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Abstract- The balanced regularization approach in image 

restoration bridges the synthesis-based and analysis-based 

approaches and balances the fidelity, sparsity and smoothness 

of the solution. This paper here introducing an efficient 

algorithm which  solves the balanced regularization problem 

in the frame-based image restoration. Here the proposed 

algorithm   is based on a variable splitting strategy and the 

classical alternating direction method (ADM) for solving the 

balanced optimal problem This paper shows that the for 

solving the standard image restoration with balanced 

regularization proposed algorithm is fast and efficient. The 

efficiency of  proposed algorithm is represented by numerical 

simulations in the frame-based image restoration with 

balanced regularization. 
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I. INTRODUCTION 

Image restoration is a classical and important research 

topic in image processing, which is often formulated as an 

inverse problem [1]. It continues to attract attention of many 

researchers and engineers who are working in imaging 

applications from astronomy to consumer imaging systems. In 

general, the goal is to recover an unknown true image u∈Rn 

from a noisy measurement y∈Rm that is often modeled as 

                              y = Bu + n                          Eqn. (1) 

where B is a linear operator, typically a convolution operator 

in image deconvolution, a projection in image inpainting and 

the identity map in image denoising, n is a white Gaussian 

noise with variance σ2. It is well known that this problem is 

ill-posed, but many algorithms for this inverse problem are 

known and acceptable by adopting a variety of signal prior 

information. Among these, a recently emerging technique 

exploits efficiently the sparse and redundant representations of 

the signals . A signal u is said to have a sparse representation 

over a known frame W ∈ Rn×d, if there exists a sparse vector 

x∈Rd such that u = Wx. In general, the frame may be 

redundant. In this paper, the redundant and normalized tight 

frame (Parseval frame) is used, i.e., WWT = I, where I denotes 

the identity matrix. Thus , u=W(WT u) for every vector u ∈ 

Rn. The components of the vector WTu are called the 

canonical coefficients representing u. Hence the framebased 

image restoration can be described as: the coefficient vector x 

is estimated from the noisy image under the sparsity  

assumption first, then a linear combination of a few columns 

of frame W represent an unknown image u., The mapping 

from the image u to its coefficients is not one-to-one since 

tight wavelet frame systems are redundant i.e., the 

representation of u in the frame domain is not unique. The 

sparseness of the frame coefficients are utilized by three 

formulations namely analysis-based approach, synthesisbased 

approach and balanced regularization approach. The balanced 

regularization approach  can be formulated as 

min x(1/2)║BWx − y║2
2+ (γ/2) ║(I – WTW)x║2

2+ λT |x|1                                                                    

Eqn. 2 

 

where γ > 0 and λ are given nonnegative weight vectors ║.║2, 

denotes the l2- and |z|1 denotes the vector obtained from z by 

taking absolute values of its elements. Penalty on the data 

fidelity represent first term and the last term penalizes the 

sparsity of coefficient vector, the second term penalizes the 

distance between the frame coefficients x and the range of WT 

, i.e., the distance to the canonical frame coefficients of u. The 

larger γ makes the frame coefficients x closer to the range of 

WT , that is to say, the frame coefficients x is closer to the 

canonical frame coefficients of u for the larger γ.  

When γ = 0, the problem (2) is reduced to 

  minx(1/2) )║BWx − y║2
2+ λT |x|1                  Eqn.3 

 

This is called the synthesis-based approach, and in this only 

the sparsity of the frame coefficients is penalized and the 

sparsest coefficients synthesized the estimated image . On the 

other extreme, when γ = ∞, the term║(I – WTW)x║2
2 must be 

0 if the problem (2) has a finite solution. This implies that x is 

in the range of WT , i.e., x = WT u for some u ∈ Rn. Thus the 

problem (2) can be rewritten as 

Eqn. 4 

This is called analysis-based approach because the coefficient 

is in the range of the analysis operator WT. It is noted that in 

(4) only the sparsity of the canonical frame coefficients is 
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penalized, which corresponds to the smoothness of the 

underlying image. 

II. COMPARATIVE REVIEW 

In this era, researchers have used number of techniques for 

balanced image restoration. 

