POLYNOMIAI

EXERCISE 1.1

The graph of y = p(x) are given in Fig. \blacksquare below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

(iii)

(vi)

(v)

- Sol:
- (i) Here, there are no zeroes as the graph does not intersect the x-axis.
- (ii) Here, the number of zeroes is 1 as the graph intersects the x-axis at one point only.
- (iii) Here, the number of zeroes is 3 as the graph

- intersects the x-axis at three points only.
- (iv) Here, the number of zeroes is 2 as the graph intersects the x-axis at two points only.
- (v) Here, the number of zeroes is 4 as the graph intersects the x-axis at four points only.
- (vi) Here, the number of zeroes is 3 as the graph intersects the x-axis at three points only.

PRACTICE:

1. The graph of y = p(x) are given in Fig. below, for some polynomials p(x) Find the number of zeroes of p(x), in each case.

PRACTICE:

2. The graph of y = p(x) are given in Fig. below, for some polynomials p(x) Find the number of zeroes of p(x), in each case.

EXERCISE 1.2

- 1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
 - (i) $x^2 2x 8$
- (ii) $4s^2 4s + 1$
- (iii) $6x^2 3 7x$
- (iv) $4u^2 + 8u$
- (v) $t^2 15$
- (vi) $3x^2 x 4$

Sol:

The value of $x^2 - 2x - 8$ will be zero if the value of (x+2)(x-4) is zero, i.e.,

$$x+2 = 0 \Rightarrow x = -2$$

or

$$x-4 \, = 0 \, \Rightarrow \, x \, = 4$$

Therefore the zeroes of $x^2 - 2x - 8$ are -2 and 4.

Now, Sum of the zeroes

$$= (-2) + 4 = 2 = \frac{-(-2)}{1} = \frac{-\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

and product of the zeroes

$$= (-2)(4) = -8 = \frac{-8}{1} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$$

(ii)
$$4s^2 - 4s + 1 = 4s^2 - 2s - 2s + 1$$
$$= 2s(2s - 1) - 1(2s - 1)$$
$$= (2s - 1)(2s - 1)$$

Therefore, the value of $4s^2 - 4s + 1$ will be zero if the value of (2s - 1)(2s - 1) is zero.

i.e.,
$$2s-1=0 \Rightarrow s=\frac{1}{2}$$

Hence the zeroes of $4s^2 - 4s + 1$ are $\frac{1}{2}$ and $\frac{1}{2}$.

Now, sum of the zeroes

$$= \frac{1}{2} + \frac{1}{2} = 1 = \frac{-(-4)}{4} = \frac{-\text{Coefficient of } s}{\text{Coefficient of } s^2}$$

and product of the zeroes

$$= \left(\frac{1}{2}\right)\left(\frac{1}{2}\right) = \frac{1}{4} = \frac{\text{Constant term}}{\text{Coefficient of } s^2}$$
(iii)
$$6x^2 - 3 - 7x = 6x^2 - 7x - 3$$

$$= 6x^2 - 9x + 2x - 3$$

$$= 3x(2x - 3) + 1(2x - 3)$$

$$= (3x+1)(2x-3)$$

So, the value of $6x^2 - 3 - 7x$ will be zero if the value of (3x+1)(2x-3) is zero, i.e.,

$$3x + 1 = 0 \Rightarrow x = -\frac{1}{3}$$

 $2x - 3 = 0 \Rightarrow x = \frac{3}{2}$

Hence, the zeroes of $6x^2 - 3 - 7x$ are $-\frac{1}{3}$ and $\frac{3}{2}$

Now sum of the zeroes

$$= -\frac{1}{3} + \frac{3}{2} = \frac{7}{6} = \frac{-(-7)}{6} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^2}$$

and product of the zeroes

$$= \left(-\frac{1}{3}\right)\!\!\left(\frac{3}{2}\right) = \frac{-3}{6} \,= \frac{\text{Constant term}}{\text{Coefficient of }x^2}$$

(iv)
$$4u^2 + 8u = 4u(u+2)$$

The value of $4u^2 + 8u$ will be zero if the value of 4u(u+2) is zero, i.e.,

$$u = 0$$

or $u+2=0 \Rightarrow u=-2$

Hence, the zeroes of $4u^2 + 8u$ are 0 and -2.

