 3
respectively are assigned to the clusters C1, C2, and C3.

Under a secure configuration of guards within a graph, a
node may be secured by more than one guard. In the case of
an attack on that node, a response by one of the guards may
result into another secure configuration, while a response by
some other guard might produce a non-secure configuration
of guards as shown in Fig. 4. Thus, for the eternal security, it
is crucial to determine a right guard to be used to counter an
attack. The clustering approach is particularly useful for that
matter as guards will now respond to attacks on vertices in
their clusters only. For a given number of guards and ranges,
an effective partitioning of graph vertices into clusters is now
discussed.

A. Decomposition of a Graph into Clusters

The objective is to obtain clusters of maximal sizes
and assign guards with specific ranges to these clusters to
eternally secure all the nodes. A guard is assigned to a cluster
in such a way that the pair-wise distance between any two
nodes in the cluster is at most equal to the range of the
guard in that cluster. For a given graph and a set of guards
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Fig. 4. (a) A secure configuration of guards s1 and s2, each having a range 1 is shown. In the case of an attack at the vertex v, both guards can counter
the attack since d(s1, v) = d(s2, v) = 1. However, movement of the guard s1 to v results into an un-secure configuration as the circled nodes are not
secured by any guard. On the other hand, movement of s2 to counter the attack produces a secure configuration. (b) The vertices are partitioned into two
clusters, each having a single guard. Each guard is responsible for the security of the vertices in its cluster only.

along with their ranges, the aim is to decompose a graph into
clusters such that the clusters include (cover) the maximum
number of nodes in the graph.

The notion of graph power can be useful for the decompo-
sition of a graph into clusters for the eternal security purpose.
A guard with a range r can eternally secure the nodes in G
that are within a distance of r hops from each other. In other
words, a guard with a range r can eternally secure all the
vertices that induce a complete subgraph in the rth power
of G (i.e., Gr). Thus, for a guard with a range r, a cluster
with the maximum number of vertices can be obtained by
maximal clique decomposition of Gr, and then selecting a
maximum clique. All the vertices in the maximum clique of
Gr can then be eternally secured by a guard with a range
r. For guards with various ranges (i.e., ri), corresponding
clusters can be obtained by repeating the same procedure, i.e.
by computing a maximal clique decomposition of Gri and
then selecting a clique with the maximum number of vertices
that are not yet secured. This process is formally defined in
Algorithm 1 and discussed in detail in the following section.

B. Main Algorithm

This section presents an algorithm for partitioning a graph
into clusters for the eternal security of a graph through a
given set of guards with their respective ranges.

Let α be the vector containing the ranges of guards. The
ith element of α is denoted by αi. Moreover, β be the
vector in which the ith element, denoted by βi, represents
the number of guards with the range αi. For example,
α = [4, 2, 1], and β = [1, 3, 2] indicates that a graph
has a single guard with a range 4, three guards with a range
2, and two guards have a range 1. Furthermore, let Vuncov

be the set of vertices that are not included in any cluster.
In the initial phase, for each αi, maximal clique decom-

position of Gαi is performed. Out of all the cliques ob-
tained, clique containing the maximum number of uncovered
elements, say m is selected. Let m belongs to the clique
decomposition of Gαj . If there exists a guard with the range
αj that has not been assigned to any cluster, then a cluster
consisting of the vertices in m is formed, and a guard with a

range αj is assigned to the cluster. This procedure is repeated
until all guards are assigned to clusters, or all vertices are
covered.

Algorithm 1 Decomposing a graph into clusters for the
eternal security

Input: G, α, β

Initial: g = 1; ci = 1, ∀ i ∈ {1, · · · |α|}; Vuncov = V
for i = 1 to |α| do

Mi ← MaxClique(Gαi)

end for
while g ≤ Total no. of guards do

M←

|α|
⋃

i=1
ci≤βi

Mi

Find m ∈ M such that |m ∩ Vuncov| is maximum.
Let Mj be clique decomposition that contains m and
has cj ≤ βj .
Vertices in m constitute a cluster Cg, and a guard with
a range αj is assigned to the cluster.
cj ← cj + 1; g ← g + 1
Vuncov ← Vuncov −m

end while

The algorithm uses maximal clique decomposition of
a graph. Maximal clique decomposition is a well known
combinatorial optimization problem. A number of theoretical
and algorithmic results are available in the graph theory
and computer science literature. Bron-Kerbosch algorithm
[10] is a well known and widely used algorithm for finding
maximal cliques in an undirected graph. Although other
approaches have been reported, Bron-Kerbosch algorithm
and its subsequent improvements are still regraded as one of
the fastest and efficient ways to find maximal cliques [11].

