
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 169 | P a g e

DESIGN OF DECIMAL MULTIPLICATION USING

SIGN MAGNITUDE ENCODING FOR VLSI

ARCHITECTURE
Saritha1, Manchalla.O.V.P.Kumar2

1PG Scholar, Dept of ECE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad,

Telangana.

2Assistant Professor, Dept of ECE, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad,

Telangana.

Abstract- This paper introduces two novel architectures for

parallel decimal multipliers. Our multipliers are based on a
new algorithm for decimal carry–save multi operand addition

that uses a novel TCSD recoding for decimal digits. It

significantly improves the area and latency of the partial

product reduction tree with respect to previous proposals. We

also present three schemes for fast and efficient generation of

partial products in parallel. The recoding of the TCSD

multiplier operand into minimally redundant signed–digit

radix–10, radix–4 and radix–5 representations using new

recoders reduces the complexity of partial product generation.

In addition, SD radix–4 and radix–5 recodings allow the reuse

of a conventional parallel binary radix–4 multiplier to perform
combined binary/decimal multiplications.

Keywords- Radix-10 multiplier; redundant representation;

sign-magnitude signed digits (SMSDs); VLSI design.

I. INTRODUCTION

Decimal computer arithmetic [1] is preferred in decimal data

processing environments such as scientific, commercial,

financial, internet-based applications in monetary, web-based,

and human interactive applications. Ever growing needs for

processing power, required by applications with intensive

decimal arithmetic, cannot be met by conventional slow

software simulated decimal arithmetic units. However, their
hardware counterparts as an integral part of recently

commercialized general purpose processors are gaining

importance. Binarycoded decimal (BCD) encoding of decimal

digits has conventionally dominated decimal arithmetic

algorithms, whether realized by hardware or in software. The

research for hardware realization of decimal arithmetic is not

matured yet and there are rooms for improvements in

hardware algorithms and designs. For example, the state-of-

the-art BCD multipliers[2], for computing X Y, use iterative

multiplication algorithms, where the partial products (i.e. the

product of one BCD digit of the multiplier Y times the multi-
BCD-digit multiplicand X) are generated one at a time and

added to the previously accumulated result. Each partial

product may be directly generated as one BCD number in [0,

9] X, or may be composed of few easy multiples of the

multiplicand (e.g. 7X ¼ 4X þ 2X þ X). The latter approach
tends to increase the depth (measured by the maximum

number of equally weighted BCD digits) of partial product

tree per each BCD digit of multiplier, which in general leads

to slower partial product accumulation. But, by using possibly

fast and low-cost BCD digit by BCD-digit multipliers, the

former approach may lead to less costly BCD multipliers. Erle

et al. have enumerated three reasons for using decimal digit-

by-digit multipliers for partial product generation, which leads

to less number of cycles, less wiring and no need for registers

to store multiples of the multiplicand. With the rapid advances

in VLSI technology, semi(fully)-parallel BCD multipliers will
soon be attractive, where more than one (all) partial product(s)

are generated at once and accumulated in parallel.

II. LITERATURE SURVEY

Dynamic negation of pre computed X multiples reduces their

selection cost at the penalty of one XOR gate per each bit of

the selected positive multiple. This negation cost is replicated

n times for parallel n×n multiplication. Moreover, the n

inserted 1s for 10’s complementation in and n× (n+1) 1s for

digit wise two’s complementation in have a negative impact

on area and power saving. The same is true for the correction

constant, and more complex recoding due to zero handling,
for [0, 15] partial products. One way to save these costs, as we

do in Section III, is to generate the SD pre computed X

multiples with sign magnitude format, so as to reduce the

XOR gates to one per digit (roughly 75% savings in the

number of negating XOR gates) and remove the

aforementioned negative impacts. However, besides slowing

down the PPG [3] to some extent (e.g., in comparison with

radix-5 implementation of [4]), new problems are introduced

in PPR, which are explained and solved in the next section,

where we also reduce the depth of IPP matrix to n = 16,

effectively prior to termination of PPG.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 170 | P a g e

