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Abstract— Botnets as a cyber security risk continue to evolve 

and transform in response to security measures deigned to stop 

them.  Consequently, cyber security professionals must continue 

to develop new counter measures to defeat these threats.  In this 

paper we build upon a prior body of work that uses machine 

learning algorithms to detect botnets within raw network traffic.  

Our approach is to look at network flow between two end points 

and to extract 23 distinguishing features from their packet 

exchange.  We then train machine learning algorithms to classify 

the network flow as either malicious or benign.  The dataset we 

use is the standard ISOT Dataset compiled by University of 

Victory.  The machine learning algorithms implemented are a 

neural network, a decision trees, a SVMs, and an ensemble 

method known a RUSBoost.  Training each of the machine 

learning algorithms with the 23 features using 5-fold cross 

validation we achieved an average of 99% in recall, precision, 

and accuracy across all methods. 

Keywords—botnet; cyber-security; PCAP; netflow; machine 

learning; fealture extraction 

I.  INTRODUCTION (HEADING 1) 

The term “bot” (a.k.a. web bot, network bot, software bot) 
originates from the word robot.  What this implies is that a 
bot, like a robot, is a piece of software capable of responding 
to commands and carrying out autonomous operations.   When 
used for data gathering and beneficial applications such as 
web spidering, bots are welcome and useful tools.  However, 
when used to distribute malicious software or attack 
computers, bots pose a significant threat to computer security.  
Criminals have evolved to use large number of bots in a 
collaborative fashion, known as botnets, to perform distributed 
denial-of-service (DDOS) attacks and distribute malware at 
unprecedented rates.  While much research has been done in 
an attempt to thwart botnet attacks, the growing sophistication 
of hackers requires a reciprocal response in research to defend 
against such attacks. 

In recent years, advanced network monitoring software has 
facilitated the collection of large datasets of network traffic 
and events.  Forensic analysis of these datasets provides an 
opportunity to discover identifying characteristics of bots and 
botnets.  This paper proposes two key research objectives in 
regards to this data: 

 Examine datasets for features that may act as 
powerful discriminants in detecting new bot and 
botnet threat events. 

 Gain a deeper understanding of the data and relevant 
algorithms for selecting feature sets and matching 
classification algorithms to fully exploit the data 
available for detecting bot and botnet threats. 

II. MOTIVATION 

On September 17, 2014, in a Statement before the House 
Homeland Security Committee, James Comey, Director FBI 
[1], described the state of Cyber Threats with the U.S.   In his 
statement, Mr. Comey elucidated the substantial level of effort 
the FBI is engaging in to combat these threats and to stop “… 
the world’s most dangerous botnets.”  Mr. Comey continued 
by highlighting some successes, “...Over the past several 
years, the FBI’s efforts to combat these significant cyber 
threats have caused the disruption and dismantlement of 
numerous botnets, including Butterfly Bot, Rove Digital, 
Coreflood, ZeroAccess, and GameOver Zeus, resulting in 
numerous arrests, extraditions, and convictions.”  The 
implications of this address to the House Homeland Security 
Committee is that botnets, regardless of recent advances in 
detection and defense remain, a significant threat to domestic 
security. 

Chris Rodrigues, a Senior Industry Analyst (Information & 
Network Secturity) reiterates this sentiment in a recent SPIE 
article [2] as he advocates that security professionals remain 
diligent in their pursuit of new protections against the 
continually changing tactics utilized by disreputable 
individuals.  Mr. Rodrigues indicates that the most recent 
trends have hackers and hacker groups utilizing complex 
botnets for covert operations to defeat security measures.  To 
compound the problem work by Mullaney [3] and Lu [4] 
indicate that botnets are migrating to the Internet of Things 
(IoT) and mobile devices.  The results are undeniable, with 
daily disruptions and data theft from large corporations such as 
Target, Home Depot, the US Postal Service, and many others.  
It is obvious, new techniques for defense against bots and 
botnets must be explored. 

III. BACKGROUND 

Often in the literature botnets are characterized as simply a 
coordinated group of bots spread across many computers 
controlled by an individual to accomplish harmful actions.  
While this may be accurate from a high level point of view, 
the reality is that botnets are instantiated in a variety of very 
different ways and understanding the differences is important 
to detecting, defending against, and defeating them.  In this 



 

Figure 1: Key stages of the botnet lifecycle. 

section of the paper we look at several dimensions of botnets 
and discuss how we will focus our research.  The dimensions 
that we discuss below are: 

 Good – vs – Bad 

 Terminology 

 Lifecycle 

 Spreading Bots 

 Protocols 

 Topologies 

 Command and Control (C&C) 