Furthermore, the problem of selecting cliques from the
collection M is related to the maximum coverage problem,
in which the objective is to select a certain number of
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Fig. 5. A network with twelve nodes. C1 cluster contains the guard with the range 3. Both C1 and C2 clusters have guards with the range 1.

subsets from the collection to maximally cover the elements
in the universal set. Maximum coverage problem is known
to be NP-hard [12]. In Algorithm 1, greedy approach is
used for the selection of cliques. The greedy algorithm for
the maximum coverage problem has an approximation ratio
of (1 − 1/e), which is essentially the best possible [12].
Therefore, for the clustering problem, if Op is the number
of vertices that are included in some cluster by the optimal
clustering algorithm, then

Proposition 4.1: For a given set of guards along with
their ranges, Algorithm 1 includes at least (1 − 1/e).Op
number of vertices in some cluster.

The following section gives a detailed example of the
proposed algorithm to decompose a graph into clusters for
the eternal security. It also evaluates the proposed algorithm
in terms of the average distance moved by a guard in order
to ensure eternal security of the graph.

V. EXAMPLE

As an example consider a network in Fig. 5. Let there be
three guards s1, s2 and s3 with ranges 1, 1 and 3 respectively.
These guards are to be distributed among the nodes to make
the network eternally secure. Thus, the objective is to find
an initial secure configuration of guards, and to specify
a strategy to make sure that only the right guard moves
to counter an attack on some node. Both of these goals
can be achieved by decomposing a graph into clusters, and
assigning an appropriate guard to each of these clusters.
Using algorithm 1, the procedure starts by arranging guards’
ranges in an array, α = [3 , 1]. An array containing the
number of guards corresponding to each of these ranges is
β = [1, 2]. Since, α1 = 3, G3 is computed. Maximal clique
decomposition of G3 using Bron-Kerbosch [10] algorithm
gives,

M1 ={v1, · · · , v8}, {v1, v3, · · · , v6, v8, v11, v12},

{v1, · · · , v7, v10}, {v1, v2, v4, · · · , v7, v9, v10},

{v1, · · · , v6, v8, v12}.

Similarly, maximal clique decomposition of G gives,

M2 ={v1, v2}, {v2, v4}, {v2, v7}, {v2, v10}, {v4, v5, v6},

{v1, v3}, {v3, v4}, {v3, v8}, {v3, v12}, {v11, v12},

{v5, v7}, {v6, v8}, {v8, v11}, {v7, v9}, {v9, v10}.

The counters c1 and c2 corresponding to M1 and M2

respectively are initialized to 1. Moreover, Vuncov = V

initially. In the first iteration (of the while loop), M =
M1 ∪ M2. Since {v1, · · · , v8} ∈ M1 covers the most
uncovered elements1, the cluster C1 consisting of the vertices
{v1, · · · , v8} is formed and the guard with the range 3 is
assigned to the cluster. The counter c1 is incremented to 2,
and Vuncov is set to {v9, · · · , v12}. In the next iteration, since
c1 > β1, M contains only M2. It represents the fact that no
more clusters can be formed that require guards with the
range 3. Thus, {v9, v10} ∈M2 covering the most vertices in
Vuncov is selected for the cluster C2. A guard with a range 1 is
then assigned to C2. Similarly, C3 comprising of {v11, v12} is
formed and the remaining guard with the range 1 is assigned
to it. This cluster decomposition is illustrated in Fig. 5.

VI. AVERAGE DISTANCE MOVED BY A GUARD

For the eternal security of a graph, guards with various
sensing and response ranges are located on the vertices of
a graph. In the case of an intruder attack on some vertex,
they move along the edges of a graph through a path of
vertices, thus covering a certain path length. The vertices
of a graph are divided into clusters and all the vertices
in a cluster are secured by a single guard with a range at
least the maximum distance between any two nodes in the
cluster. Since the maximum distance between any two nodes
varies from cluster to cluster, the path lengths covered by
guards to counter an attack also vary. The average distance
a guard moves to eternally secure a graph may become a
significant design parameter for various applications. Thus,
analysis of the average distance moved by a guard for the
eternal security of a graph by a cluster decomposition is also
provided. Here, we assume that the probability of a vertex
being attacked by an intruder is same for all the vertices (i.e.,
uniform probability distribution).