III. EXISTING SYSTEM

Fast radix-10 multiplication, in particular, can be

achieved via parallel partial product generation (PPG) and

partial product reduction (PPR), which is, however, highly

area consuming in VLSI implementations. Therefore, it is

desired to lower the silicon cost, while keeping the high speed
of parallel realization. Let P = X × Y represent an n × n

decimal multiplication, where multiplicand X, multiplier Y ,

and product P are normal radix-10 numbers with digits in [0,

9]. Such digits are commonly represented via binary-coded

decimal (BCD) encoding. However, intermediate partial

products (IPPs) are represented via a diversity of often

redundant decimal digit sets. The choice of alternative IPP

representations is influential on the PPG, which is of

particular importance in decimal multiplication from two

points of view: one is fast and low cost generation of IPPs and

the other is its impact on representation of IPPs, which is

influential on PPR efficiency. Straightforward PPG via BCD
digit-by-digit multiplication [5], [6] is slow, expensive, and

leads to n double-BCD IPPs for n×n multiplication (i.e., 2n

BCD numbers to be added).

However, the work of recodes both the multiplier and

multiplicand to sign magnitude signed digit (SMSD)

representation and uses a more efficient 3-b by 3-b PPG.

Nevertheless, following a long standing practice, most PPG

schemes use pre computed multiples of multiplicand X (or X

multiples). Pre computation of the complete set0, 1, . . . 9} ×
X, as normal BCD numbers, and the subsequent selection are

also slow and costly. A common remedial technique is to use

a smaller less costly set that can be achieved via fast carry-free

manipulation (e.g., 0, 1, 2, 4, 5} × X) at the cost of doubling

the count of BCD numbers to be added in PPR; that is, n

double-BCD IPPs are generated, such as 3X = (2X, X), 7X =

(5X, 2X), or 9X = (5X, 4X).

IV. PROPOSED SYSTEM

We aim to take advantage of [−5, 5] SMSD recoding

of multiplier and dynamic negation of X multiples, while

reducing the number of XOR gates via generating [−6, 6]
SMSD pre-computed X multiples (i.e., just one XOR gate per

4-b digit). Other contributions of this paper are highlighted

below.

Fig.1: Block diagram of the proposed multiplier.

A. Starting the PPR with 16 Partial Products: An

especial on the fly augmentation of two middle

SMSD digits leads to reducing the depth of partial
product matrix by 1, such that the PPR starts with 16

operands right at the end of PPG, with no delay

penalty for the latter.

B. Special 4-in-1 SMSD Adder with TCSD Sum: To

avoid the challenging addition of SMSD IPPs, we

design a novel carry-free adder that represents the

sum of two [−6, 6] SMSD operands in [−7, 7] two’s

complement signed-digit (TCSD) format, where one

unified adder is utilized for all the four possible sign

combinations.

C. Improved TCSD Addition: The rest of the reduction
process[7] uses special TCSD adders that are actually

an improved version of the fast TCSD adder. Such

2:1 reduction promotes the VLSI regularity of the

PPR circuit, especially for n = 16.

D. Augmenting the Final Redundant to Non redundant

Conversion with the Last PPR Level: The last PPR

level would normally lead to TCSD product, which

should be converted to BCD. However, to gain more

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 171 | P a g e

speed and reduce costs, we device a special hybrid

decimal adder with two TCSD inputs and a BCD

output.

Recoding of Multiplier’s Digits: Original BCD digits of

multiplier require[0,9]×X precom-puted multiples, which

include hard multiples {3,6,7,9}×X that unlike {2,4,5,8}×X
are not derivable without carry propagation. On the other

hand, BCD-to-redundant [−5,5] SMSD recoding of

multiplier’s digits with dynamic negation of IPPs reduces the

required X multiples to [0,5]×X that include only one hard

multiple (i.e., 3X). However, this recoding produces a carry as

the (n+1)th digit of multiplier, which increases the number of

IPPs by 1. This is especially not desirable for n = 16 (i.e., the

recommended IEEE754-2008 word size for decimal operands

[12]).

Partial Product Reduction The overall PPR for n = 16 is

illustrated by Fig. 2, where a bar, triangle, square, and

diamond represent a BCD, [−6, 6] SMSD, [−7, 7] TCSD, and

binary signed digit (BSD), respectively. The choice of SMSD

representation for the first level IPPs, while facilitating the

PPG, bears no extra complexity for PPR, since all reduction

levels use TCSD adders, except for the first one that requires a

special SMSD+SMSD-to-TCSD added.