[1] Jian-feng et.al,  introduces Split Bregman methods which 

is proven more efficient tools for solving total variation norm 

minimization problems, arising from partial differential 

equation based image restoration such as image denoising and 

magnetic resonance imaging reconstruction from sparse 

samples. In this paper,  the convergence of the split Bregman 

iterations are proved, where the number of inner iterations is 

fixed to be one. It also shows that   minimization problems 

arising from the analysis based approach can be solved by 

split Bregman iterations  for image restoration .  

[2] Yue Hu et.al,  introduces a novel image regularization 

termed as multiple degree total variation (MDTV). The main 

aim is to combines the first and second degree directional 

derivatives by regularization which  provides a good balance 

between  region smoothness and preservation of edges. An 

iteratively overweighted majorize minimize algorithm is 

proposed to solve the resulting optimization problem.  Then 

there is comparison of  the proposed method with the standard 

TV,  including higher degree total variation (HDTV) and total 

generalized variation (TGV) based schemes. Numerical results 

indicate that the MDTV penalty provides improved image 

recovery performance. 

[3]  Yutang Fu et.al, introduces Total variation (TV) based 

method  which is  used in image compressive sensing and also  

achieves great success in under-sampled recovery due to its 

virtue for edges preserving. However, since TV provides 

piecewise constant solution, it shows bad performance in fine 

structure recovery. The paper proposed a novel image 

compressive sensing scheme as the balanced sparsity model is 

introduced into the conventional TV based compressive 

sensing to overcome the above problem. Experimental results 

demonstrate that the novel scheme outperforms the compared 

compressive sensing methods in both of objective indicator 

and visualization..  

[4]  Javier Portilla et.al,  proposed a novel formulation for 

relaxed analysis-based sparsity in multiple dictionaries as a 

general type of prior for images, and  it is applied for 

Bayesian estimation in image restoration problems.  The 

resulting constrained dynamic method is not just fast and 

effective, but also highly robust and flexible. It provide an  

tradeoff between computational load and performance, 

Second, the performance benchmark can be easily adapted to 

specific types of degradation, image classes, and even 

performance criteria. Third, it allows for using several 

dictionaries simultaneously with complementary features. 

This unique combination makes  a highly practical 

deconvolution method. 

[5] Bin Dong et.al, used mathematical tools in image 

restoration, where wavelet frame based approach is one of the 

successful examples. In this paper, a generic wavelet frame 

based image restoration model, called the "general model", is 

introduced which includes most of the existing wavelet frame 

based models as special cases. Moreover, the general model 

also includes examples that are new to the literature. An 

asymptotic analysis of the general model as image resolution 

establishes a connection between the general model in discrete 

setting and a new variatonal model in continuum setting. The 

variational model also includes some of the existing 

variational models as special cases, such as the total 

generalized variational model proposed by . In the end, an 

algorithm solving the general model is introduced. 

Table 1. shows techniques used by other authors 

Year of 

publication 

Technique 

used 

Pros Cons 

2009 SB Eff tool for 

solving 

min. 

problems 

Less flx 

2016 MDTV a good blc 

btw  region 

smoothness 

and pe  

Requires imp 

in image 

recovery 

2016 TV provides  

pcs  

Bad 

performance 

in FSR  

2015 ABS Eff , Rb  Sp  

2016 WFM Rb Requires imp 

 

SB : Split Bregman technique, MDTV : Multiple degree total 

variation , TV : Total Variation, ABS : Analysis-based sparsity 

Model, WFM  : Wavelet frame based approach, Eff : efficient, 

min. : minimization problems, blc: balance, btw: between, pe : 

preservation of edges, pcs: piecewise constant solution, Rb : 

robust, flx: flexible, FSR fine structure recovery, imp: 

improvement, Sp : speed. 

III. METHOD BASED ON BALANCED IMAGE 

RESTORATION 

A. STANDARD ALTERNATING DIRECTION METHOD 

In this paper, ADMM will be employed to solve the 

regularization problem in the image restoration, hence, the 

standard ADMM should be overviewed first. Consider an 

unconstrained optimization problem of the form 

                              Eqn. 5 
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where f1 and f2 are closed, proper convex functions, and G ∈ 

Rd×n. Variable splitting consists in creating a new variable, say 

v, to serve as the argument of f2, under the constraint that Gu 

= v. This leads to the constrained problem: 

Eqn.6 

which is clearly equivalent to the unconstrained problem. 