Now, sum of the Zeroes

$$= 0 + (-2) = -2 = \frac{-8}{4} = \frac{-\text{Coefficient of } u}{\text{Coefficient of } u^2}$$

and product of the zeroes

$$= (0)(-2) = 0 = \frac{\text{Constant term}}{\text{Coefficient of } u^2}$$

(v)
$$t^2 - 15 = (t - \sqrt{15})(t + \sqrt{15})$$

The value of $t^2 - 15$ will be zero if the value of $(t - \sqrt{15})(t + \sqrt{15})$ is zero.

i.e.,
$$t - \sqrt{15} \ = 0 \ \Rightarrow \ t \ = \sqrt{15}$$

or
$$t + \sqrt{15} = 0 \Rightarrow t = -\sqrt{15}$$

Hence, the zeroes of $t^2 - 15$ are $\sqrt{15}$ and $-\sqrt{15}$

$$=\sqrt{15} + (-\sqrt{15}) = 0 = \frac{0}{1} = \frac{-\text{Coefficient of } t}{\text{Coefficient of } t^2}$$

and product of the zeroes

$$=(\sqrt{15})(-\sqrt{15})=-15=\frac{-15}{1}=\frac{\text{Constant term}}{\text{Coefficient of }t^2}$$

(vi)
$$3x^{2} - x - 4 = 3x^{2} + 3x - 4x - 4$$
$$= 3x(x+1) - 4(x+1)$$
$$= (x+1)(3x-4)$$

The value of $3x^2 - x - 4$ will be zero if the value of (x+1)(3x-4) is zero.

$$x+1 = 0 \Rightarrow x = -1$$

or

$$3x - 4 = 0 \Rightarrow x = \frac{4}{3}$$

Hence, the zeroes of $3x^2 - x - 4$ are -1 and $\frac{4}{3}$.

Now, sum of the zeroes

$$=-1+\frac{4}{3}=\frac{1}{3}$$
 $\frac{-(-1)}{3}=\frac{-\text{Coeffecient of }x}{\text{Coefficient of }x^2}$

and, product of the zeroes

$$=(-1)\left(\frac{4}{3}\right)=-\frac{4}{3}=\frac{\text{Constant term}}{\text{Coefficient of }x^2}$$

PRACTICE:

- 1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients.
 - (i) $x^2 1$
- (ii) $x^2 3x 2$
- (iii) $2x^2 + 4x$
- (iv) $t^2 4t + 3$
- (v) $s^2 + s 2$
- (vi) $t^2 16$
- (vii) $x^2 + 2\sqrt{2}x 6$
- (viii) $\sqrt{3} x^2 + 10x + 7\sqrt{3}$
- (ix) $x^2 (\sqrt{3} + 1) x + \sqrt{3}$
- (x) $a(x^2+1)-x(a^2+1)$

Ans: (i) 1, -1 (ii) 1, 2 (iii) 0, -2 (iv) 1, 3
(v) -2,1 (vi) 4, -4 (vii)
$$\sqrt{2}$$
, $-3\sqrt{2}$
(viii) $-\sqrt{3}$, $\frac{-7}{\sqrt{3}}$ (ix) $\sqrt{3}$,1 (x) a , $\frac{1}{a}$

- 2. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
 - (i) $\frac{1}{4}$, -1
- (ii) $\sqrt{2}, \frac{1}{3}$
- (iii) $0, \sqrt{5}$
- (iv) 1,1
- (v) $-\frac{1}{4}, \frac{1}{4}$
- (vi) 4,1

Sol:

(i) $\frac{1}{4}$, -1

Then,
$$\alpha + \beta = \frac{1}{4} = \frac{-b}{a}$$

and
$$\alpha\beta = -1 = \frac{-4}{4} = \frac{c}{\alpha}$$

If $\alpha=4$, b=-1 and c=-4, the quadratic polynomial will be $4x^2-x-4$.

Alternative:

Sum of zeroes
$$=\frac{1}{4}$$

Product of zeroes =-1

Polynomial = $k(x^2 - \text{sum } x + \text{product})$

$$k\left(x^2 - \frac{1}{4}x + (-1)\right)$$

$$k\left[x^{2} - \frac{1}{4}x - 1\right] = k\left[\frac{4x^{2} - x - 1}{4}\right]$$

$$\frac{k}{4} = (4x^{2} - x - 1)$$

$$= 4x^{2} - x - 1 \text{ (here } k = 4)$$

(ii)
$$\sqrt{2}, \frac{1}{3}$$

Let the polynomial be $zx^2 + bx + c$ and its zeroes be α and β .

Then,
$$\alpha + \beta = \sqrt{2} = \frac{3\sqrt{2}}{3} = \frac{-b}{a}$$

and
$$\alpha\beta = \frac{1}{3} = \frac{c}{a}$$

If a=3, $b=-3\sqrt{2}$ and c=1, then quadratic polynomial will be $3x^2-3\sqrt{2}\,x+1$.

(iii)
$$0, \sqrt{5}$$

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

Then,
$$\alpha + \beta = 0 = \frac{0}{1} = \frac{-b}{a}$$

and
$$\alpha\beta = \sqrt{5} = \frac{\sqrt{5}}{1} = \frac{c}{a}$$

If a=1, b=0 and $c=\sqrt{5}$, the quadratic polynomial will be $x^2-0x+\sqrt{5}$ or $x^2+\sqrt{5}$.