 Commercial / Open Source Detection Software 

A. Good –vs- Bad 
Initially bots were small programs run on the Internet to 
perform an automated, repetitive function, such as searching 
for information on web sites across the Internet.  The use of 
bots is appealing because they can be easily configured to do 
simple tasks at speeds much faster than humans.  They will 
run 24 hours a day and through replication can be used to 
harness the power of distributed processing.  One relatively 
well known and beneficial botnet is SETI@home [5].  
SETI@home is a voluntary distributed computing project 
started by the Space Science Laboratory at the University of 
California Berkeley.  For this project volunteers purposefully 
install a bot on their own personal computer (PC).  The bot, 
when activated, makes contact with SETI servers and 
downloads some astronomical data.  During times when a 
SETI-enabled PC is not being used the SETI bot processes the 
data and returns the results to the SETI servers without 
intervention of the PC’s owner. 

It did not take long for the criminal element on the Internet to 
realize how bots and botnets could be used to enhance their 
criminal endeavors.  In addition to the DDOS attacks and 
malware distribution functions mentioned above, botnets are 
also know for other mischievous and/or harmful actions such 
as click fraud, phishing, and spam spreading.  Within the 
context of this paper we consider bots from the perspective that 
they are used for nefarious purposes. 

B. Terminology 
As the cyber security landscape has evolved so has the 
terminology that is used to describe the components in this 
domain.  The following list is comprised of a few key terms 
often used within the botnet arena. 

 Bot / Web bot / Network Bot / Software Bot:  The 
program (application) which is run that allows and 
attacker to gain control over an affected computer. 

 Botnet:  A network of bot infected computers that have 
been compromised. 

 Bot Herder:  The individual(s) responsible for the 
creating the botnet and who will eventually control and 
command the botnet. 

 Zombie or Drone:  An individual computer that has 
been infected by a bot and is part of a botnet. 

 Botmaster:  This is the bot server which commands and 
controls a botnet.  The botmaster is operated by the Bot 
Herder. 

C. Lifecycle: 
To gain a cursory understanding of how botnets work it is 
useful to know the major stages in creating and operating a 
botnet.  These key stages are illustrated in fig. 1 below: 

 In the Setup Stage the bot is created.  During bot 
conception certain decisions are made regarding 
motivation, design, and implementation.  Infection 
vectors are programmed, payloads are planned, and 
C&C details are configured. 

 During the distribution stage bots propagate 
according to configuration parameters.  Bots scan for 
vulnerabilities to take advantage of infection vectors. 

 Once an infection is successful the bot activates an 
internal script that connects back to the C&C server 
(or peer), reports its status, and waits for commands. 

 After the desired number of bots have reported in and 
joined the botnet, the botmaster can control the bots 
and command them to action.  The botmaster can 
even update the bots, providing them with new 
capabilities and even a new C&C framework. 

D. Spreading Bots 
Bots are spread in a similar fashion to any type of malware.  
The goal is to get individuals to inadvertently install and 
activate the bot on their personal computer systems.  This is 
typically done by exploiting a computer system vulnerability, 
exploiting weak security policies, or social engineering.  For 
example an unaware computer user is tricked into visiting a 
faked website.  The website scans for vulnerabilities and 
exploits them or tricks the user into downloading malware.  
Negash & Che [6], in their paper on modern botnets, provide 
additional details and examples of to the botnet infection phase. 

E. Protocols 
One common method of classifying botnets is by the type of 
networking protocol they use for communication.  The three 
primary application layer networking protocols used for botnet 
communication are: Internet Relay Chat (IRC) Protocol, Peer-
to-Peer (P2P) Protocol, and Hypertext Transfer Protocol 
(HTTP).  These are discussed in detail below. 

1) IRC 
IRC is an open-standard electronic chat protocol that was 
designed for chat programs but was adapted to be used for the 
first generation of botnets.  The original idea behind IRC was 
to provide a mechanism for users to hold group chat sessions in 
real-time across the Internet. A basic IRC system comprises 
two programs: a server and a client. The server run 
continuously on a computer whose address is well known.  For 
botnets this acts as the C&C server.  The client is the program 
that runs as an application on the computer(s) that will connect 
to the server.  These clients when started, connect to the server 
and joins one or more “chat” channels. Many clients can 
connect to one server.  In the case of a botnet, each instance of 
the client program is a bot.  When IRC bots are first started 
they will connect to a preprogrammed server address and port 
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Figure 2: C&C Communication Strategies. 

number and then proceed through a standard set of exchanges.  
Researchers have used knowledge of this standard and 
predictable communication exchange to tackle the problem of 
IRC botnets.  Since these type of botnets were the original 
botnets, much research has been done in this area, and 
advanced detection techniques have been developed with 
detection rates typically in the 99% to 100% range and few to 
no false alarms.  Early work by Lividas, et al. [7], provides an 
example of successfully utilizing machine learning (ML) to 
detect IRC botnets.  Although IRC botnets are the most simple 
and easy to detect, continuing code modifications by botnet 
designers have motivated researchers to continue their pursuit 
of new and updated detection methods.  Awadi and Belaton [8] 
recently published new work using a spatial-temporal analysis 
of C&C traffic and behavior to make the detection of IRC 
botnets more robust. 