Using the classical augmented Lagrangian (AL) approach, 

also known as the method of multiplier (MM), to deal with the 

problem , following iterative algorithm can be obtained 

 

                                 Eqn. 7 

         Eqn. 8 

Here║.║2 denotes the l2-norm, µ ≥ 0 is called AL penalty 

parameter and dk corresponds to the vector of Lagrange 

multipliers at the iteration k. The above minimization problem 

is not trivial since it involves a non-separable quadratic as 

well as possibly nonsmooth terms. A natural way to address is 

to minimize it alternatingly with respect to u and v while 

keeping the other variable fixed. This leads to the so-called 

alternating direction method of multipliers (ADMM) . 

 

Algorithm ADMM: 

 

Now standard ADMM is used to solve the balanced 

regularization problem in frame-based standard image 

restoration. This problem can be rewritten as the constrained 

optimization problem by variable splitting first: 

                                                                       
Eqn . 9 

Define 

                                 
Eqn. 10             

                     Eqn. 11 

If the ADMM is applied to solve the above constrained 

optimization problem (9), the steps 3) – 5) in Algorithm 

ADMM should be replaced with 

 The 

minimization problem in the step 4a) with respect to v can be 

solved by the soft thresholding method [25] which has a 

closed form: 

                    Eqn.12 

Where  and 

   Eqn. 13 

′ k = xk+1 − dk and soft(x,τ) = sign(x) ⊙ max{|x| − τ, 0} (13) 

with ⊙ denoting the component-wise product, i.e., (x⊙y)i = 

xiyi and sign being the signum function, which is defined as  

  Eqn. 14 

Note that the step 3a) is a strictly convex quadratic 

minimization problem with respect to x, hence it can be 

reduced to the following linear system:  

 

                                                                   Eqn.15 

 Where 

                                                                                      
Eqn. 16 

denotes the regularized version of Hessian matrix WTBTBW.  
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The matrix A can be seen as a regularized version of the 

Hessian of 1/2║BWx−y║2
2  by adding the terms γ(I−WT W) 

and µI. In general, the computations of this matrix and its 

inverse are not affordable for large-size matrices B and W, we 

may just take a steepest descent step instead, and that leads to 

the linear system being solved inexactly. This is the  gradient-

based algorithms such as ISTA and FISTA. However, in many 

standard image restorations like deblurring and inpainting 

problems, the matrix B has a special structure and the frame 

W is a tight wavelet, so the matrix-vector products can be 

computed quite efficiently. For example, if W is a tight 

wavelet frame, any matrix-vector multiplications can be 

performed by a fast transform algorithm .Similarly, if B 

represents a convolution, the matrix-vector products can be 

performed with the help of fast Fourier transform (FFT). 

Hence these facts have motivated that these special structures 

can be exploit to solve the linear system  fast and exactly, in 

which the operations involving matrices are only matrix-

vector products with fast algorithms. However, since the last 

two terms is added into A, it is not straightforward to obtain 

the inverse of A such that the fast computations can be 

employed explicitly. Then a formula is derived that can 

compute the inverse of A efficiently. Hence in the solution, 

the proposed  algorithm  use the second-order information of 

the data-fidelity function, not like gradient-based algorithms 

that only use the first-order information. Using the Sherman-

Morrison-Woodbury matrix inversion lemma and WWT = I, 

the following formula can be obtained, 

Eqn. 17 

Where          Eqn. 18 

 Eqn. 19 

It shows that the inverse of regularized matrix A involves the 

tight frame W and its transpose which can be efficiently 

calculated by a fast wavelet transform algorithm. In view of 

(12), (19), (17) and (15), the following algorithm to solve the 

balanced regularization optimization problem in the frame-

based image restoration can be obtained.  

Algorithm ADMM for balanced regularization approach 

(ADMM-B):  

 

IV. SUMMARY 

An efficient ADMM-based algorithm for solving the 

balanced regularization problem in the frame-based image 

restoration has been presented. In this paper  the analysis-

based and synthesis-based approaches in image restoration are 

equalised by the balanced regularization approach. To solve 

this optimization problem more efficiently, the proposed 

ADMM-B algorithm is used and it exploits the fast tight frame 

transform algorithm and the special structures of observation 

matrices in the standard image restoration problems. 

Theoretical results have shown that the proposed ADMMB 

algorithm is much faster than the previous  methods on a set 

of standard image restoration problems such as the image 

deblurring and inpainting. 
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