Alternative:

Sum of zeroes = 0

Product of zeroes = $\sqrt{5}$

Polynomial = $k(x^2 - \text{sum } x + \text{product})$

$$= k[x^2 - 0x + \sqrt{5}] = k(x^2 + \sqrt{5})$$

Here let

k = 1

then polynomial will be $x^2 + \sqrt{5}$

(iv) 1, 1

Let the polynomial be $ax^2 + bx + c$ and its zeroes be

$$\alpha + \beta = 1 = \frac{-(-1)}{1} = \frac{-b}{a}$$

and

$$\alpha\beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If a = 1 b = -1 and c = 1 then quadratic polynomial will be $x^2 - 4x + 1$.

$$(v) -\frac{1}{4}, \frac{1}{4}$$

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

Then,

$$\alpha + \beta = -\frac{1}{4} = \frac{-b}{a}$$

and

$$\alpha\beta = \frac{1}{4} = \frac{c}{a}$$

If a = 4, b = 1 and c = 1, then the quadratic polynomial will be $4x^2 + x + 1$

(vi) 4,1

Let the polynomial be $ax^2 + bx + c$ and its zeroes be α and β .

Then.

$$\alpha + \beta = 4 = \frac{-b}{a}$$

and

$$\alpha\beta = 1 = \frac{1}{1} = \frac{c}{a}$$

If a = 1, b = -4 and c = 1, then the quadratic polynomial will be $x^2 - 4x + 1$.

Alternative:

Sum of zeroes = 4, product of zeroes = 1
polynomial =
$$k[x^2 - \text{sum } x + \text{product}]$$

= $k[x^2 - 4x + 1]$
= $x^2 - 4x + 1$ [here let $k = 1$]

PRACTICE:

- 1. Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively.
 - (i) 2, -3
- (ii) $\sqrt{3}, -\sqrt{3}$
- (iii) 0, 2
- (iv) -3, -2
- (v) 4, 4
- (vi) $\frac{1}{2}, \frac{1}{3}$

- (vii) $\sqrt{3}, \frac{1}{2}$
- (vii) 5, 1
- (ix) 2, 2 $(xi) \frac{1}{2}, -3$
- (x) $0, \sqrt{3}$ (xii) $-\frac{1}{3}, \frac{1}{3}$

Ans: (i)
$$x^2 + x - 6$$
 (ii) $x^2 - 3$ (iii) $x^2 - 2x$ (iv) $x^2 + 5x + 6$ (v) $x^2 - 8x + 16$ (vi) $6x^2 - 5x + 1$ (vii)

(vi)
$$6x^2 - 5x + 1$$
 (vii)

$$2x^2 - (2\sqrt{3} + 1)x + \sqrt{2}$$

(viii) $x^2 - 6x + 5$ (ix) $x^2 - 4x - 3$

(viii)
$$x^2 - 6x + 5$$
 (ix) $x^2 - 4x + 4$ (x) $x^2 - \sqrt{3} x$

(xi)
$$2x^2 + 5x - 3$$
 (xii) $9x^2 - 1$

EXERCISE 1.3

Divide the polynomial p(x) by the polynomial g(x)and find the quotient and remainder in each of the following:

(i)
$$p(x) = x^3 - 3x^2 5x - 3$$
, $g(x) = x^2 - 2$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $q(x) = x^2 + 1 - x$

(iii)
$$p(x) = x^4 - 5x + 6$$
, $q(x) = 2 - x^2$

Sol:

(i)
$$p(x) = x^3 - 3x^2 5x - 3$$
, $g(x) = x^2 - 2$

We have

$$p(x) = x^3 - 3x^2 + 5x - 3$$

$$q(x) = x^2 - 2$$

Let the quotient be q(x) and the remainder be r(x). Then by Euclid's Division Algorithm,

$$p(x) = g(x) \cdot q(x) + r(x)$$
$$q(x) = \frac{p(x)}{q(x)} - \frac{r(x)}{q(x)}$$

$$=\frac{x^3-3x^2+5x-3}{x^2-2}-\frac{r(x)}{x^2-2}$$

$$x^2-2)\overline{x^3-3x^2+5x-3}$$

$$x^{2} - 2 \sqrt{x^{3} - 3x^{2} + 5x - 3}$$

$$x^{3} - 2x$$

$$- 3x^{2} + 7x - 3$$

$$-3x^2 + 7x - 3$$

 $-3x^2 + 6$

$$7x - 9 = \text{Remainder}$$

Quotient

$$q(x) = x - 3$$

Remainder

$$r(x) = 7x - 9$$

(ii)
$$p(x) = x^4 - 3x^2 + 4x + 5$$
, $g(x) = x^2 + 1 - x$
We have $p(x) = x^4 - 3x^2 + 4x + 5$

$$g(x) = x^{2} - 3x + 4x + 3$$

$$g(x) = x^{2} + 1 - x + x^{2} - x + 1$$

Let the quotient be q(x) and the remainder be r(x).