2) P2P 
Following a historical timeline, subsequent to IRC botnets 
came the evolution of P2P botnets.  P2P networks share 
connections and resources directly with other “peer” computers 
on a network rather that going through a managing server.  The 
P2P network protocol is designed to “overlay” or specify a 
logical network on top of another physical network.  This 
means that nodes of the P2P network connect and 
communicate to other nodes in the P2P network through virtual 
or logical links independent of the underlying physical links.  
While there are many details to this kind of network, when it 
comes to botnets utilizing P2P the key feature is that each node 
keeps a routing table of connected nodes.  The implication is 
that if a node can’t accomplish a task or pass a message, it can 
search for one that can.  This one feature was a boon for botnet 
designers as it got around the main vulnerability of IRC 
botnets, one central C&C server.  As cyber security 
professionals developed tools to find and take down the C&C 
server, thereby rendering the botnet useless, the P2P botnets 
have gotten around this by distributing C&C to all nodes in the 
network.  Initial work by researchers was done to gain a better 
understanding of these botnets.  Examples of some of this 
research include Grizzard, et al. [9], who presented a case study 
that took a detailed look into the operation of the 
Trojan.Peacomm P2P botnet and Holz, et al. [10], who did a 
deep dive into the function of the Stormnet P2P botnet.  As a 
result of the new complexity of P2P botnets, different ideas for 
detection of botnet began to emerge.  One idea was to look for 
anomalies in network traffic flows.  This approach has gained 
of momentum and is showing promising results in detection 
botnets of all flavors.  Narang, et al. [11], successfully applied 
this approach specifically to P2P botnets. 

3) HTTP 
Simply put, HTTP is the foundation for communication on the 
World Wide Web (WWW), so it is only natural that botnets 
would eventually adopt this network communications protocol.  
The move away from P2P is thought to have occurred for a 
couple of reasons. First, implementation of a P2P 
communication protocol is complex and difficult to manage.  
Second, botmaster commands are propagated through the 
network and distributed by other bots.  Consequently, the 
delivery and response status of instructions is not easily 
monitored by the botmaster.  This has led botnet developers 

back to a model using a single C&C server, but with the 
advantages of using HTTP.  The primary advantage gained 
from using HTTP is that HTTP Botnet traffic activity is 
merged (effectively hidden) among all the other traffic of the 
Internet.  IRC and P2P botnets had their own protocol 
structures that could be parsed out of the majority of all other 
Internet traffic, but this is not the case for HTTP botnets.  Even 
though HTTP botnets use a central C&C server there is a 
significant difference from the IRC botnet use of a central 
C&C server that provides a significant advantage: IRC botnets 
use a PUSH C&C communication strategy where HTTP 
botnets use a PULL C&C communication strategy.  Fig. 2 
below illustrates the differences: 

In the IRC botnet PUSH C&C communication strategy IRC 
bots connect to the preprogrammed IRC C&C server and 
corresponding channel and remain connected waiting for the 
botmaster to issue commands.  The HTTP botnet PULL C&C 
communication strategy differs in that the bots are programmed 
to periodically visit preprogrammed C&C web servers to check 
for new commands and updates.  In 2012 a security industry 
report [12] summarized nine of the most dangerous botnets for 
that year - six of them were HTTP based.  Given the 
seriousness of the HTTP botnet threat researcher have rallied to 
come up with innovate strategies to detect them.  Eslahi, et al. 
[13], exploits the knowledge of the HTTP botnet connection 
process and the preprogrammed check-in nature of these bots 
to derive a periodicity classification model for detecting HTTP 
botnets.  Even with work like Eslahi’s, due to the recent arrival 
of HTTP botnets on the botnet scene, research in this area is 
minimal by comparison to the number of studies on IRC and 
P2P botnets. 

F. Topologies 
Another popular way of differentiating botnets is by the 
architectural layout of their network connections.  However, in 
most cases the protocol determines and/or limits the topology 
possibility for the botnet.  The three primary networking 
topologies used for botnet connections are: Centralized, 
Decentralized, and Hybrid. 

