
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019)                  ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE) 

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING 

 A UNIT OF I2OR  169 | P a g e  
 

DESIGN OF DECIMAL MULTIPLICATION USING 

SIGN MAGNITUDE ENCODING FOR VLSI 

ARCHITECTURE 
Saritha1, Manchalla.O.V.P.Kumar2 

1PG Scholar, Dept of ECE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, 

Telangana. 

2Assistant Professor, Dept of ECE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, 

Telangana. 
 

Abstract- This paper introduces two novel architectures for 

parallel decimal multipliers. Our multipliers are based on a 
new algorithm for decimal carry–save multi operand addition 

that uses a novel TCSD recoding for decimal digits. It 

significantly improves the area and latency of the partial 

product reduction tree with respect to previous proposals. We 

also present three schemes for fast and efficient generation of 

partial products in parallel. The recoding of the TCSD 

multiplier operand into minimally redundant signed–digit 

radix–10, radix–4 and radix–5 representations using new 

recoders reduces the complexity of partial product generation. 

In addition, SD radix–4 and radix–5 recodings allow the reuse 

of a conventional parallel binary radix–4 multiplier to perform 
combined binary/decimal multiplications.  

Keywords- Radix-10 multiplier; redundant representation; 

sign-magnitude signed digits (SMSDs); VLSI design. 

 

I. INTRODUCTION 

Decimal computer arithmetic [1] is preferred in decimal data 

processing environments such as scientific, commercial, 

financial, internet-based applications in monetary, web-based, 

and human interactive applications. Ever growing needs for 

processing power, required by applications with intensive 

decimal arithmetic, cannot be met by conventional slow 

software simulated decimal arithmetic units. However, their 
hardware counterparts as an integral part of recently 

commercialized general purpose processors are gaining 

importance. Binarycoded decimal (BCD) encoding of decimal 

digits has conventionally dominated decimal arithmetic 

algorithms, whether realized by hardware or in software. The 

research for hardware realization of decimal arithmetic is not 

matured yet and there are rooms for improvements in 

hardware algorithms and designs. For example, the state-of-

the-art BCD multipliers[2], for computing X Y, use iterative 

multiplication algorithms, where the partial products (i.e. the 

product of one BCD digit of the multiplier Y times the multi-
BCD-digit multiplicand X) are generated one at a time and 

added to the previously accumulated result. Each partial 

product may be directly generated as one BCD number in [0, 

9] X, or may be composed of few easy multiples of the 

multiplicand (e.g. 7X ¼ 4X þ 2X þ X). The latter approach 
tends to increase the depth (measured by the maximum 

number of equally weighted BCD digits) of partial product 

tree per each BCD digit of multiplier, which in general leads 

to slower partial product accumulation. But, by using possibly 

fast and low-cost BCD digit by BCD-digit multipliers, the 

former approach may lead to less costly BCD multipliers. Erle 

et al. have enumerated three reasons for using decimal digit-

by-digit multipliers for partial product generation, which leads 

to less number of cycles, less wiring and no need for registers 

to store multiples of the multiplicand. With the rapid advances 

in VLSI technology, semi(fully)-parallel BCD multipliers will 
soon be attractive, where more than one (all) partial product(s) 

are generated at once and accumulated in parallel.  

 

II. LITERATURE SURVEY 

Dynamic negation of pre computed X multiples reduces their 

selection cost at the penalty of one XOR gate per each bit of 

the selected positive multiple. This negation cost is replicated 

n times for parallel n×n multiplication. Moreover, the n 

inserted 1s for 10’s complementation in and n× (n+1) 1s for 

digit wise two’s complementation in have a negative impact 

on area and power saving. The same is true for the correction 

constant, and more complex recoding due to zero handling, 
for [0, 15] partial products. One way to save these costs, as we 

do in Section III, is to generate the SD pre computed X 

multiples with sign magnitude format, so as to reduce the 

XOR gates to one per digit (roughly 75% savings in the 

number of negating XOR gates) and remove the 

aforementioned negative impacts. However, besides slowing 

down the PPG [3] to some extent (e.g., in comparison with 

radix-5 implementation of [4]), new problems are introduced 

in PPR, which are explained and solved in the next section, 

where we also reduce the depth of IPP matrix to n = 16, 

effectively prior to termination of PPG. 
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III. EXISTING SYSTEM 

Fast radix-10 multiplication, in particular, can be 

achieved via parallel partial product generation (PPG) and 

partial product reduction (PPR), which is, however, highly 

area consuming in VLSI implementations. Therefore, it is 

desired to lower the silicon cost, while keeping the high speed 
of parallel realization. Let P = X × Y represent an n × n 

decimal multiplication, where multiplicand X, multiplier Y , 

and product P are normal radix-10 numbers with digits in [0, 

9]. Such digits are commonly represented via binary-coded 

decimal (BCD) encoding. However, intermediate partial 

products (IPPs) are represented via a diversity of often 

redundant decimal digit sets. The choice of alternative IPP 

representations is influential on the PPG, which is of 

particular importance in decimal multiplication from two 

points of view: one is fast and low cost generation of IPPs and 

the other is its impact on representation of IPPs, which is 

influential on PPR efficiency. Straightforward PPG via BCD 
digit-by-digit multiplication [5], [6] is slow, expensive, and 

leads to n double-BCD IPPs for n×n multiplication (i.e., 2n 

BCD numbers to be added). 