Then by Euclid's Division Algorithm,

$$p(x) = g(x) \cdot q(x) + r(x)$$

$$q(x) = \frac{p(x)}{g(x)} - \frac{r(x)}{g(x)}$$

$$= \frac{x^4 - 3x^2 + 4x + 5}{x^2 - x + 1} - \frac{r(x)}{x^2 - x + 1}$$

$$= x^2 + x - 3 - \frac{r(x)}{x^2 - x + 1}$$

$$x^{2} - x + 1 \overline{\smash)x^{4} - 3x^{2} + 4x + 5}$$

$$\underline{x^{4} - x^{3} + x^{2}}$$

$$- x^{3} - 4x^{2} + 4x$$

$$\underline{- x^{3} + x^{2} + x}$$

$$- 3x^{2} + 3x + 5$$

$$\underline{- 3x^{2} + 3x - 3}$$

8 = Remainder

Quotient

$$q(x) = x^2 + x - 3$$

and Remainder r(x) = 8

(iii)
$$p(x) = x^4 - 5x + 6$$
, $g(x) = 2 - x^2$

We have

$$p(x) = x^4 - 5x + 6$$

$$g(x) = 2 - x^2$$

Let the quotient be q(x) and the remainder be r(x). Then by Euclid's Division Algorithm,

$$\begin{split} p(x) &= g(x) \cdot q(x) + r(x) \\ q(x) &= \frac{p(x)}{g(x)} - \frac{r(x)}{g(x)} \\ &= \frac{x^4 - 5x + 6}{2 - x^2} - \frac{r(x)}{2 - x^2} \\ &= \frac{x^4 - 5x + 6}{-x^2 + 2} - \frac{r(x)}{-x^2 + 2} \\ &= -x^2 - 2 - \frac{r(x)}{-x^2 + 2} \end{split}$$

$$\frac{-x^{2}-2}{2-x^{2}\sqrt{x^{4}-5x+6}}$$

$$\frac{x^{4}-2x^{2}}{2x^{2}-5x+6}$$

$$\frac{2x^{2}-4}{-5x+10} = \text{Remainder}$$

Hence, quotient $q(x) = -x^2 - 2$

and remainder r(x) = -5x + 10

PRACTICE:

- 1. Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:
 - (i) $p(x) = x^3 6x^2 + 11x 6$, $g(x) = x^2 + x + 1$
 - (ii) $p(x) = 10x^4 + 17x^3 62x^2 + 30x 3$,

$$g(x) = 2x^2 + 7x + 1$$
(iii) $p(x) = 4x^3 - 8x + 8x^2 + 7, g(x) = 2x^2 - x + 1$

Ans: (i) x-7, 17x+1 (ii) $5x^2-9x-2$, 53x-1 (iii) 2x+5, 11x+2

- Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following:
 - (i) $p(x) = 15x^3 20x^2 + 13x 12$,

 $g(x) = 2 - 2x + x^{2}$ (ii) $p(x) = 14x^{3} - 5x^{2} + 9x - 1$, g(x) = 2x - 1

(iii) $p(x) = 6x^3 + 11x^2 - 39x - 65$, $g(x) = x^2 - 1 + x$

Ans: (i) 15x + 10, 3x - 32 (ii) $7x^2 + x + 5$, 4 (iii) 6x + 5, -38x - 60

- Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:
 - (i) $t^2 3$, $2t^4 + 3t^3 2t^2 9t 12$
 - (ii) $x^2 + 3x + 1$, $3x^4 + 5x^3 7x^2 + 2x + 2$
 - (iii) $x^3 3x + 1$, $x^5 4x^3 + x^2 + 3x + 1$

Sol:

(i) $t^2 - 3$, $2t^4 + 3t^3 - 2t^2 - 9t - 12$ Dividing $2t^4 + 3t^3 - 2t^2 - 9t - 12$ by $t^2 - 3$ we have

$$t^{2}-3) 2t^{2}+3t+4 \\ 2t^{4}+3t^{3}-2t^{2}-9t-12 \\ \underline{2t^{4} -6t^{2} } \\ 3t^{3}+4t^{2}-9t-12 \\ \underline{3t^{3} -9t } \\ 4t^{2} -12 \\ \underline{4t^{2} -12 } \\ 0$$