Proposition 6.1: Let G be a graph whose vertices are de-

composed into ℓ clusters C1, C2, · · · , Cℓ such that
ℓ
⋃

i=1

Ci =

V (G). For every cluster Ci, let there be a guard si eternally
securing all of the vertices in Ci only. Then, the average
distance (path length) moved by a guard to counter an
intruder attack on some vertex v ∈ V (G), denoted by τ ,

1If two sets cover the same number of uncovered vertices, a set is selected
at random.
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τ =
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n





ℓ
∑

i=1

1

(ni − 1)

∑

u,v∈Ci

dG(u, v)



 (3)

where ni is the number of vertices in the cluster Ci, and n
is the total number of vertices in G.

Proof: Let v ∈ Ci, then the average distance between
v and some other u ∈ Ci in G is defined as,

ρ(v) =
1

ni − 1

∑

u∈Ci

d(u, v)G

The average distance between the vertices in Ci, denoted by
ρ(Ci), is the average value of the distances between all pairs
of vertices in Ci, i.e.,

ρ(Ci) =
1

ni

∑

v∈Ci

ρ(v) =
1

ni(ni − 1)

∑

u,v∈Ci

d(u, v)G

This is the average distance a guard si moves in a cluster
Ci to counter an intruder attack on some v ∈ Ci. Since there
are ℓ clusters with various number of vertices and guards
with various ranges, the average distance a guard moves in
response to an attack is the weighted average of ρ(Ci).

τ =
1

n

ℓ
∑

i=1

niρ(Ci)

=
1

n





ℓ
∑

i=1

1

(ni − 1)

∑

u,v∈Ci

d(u, v)G





(4)

For the network in Fig. 5, the average path length covered
by a guard to counter an intruder attack as computed by (3)
is 1.523.
Remarks: In the proposed cluster decomposition, for any two
vertices u, v ∈ Ci, d(u, v)G ≤ ri, where ri is the range of
the guard assigned to the cluster Ci. Note that the distance
considered here is the distance between the vertices in G,
d(u, v)G, and not in the subgraph induced by the vertices
in the cluster Ci, d(u, v)Ci

. Since d(u, v)G ≤ d(u, v)Ci
, a

guard with a range less than the diameter of the subgraph
induced by the vertices in Ci may be sufficient for the eternal
security of all the nodes in Ci as shown in the example of
Fig. 6. This makes our approach better than the one where
a graph is simply decomposed into induced subgraphs with
the diameters given by the guards’ ranges.

VII. CONCLUSIONS

In this article, the issue of guarding multi-agent systems
against an infinite sequence of intruder attacks has been
studied. Using graph theoretic abstractions, the problem of
guarding networks against an infinite sequence of intruder
attacks is formulated as the eternal security problem in
graphs. Moreover, a way to achieve eternal security in graphs
through heterogeneous guards is presented. For a given set
of guards along with their respective ranges, a graph can
be decomposed into clusters and an appropriate guard can

v1 v2

v4

v3

v5v12

v7

v6

v8

v9

v10

v11

C1
C2

Fig. 6. A network with twelve nodes. Two guards, each having a range
2, are available. In (b) the cluster decomposition using Algorithm I is
shown. Note that although d(v2, v6)C

2

= 3, both v2 and v6 are included
in the same cluster C2 having a guard with a range 2. It is possible as
d(v2, v6)G = 2. Also, there is no way to divide the given graph into two
induced subgraphs each having a diameter at most 2. However, it is possible
to have two clusters such that the distance between any two nodes of the
same cluster is at most 2 as shown in the second figure.

be assigned to each cluster to achieve eternal security. The
issues of guards’ deployment and their movement strategies
have been addressed using the proposed cluster decompo-
sition approach. It is to be noted that in the case of a
multi-attack situation where each cluster is attacked by at
most one intruder, the proposed solution still ensures eternal
security. However, in the case of multiple attacks within
the same cluster, secure configuration of guards might not
be maintained, and hence, eternal security might not be
achieved. As a part of the future work, we want to extend
this work to incorporate multiple attacks, even within the
same cluster, while achieving eternal security.
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