We reduce the matrix depth to n (e.g., 5 → 4 forn = 4, and 17
→ 16 for n = 16), with no delay between the termination of

PPG and start of PPR. Here is how it works: we compute sum

of the two gray digits (see Fig. 3) independent of (and in

parallel with) normal PPG as follows. If Yn−1 ≤4, the value of

10n-weighted carry of recoded multiplier is zero, so the

bottom gray digit has to be zero. Therefore, no addition is

required. For Yn−1 > 4, let H denote the most significant digit

of Xn−1 ×Y0 (e.g., the top gray digit in Fig. 3), where Xn−1

and Y0 represent the most significant BCD digit of

multiplicand[8] and the least significant recoded digit of

multiplier, respectively.

Fig. 2:Partial Product Reduction.

Special 4-in-1 SMSD Adder: A digit slice of the

aforementioned SMSD+SMSD-toTCSD adder for four

different cases corresponding to all possible combinations of

the input signs is depicted by Fig. 3. (A posibit is a normal bit

whose arithmetic value equals its logical status, and the

arithmetic value of a nega bit with logical status x equals x − 1

[9].) The sum of two [−6, 6] SMSD digits (e.g., P = sp p2 p1

p0 and Q = sqq2q1q0), and a signed carry in (e.g., Cin) is
produced as one [−7, 7] TCSD digit (e.g., S = s3s2s1s0), and a

signed carry out (e.g., Cout). This is a two-stage process. In

the stage I, the sign bits are applied to the magnitudes, such

that a negative sign changes the polarity of magnitude posibits

to negabits and inverts their logical states. Subsequently, in

the same stage, the bit collection U is decomposed, and the bit

collection V is recoded. In the second stage, however, as will

be explained shortly, only one 4-b adder takes care of all the

four cases, which explains the rationale for designation of the
adder.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 172 | P a g e

Fig. 3: Digit slice of the 4-in-1 SMSD+SMSD → TCSD adder.

To speed up the latter two steps (i.e., 2:1 reduction

and TCSD-to-BCD conversion), the actual BCD product

generation of Fig. 5 uses a more efficient method which is

described below. The final 2:1 reduction level that is required

for positions 8 to 22 and the subsequent TCSD-to-BCD

conversion can be actually augmented as a TCSD + TCSD

addition with BCD result. The 4-in-1 Design: Other encodings

are also possible for Z and V values. For example, an

alternative encoding for both Z ∈[− 2,3] and V ∈[− 3,1] of

Fig. 3 is ◦••∈[− 4,3] which covers the latter two intervals.

However, the proposed encodings are so chosen to allow for

unified treatment of the bit collections that are obtained after

the decomposition and recoding. That is, a simplified 4-b

adder can take care of all the four cases. This is actually

possible via the standard full adders that are capable of

handling all the 3-b posibit/negabit collections of inputs [10].

Note that the normally required leftmost Half Adder is

reduced to an OR gate since no carry out is expected.
The aforementioned decomposition and recoding can be

furtherjustified byclose examination of the content, where the

range of P + Q determines the possible values for Cout, which

always lead to S =2Z +V+Cin ∈[− 7,7],as shown in the

rightmost column. The (cin,cin) pair represents the incoming

signed carry Cin from the less significant position.

Representations of Z, V, and Cin are so determined as to lead

to two’s complement representation for S in all the four cases

(see below for more explanations, and the following

numerical example). Example 1: (Fig. 3 by numerical values):
where two SMSDs P =sp101 (|P|=5) and Q =sq100 (|Q|=4) are

added. Fig. 3 with numerical values, where signs (i.e., sp and

sq) are explicitly shown as was the case in Fig. 3, and negabits

are inversely encoded as 1−(0−), which represent the

arithmetic value 0(−1). The incoming signed carry Cin = 0 is

represented by the posibit cin = 0 and inversely encoded

negabit c in = 1−. Therefore, the Full Adder in position 0

receives two negabits and one posibit and produces a posibit

sum 1 and a negabit carry 0−, such that 2× (−1)+1 =−1, as

there was only one arithmetically nonzero input 0− (i.e., −1).