Since, the remainder is zero. Therefore $r^2 - 3$ is a factor of the polynomial $2t^4 + 3t^3 - 2t^2 - 9t - 12$

(ii)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x^2 + 2x + 2$
Dividing $3x^4 + 5x^3 - 7x^2 + 2x + 2$ by $x^2 + 3x + 1$

$$\begin{array}{r}
3x^{2} - 4x + 2 \\
x^{2} + 3x + 1 \overline{\smash{\big)}3x^{4} + 5x^{3} - 7x^{2} + 2x + 2} \\
\underline{3x^{4} + 9x^{3} + 3x^{2}} \\
- 4x^{3} - 10x^{2} + 2x \\
\underline{-4x^{3} - 12x^{2} - 4x} \\
2x^{2} + 6x + 2 \\
\underline{2x^{2} + 6x + 2}
\end{array}$$

Since the remainder is zero. Therefore $x^2 + 3x + 1$ is a factor of the polynomial $3x^4 + 5x^3 - 7x^2 + 2x + 2$.

Chap 1: Polynomials

(iii)
$$x^3 - 3x + 1$$
, $x^5 - 4x^3 + x^2 + 3x + 1$

Dividing $x^5 - 4x^3 + x^2 + 3x + 1$ by $x^3 - 3x + 1$

$$\begin{array}{r}
 x^{3} - 3x + 1 \overline{\smash)x^{5} - 4x^{3} + x^{2} + 3x + 1} \\
 \underline{x^{5} - 3x^{3} + x^{2}} \\
 -x^{3} + 3x + 1 \\
 \underline{-x^{3} + 3x - 1} \\
 2
 \end{array}$$

Here, the remainder is $2 (\neq 0)$. Therefore $x^3 - 3x + 1$ is not a factor of the polynomial $x^5 - 4x^3 + x^2 + 3x + 1$.

PRACTICE:

1. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x + 2x + 2$

(ii)
$$2x^2 - x + 3$$
, $6x^5 - x^4 + 4x^3 - 5x^2 - x - 15$

(iii)
$$x-1$$
, $x^3-6x^2+11x+6$

Ans: (i) Yes, (ii) Yes, (iii) No.

2. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial:

(i)
$$x^2 + 2x - 3$$
, $x^4 + 2x^3 - 2x^2 + x - 1$

(i)
$$x^2 + 2x - 3$$
, $x^4 + 2x^3 - 2x^2 + x - 1$
(ii) $x^2 - 4x + 3$, $x^4 + 2x^3 - 13x^2 - 12x + 21$

(iii)
$$x^2 - 3$$
, $x^4 - 3x^3 - x^2 + 9x - 6$

Ans: (i) No, (ii) No, (iii) Yes.

Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Sol:

Since two zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$,

 $\left(x-\sqrt{\frac{5}{3}}\right)$ and $\left(x+\sqrt{\frac{5}{3}}\right)$ will be the factors of the

Now,
$$\left(x - \sqrt{\frac{5}{3}}\right)\left(x + \sqrt{\frac{5}{3}}\right) = x^2 - \frac{5}{3} = \frac{3x^2 - 5}{3}$$

= $\frac{1}{3}(3x^2 - 5)$

 $(3x^2 - 5)$ will be a factor of the given polynomial. Dividing the polynomial $3x^4 + 6x^3 - 2x^2 - 10x - 5$ by $3x^2 - 5$

$$\begin{array}{r}
 x^2 + 2x + 1 \\
 3x^2 - 5 \overline{\smash)3x^4 + 6x^3 - 2x^2 - 10x - 5} \\
 \underline{3x^4 - 5x^2} \\
 6x^3 + 3x^2 - 10x - 5 \\
 \underline{6x^3 - 10x} \\
 3x^2 - 5 \\
 \underline{3x^2 - 5} \\
 0
 \end{array}$$

Hence, $3x^4 + 6x^3 - 2x^2 - 10x - 5$

Class 10 • Maths • NCERT Solutions

$$= (3x^2 - 5)(x^2 + 2x + 1)$$

 $x^2 + 2x + 1 = x^2 + x + x + 1$ Now. = x(x+1) + 1(x+1)=(x+1)(x+1)

Therefore its other zeroes will be -1 and -1. Thus, all the zeroes of the bi-quadratic polynomial will be $\sqrt{\frac{5}{3}}$, $-\sqrt{\frac{5}{3}}$, -1 and -1.

PRACTICE:

1. Obtain all other zeroes of $2x^4 - 2x^3 - 7x^2 + 3x + 6$, if two its zeroes are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$

2. Obtain all other zeroes of $x^4 - 3x^3 - x^2 + 9x - 6$, if two of its zeroes are $-\sqrt{3}$ and $\sqrt{3}$

Ans: 1, 2

On dividing $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find q(x).