However, the work of recodes both the multiplier and 

multiplicand to sign magnitude signed digit (SMSD) 

representation and uses a more efficient 3-b by 3-b PPG. 

Nevertheless, following a long standing practice, most PPG 

schemes use pre computed multiples of multiplicand X (or X 

multiples). Pre computation of the complete set0, 1, . . . 9} × 
X, as normal BCD numbers, and the subsequent selection are 

also slow and costly. A common remedial technique is to use 

a smaller less costly set that can be achieved via fast carry-free 

manipulation (e.g., 0, 1, 2, 4, 5} × X) at the cost of doubling 

the count of BCD numbers to be added in PPR; that is, n 

double-BCD IPPs are generated, such as 3X = (2X, X), 7X = 

(5X, 2X), or 9X = (5X, 4X). 

 

IV. PROPOSED SYSTEM 

We aim to take advantage of [−5, 5] SMSD recoding 

of multiplier and dynamic negation of X multiples, while 

reducing the number of XOR gates via generating [−6, 6] 
SMSD pre-computed X multiples (i.e., just one XOR gate per 

4-b digit). Other contributions of this paper are highlighted 

below. 

 
Fig.1: Block diagram of the proposed multiplier. 

A. Starting the PPR with 16 Partial Products: An 

especial on the fly augmentation of two middle 

SMSD digits leads to reducing the depth of partial 
product matrix by 1, such that the PPR starts with 16 

operands right at the end of PPG, with no delay 

penalty for the latter.  

B. Special 4-in-1 SMSD Adder with TCSD Sum: To 

avoid the challenging addition of SMSD IPPs, we 

design a novel carry-free adder that represents the 

sum of two [−6, 6] SMSD operands in [−7, 7] two’s 

complement signed-digit (TCSD) format, where one 

unified adder is utilized for all the four possible sign 

combinations. 

C. Improved TCSD Addition: The rest of the reduction 
process[7] uses special TCSD adders that are actually 

an improved version of the fast TCSD adder. Such 

2:1 reduction promotes the VLSI regularity of the 

PPR circuit, especially for n = 16.  

D. Augmenting the Final Redundant to Non redundant 

Conversion with the Last PPR Level: The last PPR 

level would normally lead to TCSD product, which 

should be converted to BCD. However, to gain more 
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speed and reduce costs, we device a special hybrid 

decimal adder with two TCSD inputs and a BCD 

output. 

Recoding of Multiplier’s Digits: Original BCD digits of 

multiplier require[0,9]×X precom-puted multiples, which 

include hard multiples {3,6,7,9}×X that unlike {2,4,5,8}×X 
are not derivable without carry propagation. On the other 

hand, BCD-to-redundant [−5,5] SMSD recoding of 

multiplier’s digits with dynamic negation of IPPs reduces the 

required X multiples to [0,5]×X that include only one hard 

multiple (i.e., 3X). However, this recoding produces a carry as 

the (n+1)th digit of multiplier, which increases the number of 

IPPs by 1. This is especially not desirable for n = 16 (i.e., the 

recommended IEEE754-2008 word size for decimal operands 

[12]). 

Partial Product Reduction The overall PPR for n = 16 is 

illustrated by Fig. 2, where a bar, triangle, square, and 

diamond represent a BCD, [−6, 6] SMSD, [−7, 7] TCSD, and 

binary signed digit (BSD), respectively. The choice of SMSD 

representation for the first level IPPs, while facilitating the 

PPG, bears no extra complexity for PPR, since all reduction 

levels use TCSD adders, except for the first one that requires a 

special SMSD+SMSD-to-TCSD added. 

We reduce the matrix depth to n (e.g., 5 → 4 forn = 4, and 17 
→ 16 for n = 16), with no delay between the termination of 

PPG and start of PPR. Here is how it works: we compute sum 

of the two gray digits (see Fig. 3) independent of (and in 

parallel with) normal PPG as follows. If Yn−1 ≤4, the value of 

10n-weighted carry of recoded multiplier is zero, so the 

bottom gray digit has to be zero. Therefore, no addition is 

required. For Yn−1 > 4, let H denote the most significant digit 

of Xn−1 ×Y0 (e.g., the top gray digit in Fig. 3), where Xn−1 

and Y0 represent the most significant BCD digit of 

multiplicand[8] and the least significant recoded digit of 

multiplier, respectively. 

 

 
Fig. 2:Partial Product Reduction. 