The 4-in-1 adder is slightly more efficient than [−7,7] TCSD
adder (i.e., less latency with no area overhead), as can be

verified by inspecting (4) and (5) for the preprocessing logic

boxes in 4-in-1 adder and that of TCSD adder [i.e., (6)].

V. SIMULATION RESULTS

5.1 Existing Method Results

Fig,5.1: Design summary

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 173 | P a g e

Fig.5.2: RTL schematic

Fig.5.3: Simulation results

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 174 | P a g e

Fig.5.4: Time Summary

5.2 Proposed Results

Fig. 5.5:one hot recoder output

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 175 | P a g e

Fig.5.6: SMSD multiplier output

Figure 5.7:- one hot mux output

Fig.5.8: partial products reduction output

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 176 | P a g e

Figure 5.9:- double sd to bcd converter output

Fig.5.10: multiplier output

5.3 Extension Results

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 177 | P a g e

Fig. 5.11: RTL schematic output

Fig.5.12: design summary output

Fig. 5.13: time summary output

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 178 | P a g e

Fig.5.14: extension simultiuon output

VI. CONCLUSION
In this paper we have presented several techniques to

implement decimal parallel multiplication in hardware. We

propose three different SD encodings for the multiplier that

lead to fast parallel and simple generation of partial products.

For partial product reduction we have developed a decimal

carry–save algorithm based on a BCD–4221 representation of

decimal digit operands. It makes possible the construction

ofp:2decimal CSA trees that outperform the area–delay

figures of existing proposals. Moreover, proposed techniques

also allow the computation of combined binary/decimal

multiplications with a moderate overhead. We have proposed
an architecture for decimal SD radix–10 parallel

multiplication and two combined architectures for

binary/decimal SD radix– 4 and binary SD radix–4/decimal

SD radix–5 multiplication. The area–delay figures from a

comparative study including conventional binary parallel

multipliers and other representative decimal proposals show

that our decimal SD radix–10 multiplier is an interesting

option for high performance with moderate area.

REFERENCES
[1]. IEEE standard for floating–point arithmetic. IEEE

Standards Committee, Oct. 2006.
[2]. F. Y. Busaba, T. Slegel, S. Carlough, C. Krygowski, and J.

G. Rell. The design of the fixed point unit for the z990
microprocessor. InProc. ACM Great Lakes14th
Symposium on VLSI, pages 364– 367, Apr. 2004.

[3]. M. F. Cowlishaw. Decimal floating-point: Algorism for
computers. InProc. IEEE16th Symposium on Computer

Arithmetic, pages 104– 111, July 2003.
[4]. M. A. Erle and M. J. Schulte. Decimal multiplication via

carry-save addition. InProc. IEEE Int’l Conference on
Application-Specific Systems, Architectures, and
Processors, pages 348–358, June 2003.

[5]. M. A. Erle, E. M. Schwarz, and M. J. Schulte. Decimal
multiplication with efficient partial product generation. In
Proc. IEEE17th Symposium on Computer Arithmetic,

pages 21–28, June 2005.

[6]. R. D. Kenney and M. J. Schulte. High-speed multioperand
decimal adders.IEEE Trans. on Computers, 54(8):953–963,
Aug. 2005.

[7]. R. D. Kenney, M. J. Schulte, and M. A. Erle. High-
frequency decimal multiplier. InProc. IEEE Int’l
Conference on Computer Design: VLSI in Computers and
Processors, pages 26–29, Oct. 2004.

[8]. T. Lang and A. Nannarelli. A radix-10 combinational

multiplier. InProc.40th Asilomar Conference on Signals,
Systems, and Computers, pages 313–317, Oct. 2006.

[9]. R. H. Larson. High-speed multiply using four input
carrysave adder. IBM Tech. Disclosure Bulletin,
16(7):2053–2054, Dec. 1973.

[10]. N. Ohkubo and M. Suzuki. A 4.4 ns CMOS 54x54–bit
multiplier using pass-transistor multiplexer. IEEE Journal
of Solid State Circuits, 30(3):251–256, Mar. 1995.