Sol:

Dividing the polynomial $x^3 - 3x^2 + x + 2$ by a polynomial g(x), the quotient (x-2) and the remainder (-2x+4) are obtained.

 $Dividend = Divisor \times Quotient + Remainder$

$$or(x-2) \times g(x) + (-2x+4)$$

$$= x^3 - 3x^2 + x + 2$$

$$(x-2) \times g(x) = x^3 - 3x^2 + x + 2 + 2x - 4$$

$$g(x) = \frac{x^3 - 3x^2 + 3x - 2}{x - 2}$$

Now, dividing the polynomial $x^3 - 3x^2 + 3x - 2$ by x-2

$$\begin{array}{c}
 x^{2} - x + 1 \\
 x - 2 \overline{\smash)} x^{3} - 3x^{2} + 3x - 2 \\
 \underline{x^{3} - 2x^{2}} \\
 - x^{2} + 3x - 2 \\
 \underline{-x^{2} + 2x} \\
 x - 2 \\
 \underline{0}
 \end{array}$$

 $g(x) = x^2 - x + 1$ is obtained. Hence,

PRACTICE:

1. On dividing $ax^4 - 4x^2 + 4$ by a polynomial g(x), the quotient and remainder were $3x^2 - x$ and -x+4, respectively. Find g(x).

Ans: $3x^2 + x - 1$

2. On dividing $6x^3 + 11x^2 - 39x - 65$ by a polynomial g(x), the quotient and remainder were 6x + 5 and -38x - 60 respectively. Find g(x).

Ans: $x^2 + x - 1$

- **5.** Given example of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
 - (i) $\deg p(x) = \deg q(x)$
 - (ii) $\deg q(x) = \deg r(x)$
 - (iii) $\deg r(x) = 0$

Sol:

(i) $\deg p(x) = \deg q(x)$

We require p(x) and q(x) such that deg

$$p(x) = \deg q(x)$$

Then, $\deg p(z)$

$$\deg p(x) = \deg q(x)$$

The degree of g(x) must be zero.

Let,
$$p(x) = 5x^2 - 5x + 10$$
$$g(x) = 5$$
$$q(x) = x^2 - x + 2$$
$$r(x) = 0$$

By division algorithm,

$$5x^2 - 5x + 10 = 5(x^2 - x + 2) + 0$$

$$p(x) = g(x) \cdot q(x) + r(x)$$

Hence, $\deg p(x) = \deg q(x) = 2$

(ii) $\deg q(x) = \deg r(x)$

We have $\deg q(x) = \deg r(x)$

$$p(x) = g(x) \cdot q(x) + r(x)$$

Degree of p(x) must be equal to the sum of degree of q(x) and degree of q(x).

$$p(x) - 7x^3 - 42x + 53$$

$$g(x) = x^3 - 6x + 7$$

$$q(x) = 7$$

$$r(x) = 4$$

$$\begin{array}{r}
 7 \\
 x^3 - 6x + 7 \overline{\smash{\big)}\ 7x^3 - 42x + 53} \\
 \underline{7x^3 - 42x + 49} \\
 4
 \end{array}$$

By division algorithm,

$$7x^3 - 42x + 53 = 7(x^3 - 6x + 7) + 4$$

So degree of

$$q(x) = 0$$

(iii) $\deg r(x) = 0$

We have
$$\deg r(x) = 0$$

$$p(x) = x^3 + 2$$

$$q(x) = x^2 - x + 1$$

Now dividing $x^3 + 2$ by $x^2 - x + 1$

$$\begin{array}{r}
x+1 \\
x^2 - x + 1 \overline{\smash)x^3 + 2} \\
\underline{x^3 - x^2 + x} \\
x^2 - x + 2 \\
\underline{x^2 - x + 1} \\
1
\end{array}$$

By division algorithm

$$x^3 + 2 = (x^2 - x + 1)(x + 1) + 1$$

$$p(x) = g(x) \cdot q(x) + r(x)$$

Also $\deg r(x) = 0$

PRACTICE:

- 1. Given example of polynomials p(x), g(x), q(x) and r(x), which satisfy the division algorithm and
 - (i) $\deg p(x) = \deg q(x)$
 - (ii) $\deg q(x) = \deg r(x)$
 - (iii) $\deg r(x) = 0$

Ans

(i)
$$p(x) = 3x^2 - 3x + 12$$
, $q(x) = x^2 + x + 4$, $g(x) = 3$, $r(x) = 0$

(ii)
$$p(x) = 5x^3 - 10x + 26$$
, $g(x) = x^3 - 2x + 5$, $g(x) = 5$, $r(x) = 1$

(iii)
$$p(x) = 3x^2 - x^3 - 3x + 5$$
, $g(x) = x - 1 - x^2$, $g(x) = x - 2$, $r(x) = 3$