Special 4-in-1 SMSD Adder: A digit slice of the 

aforementioned SMSD+SMSD-toTCSD adder for four 

different cases corresponding to all possible combinations of 

the input signs is depicted by Fig. 3. (A posibit is a normal bit 

whose arithmetic value equals its logical status, and the 

arithmetic value of a nega bit with logical status x equals x − 1 

[9].) The sum of two [−6, 6] SMSD digits (e.g., P = sp p2 p1 

p0 and Q = sqq2q1q0), and a signed carry in (e.g., Cin) is 
produced as one [−7, 7] TCSD digit (e.g., S = s3s2s1s0), and a 

signed carry out (e.g., Cout). This is a two-stage process. In 

the stage I, the sign bits are applied to the magnitudes, such 

that a negative sign changes the polarity of magnitude posibits 

to negabits and inverts their logical states. Subsequently, in 

the same stage, the bit collection U is decomposed, and the bit 

collection V is recoded. In the second stage, however, as will 

be explained shortly, only one 4-b adder takes care of all the 

four cases, which explains the rationale for designation of the 
adder. 
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Fig. 3: Digit slice of the 4-in-1 SMSD+SMSD → TCSD adder. 

To speed up the latter two steps (i.e., 2:1 reduction 

and TCSD-to-BCD conversion), the actual BCD product 

generation of Fig. 5 uses a more efficient method which is 

described below. The final 2:1 reduction level that is required 

for positions 8 to 22 and the subsequent TCSD-to-BCD 

conversion can be actually augmented as a TCSD + TCSD 

addition with BCD result. The 4-in-1 Design: Other encodings 

are also possible for Z and V values. For example, an 

alternative encoding for both Z ∈[− 2,3] and V ∈[− 3,1] of 

Fig. 3 is ◦••∈[− 4,3] which covers the latter two intervals. 

However, the proposed encodings are so chosen to allow for 

unified treatment of the bit collections that are obtained after 

the decomposition and recoding. That is, a simplified 4-b 

adder can take care of all the four cases. This is actually 

possible via the standard full adders that are capable of 

handling all the 3-b posibit/negabit collections of inputs [10]. 

Note that the normally required leftmost Half Adder is 

reduced to an OR gate since no carry out is expected. 
The aforementioned decomposition and recoding can be 

furtherjustified byclose examination of the content, where the 

range of P + Q determines the possible values for Cout, which  

 

always lead to S =2Z +V+Cin ∈[− 7,7],as shown in the 

rightmost column. The (cin,cin) pair represents the incoming 

signed carry Cin from the less significant position. 

Representations of Z, V, and Cin are so determined as to lead 

to two’s complement representation for S in all the four cases 

(see below for more explanations, and the following 

numerical example). Example 1: (Fig. 3 by numerical values): 
where two SMSDs P =sp101 (|P|=5) and Q =sq100 (|Q|=4) are 

added. Fig. 3 with numerical values, where signs (i.e., sp and 

sq) are explicitly shown as was the case in Fig. 3, and negabits 

are inversely encoded as 1−(0−), which represent the 

arithmetic value 0(−1). The incoming signed carry Cin = 0 is 

represented by the posibit cin = 0 and inversely encoded 

negabit c in = 1−. Therefore, the Full Adder in position 0 

receives two negabits and one posibit and produces a posibit 

sum 1 and a negabit carry 0−, such that 2× (−1)+1 =−1, as 

there was only one arithmetically nonzero input 0− (i.e., −1). 

The 4-in-1 adder is slightly more efficient than [−7,7] TCSD 
adder (i.e., less latency with no area overhead), as can be 

verified by inspecting (4) and (5) for the preprocessing logic 

boxes in 4-in-1 adder and that of TCSD adder [i.e., (6)]. 

V. SIMULATION RESULTS 

5.1 Existing Method Results 

 
Fig,5.1: Design summary 
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Fig.5.2: RTL schematic 

 
Fig.5.3: Simulation results  
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Fig.5.4: Time Summary 

5.2 Proposed Results 

 
Fig. 5.5:one hot recoder output 
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Fig.5.6: SMSD multiplier output 

 
Figure 5.7:- one hot mux output 

 
Fig.5.8: partial products reduction output 
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Figure 5.9:- double sd to bcd converter output 

 
Fig.5.10: multiplier output 

5.3 Extension Results 
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Fig. 5.11: RTL schematic output 

 
Fig.5.12: design summary output 

 
Fig. 5.13: time summary output 
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Fig.5.14: extension simultiuon output 

 

VI. CONCLUSION 
In this paper we have presented several techniques to 

implement decimal parallel multiplication in hardware. We 

propose three different SD encodings for the multiplier that 

lead to fast parallel and simple generation of partial products. 

For partial product reduction we have developed a decimal 

carry–save algorithm based on a BCD–4221 representation of 

decimal digit operands. It makes possible the construction 

ofp:2decimal CSA trees that outperform the area–delay 

figures of existing proposals. Moreover, proposed techniques 

also allow the computation of combined binary/decimal 

multiplications with a moderate overhead. We have proposed 
an architecture for decimal SD radix–10 parallel 

multiplication and two combined architectures for 

binary/decimal SD radix– 4 and binary SD radix–4/decimal 

SD radix–5 multiplication. The area–delay figures from a 

comparative study including conventional binary parallel 

multipliers and other representative decimal proposals show 

that our decimal SD radix–10 multiplier is an interesting 

option for high performance with moderate area.  
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