EXERCISE 1.4

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:

(i)
$$2x^3 + x^2 - 5x + 2$$
, $\frac{1}{2}$, 1, -2

(ii)
$$x^3 - 4x^2 + 5x - 2$$
; 2, 1, 1

Sol:

Comparing the given polynomial with the polynomial $ax^3 + bx^2 + cx + d$, we get

$$a = 2 \ b = 1, c = -5 \ \text{and} \ d = 2$$

Then,
$$p\left(\frac{1}{2}\right) = 2\left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^3 + \left(\frac{1}{2}\right)^2 - 5\left(\frac{1}{2}\right) + 2$$

 $= \frac{1}{4} + \frac{1}{4} - \frac{5}{2} + 2$
 $= \frac{1+1-10+8}{4} = \frac{0}{4} = 0$
 $p(1) = 2(1)^3 + (1)^2 + 5(1) + 2$

=2+1-5+2=0

$$p(-2) = 2(-2)^{3} + (-2)^{2} - 5(-2) + 2$$
$$= 2(-8) + 4 + 10 + 2$$
$$= -16 + 16 = 0$$

Therefore, $\frac{1}{2}$, 1 and -2 are the zeroes of the given polynomial $2x^3 + x^2 - 5x + 2$ i.e.,

$$\alpha = \frac{1}{2}$$
, $\beta = 1$ and $\gamma = -2$

Verification:

and

$$\alpha + \beta + \gamma = \frac{1}{2} + 1 + (-2)$$

$$= \frac{1+2-4}{2} = -\frac{1}{2} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \left(\frac{1}{2}\right)(1) + (1)(-2) + (-2)\left(\frac{1}{2}\right)$$

$$= \frac{1}{2} - 2 - 1 = \frac{1-4-2}{2}$$

$$= \frac{-5}{2} = \frac{c}{a}$$

$$\alpha\beta\gamma = \frac{1}{2} \times 1 \times -2 = -1$$

$$= \frac{-2}{2} = \frac{-d}{a}$$

Hence verified. The relationship between the zeroes and the coefficient is correct.

(ii)
$$x^3 - 4x^2 + 5x - 2$$
; 2, 1, 1

Comparing the given polynomial with $ax^3 + bx^2 + cx + d$, a = 1, b = -4, c = 5 and d = -2

$$p(2) = (2)^{3} - 4(2)^{2} + 5(2) - 2$$

$$= 8 - 16 + 10 - 2 = 0$$

$$p(1) = (1)^{3} - 4(1)^{2} + 5(1) - 2$$

$$= 1 - 4 + 5 - 2 = 0$$

2, 1 and 1 are the zeroes of the polynomial $x^3 - 4x^2 + 5x - 2$

So, $\alpha = 2$, $\beta = 1$ and $\gamma = 1$ Verification :

$$\alpha + \beta + \gamma = 2 + 1 + 1 = 4$$

$$= \frac{-(-4)}{1} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = (2)(1) + (1)(1) + (1)(2)$$

$$= 2 + 1 + 2 = 5 = \frac{5}{1} = \frac{c}{3}$$

and

$$\alpha\beta\gamma = (2)(1)(1) = 2$$

= $\frac{-(-2)}{1} = \frac{-d}{a}$

Hence verified. Therefore the above relationship of the zeroes of the polynomial with its coefficient is correct.

PRACTICE:

- 1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:
 - (i) $x^3 x^2 10x 8$; -1, -2, 4
 - (ii) $4x^3 11x^2 + 5x + 2$; $\frac{-1}{4}$, 1, 2
- 2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, -7, -14 respectively.

Sol:

Let a cubic polynomial be $ax^3 + bx^2 + cx + d$ and its zeroes are α , β and γ . Then

$$\alpha + \beta + \gamma = 2 = \frac{-(-2)}{1} = \frac{-b}{a}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = -7 = \frac{-7}{1} = \frac{c}{a}$$

and $\alpha\beta\gamma = -14 = \frac{-14}{1} = \frac{-d}{a}$ If a = 1 Then, b = -2

c = -7 and d = 14

Thus the polynomial is $x^3 - 2x^2 - 7x + 14$

PRACTICE:

1. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 12, 39, 28 respectively.

Ans:
$$x^3 - 12x^2 + 39x - 28$$

2. Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 3, 5, 3 respectively.

Ans:
$$x^3 - 3x^2 + 5x - 3$$

3. If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are a - b, a, a + b find a and b.

Sol:

(a-b), a (a+b) are the zeroes of the polynomial

$$x^3 - 3x^2 + x + 1$$
.

Therefore,

$$(a-b) a + a(a+b) + (a+b)(a-b) = \frac{1}{1} = 1$$

$$\alpha\beta + \beta r + r\alpha = \frac{c}{a}$$

$$a^{2} - ab + a^{2} + ab + a^{2} - b^{2} = 1$$

$$3a^{2} - b^{2} = 1$$

$$3(1)^{2} - b^{2} = 1$$

$$3 - b^{2} = 1$$

$$b^{2} = 2 \Rightarrow b = \pm \sqrt{2}$$

$$(\because a = 1)$$

Hence, a = 1 and $b = \pm \sqrt{2}$

PRACTICE:

1. If the zeroes of the polynomial $2x^3 - 15x^2 + 37x - 30$ are a - b, a, a + b find a and b.

Ans:
$$a = \frac{5}{2}, b = \pm \frac{1}{2}$$

2. If the zeroes of the polynomial $x^3 - 6x^2 + 11x + 6$ are a - b, a, a + b find a and b.

Ans :
$$a = 2, b = \pm 1$$

4. If two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$, find other zeroes.

Sol:

Two zeroes of the polynomial

$$p(x) = x^4 - 6x^3 - 26x^2 + 138x - 35$$

are $2 \pm \sqrt{3}$

Therefore,

$$x=2\pm\sqrt{3}$$

$$x-2 = \pm \sqrt{3}$$

Squaring both sides,

$$x^2 - 4x + 4 = 3$$

$$x^2 - 4x + 1 = 0$$

Now let us divide the polynomial p(x) by $x^2 - 4x + 1$ so that other zeroes may be obtained.

$$\begin{array}{r} x^2 - 2x - 35 \\ x^2 - 4x + 1 \overline{\smash)x^4 - 6x^3 - 26x^2 + 138x - 35} \\ \underline{x^4 - 4x^3 + x^2} \\ -2x^3 - 27x^2 + 138x - 35 \\ \underline{-2x^3 + 8x^2 - 2x} \\ -35x^2 + 140x - 35 \\ \underline{-35x^2 + 140x - 35} \\ 0
\end{array}$$

$$p(x) = x^{4} - 6x^{3} - 26x^{2} + 138x - 35$$

$$= (x^{2} - 4x + 1)(x^{2} - 2x - 35)$$

$$= (x^{2} - 4x + 1)(x^{2} - 7x + 5x - 35)$$

$$= (x^{2} - 4x + 1)[x(x - 7) + 5(x - 7)]$$

$$= (x^{2} - 4x + 1)(x + 5)(x - 7)$$

(x+5) and (x-7) will be the other factors. Hence -5 and 7 will be the other zeroes.

PRACTICE:

1. If two zeroes of the polynomial $2x^4+7x^3-19x^2-14x+30$ are $\sqrt{2}$, and $-\sqrt{2}$ find other zeroes.

Ans :
$$-5, \frac{3}{2}$$

2. If two zeroes of the polynomial $x^4 + x^3 - 34x^2 - 4x + 120$ are 2 and -2, find other zeroes.

Ans : 5, -6

5. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the remainder comes out to be x + a, find k and a.

Sol:

Dividing the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ by the polynomial $x^2 - 2x + k$

$$x^{2} - 4x + (8 - k)$$

$$x^{2} - 2x + k x^{2} - 6x^{3} + 16x^{2} - 25x + 10$$

$$\underline{x^{4} - 2x^{3} + kx^{2}}$$

$$- 4x^{3} + (16 - k)x^{2} - 25x + 10$$

$$\underline{- 4x^{3} + 8x^{2} - 4kx}$$

$$(8 - k)x^{2} + (4k - 25)x + 10$$

$$\underline{(8 - k)x^{2} - 2(8 - k)x + (8 - k)k}$$

$$\underline{(2k - 9)x - (8 - k)k} + 10$$

Remainder =
$$(2k-9)x - (8-k)k + 10$$

But remainder = x + a

Therefore, comparing the coefficients we have

2x - 9 = 1

$$2k = 10 \Rightarrow k = 5$$
and $-(8-k)k+10 = a$

$$a = -(8-5)5+10$$

$$= -3 \times 5 + 10 = -15 + 10$$

$$= -5$$

Hence k = 5 and a = -5

PRACTICE:

1. If the polynomial $6x^4 + 8x^3 + 17x^2 + 21x + 7$ is divided by another polynomial $3x^2 + 4x + 1$, the remainder comes out to be ax + b, find a and b.

Ans : a = 1, b = 2

2. If the polynomial $8x^4 + 14x^3 - 2x^2 + 7x - 8$ is divided by another polynomial $4x^2 + 3x + k$, the remainder comes out to 14x + a, find k and a.

Ans: k = -2, a = -10

www.ncertpdf.in