1) Centralized 
The centralized topology is the configuration used by IRC 
botnets and most HTTP botnets.  



 Advantages are the simplicity of programing, 
managing, and commanding. 

 A disadvantage is its single point of failure.  If the 
C&C Server is removed the entire botnet is rendered 
ineffective. 

2) Decentralized 
The decentralized topology is the configuration used by P2P 
botnets. 

 An advantage is that there is no single point of 
failure, multiple bots can be removed and the botnet 
can still function. 

 Some disadvantage are the complexity of 
programming, managing, and commanding. 

3) Hybrid 
Various attempts by botnet architects have been attempted at 
combining both centralized and decentralized topologies to 
gain the most from the advantages of each, while minimizing 
the impact of their disadvantages.  The paper by Wang, et al. 
[26], discusses one such hybrid architecture.  This topology 
creates a type of tiered network where the first tier is a limited 
sized P2P network of “servant” bots and the second tier is 
composed of client bots.  In the top tier the P2P bots are 
responsible for distributing C&C orders, and the limited sized 
reduces complexity and eases management concerns.  The 
second tier has each client bot report to two servant bots, which 
eliminates the single point of failure. 

IV. PRIOR RESEARCH 

Bots and botnets have been a significant threat and a major 
source of problems for security professionals over the years.  
As such, they have caused significant security concerns, and 
much research has been conducted on these software robots.  
However, the nature of bots is dynamic and the way botnets 
are used is ever changing.  In light of the evolving nature of 
this type of software construct, continuing efforts on various 
battle fronts are underway to devise strategies and 
methodologies for defeating this malware.  In the prior section 
we presented a few examples of research that looked at a 
specific category of botnet.  In this section we highlight some 
additional efforts using detection approaches that can be 
applied to two or more types of botnets. 

One recent paper by Khattak, et al. [14], does a thorough job 
of capturing the contemporary understanding of botnets.  The 
paper looks into botnet behaviors, how they are used, and 
command and control considerations.  A survey of current 
botnet detection mechanisms is provided and an assessment of 
existing defensive techniques is discussed.  The key take away 
from this paper is that the authors suggest new benefits may be 
achieved through the coupling of detectable botnet features 
with matching predictive analysis mechanisms. 

Another paper by Chakchai So-In, et al. [15], puts forth the 
idea of taking a more active approach to network security and 
investigates six traditional classification models for network 
intrusion detection.  The described data mining and 
classification models are applied to the KDD CUP 1999 
dataset which contains up to 41 attributes of network access 
behaviors and a variety of known networking threats.  The 

dataset was derived through an intrusion detection simulation 
of the U.S. Air Force local area networks. 

Other research has produced standard frameworks and 
software for botnet detection.  Bothunter [16] is one such 
software package for botnet intrusion detection that is freely 
distributed (www.bothunter.net).  Bothunter works by 
correlating network traffic flows to infection sequence models.  
Follow on work by Guofei et al. [17] developed a framework, 
titled Botminer, which proposes a technique for botnet 
detection that is protocol independent.  Botminer perform 
detection by clustering traffic on the basis of malicious 
activity and communication patterns.  Lastly in this sequence 
of standard frameworks is additional work by Gu et al. [18] 
that evaluates C&C activity.  Their framework, BotSniffer, is 
based on the observation that pre-programmed activities of 
C&C bots within the same botnet will likely demonstrate 
spatial-temporal correlation and similarity, thus providing a 
detectable flag. 

The last two papers discussed in this section present the 
currently popular idea of using data mining techniques applied 
to network traffic flows.  The prevailing idea behind these 
techniques is to look at a complete network flow and analyze 
the statistics of the flow either individually or over a specified 
periods of time.  A network flow is the group of packets 
transmitted over a network from a source location to a 
destination during a single connection session or call.  The 
statistics and features of these flows are then evaluated using 
data mining and machine learning techniques to develop 
classification parameters for identifying botnets.  In the 
approach by Zhao, et al. [19], 13 attributes are captured from 
network flows to train a decision tree classifier.  Their paper 
justifies the selection of a decision tree methodology by 
presenting prior work that compares detection results using a 
decision tree to results from neural networks, support vector 
machines, Gaussian and nearest neighbor classifiers, and 
Naïve Bayes algorithms.  Kirubavathi & Anitha [20] use a set 
of four attributes (some aggregate) captured from network 
flows to train three classifiers: a boosted decision tree, a Naïve 
Bayesian classifier, and a support vector machine.  A unique 
contribution of their paper is the examination of flow statistics 
using varying sized sliding time windows to bound numerical 
calculation.  Techniques from both papers show true positive 
rates at >90% and false positive rates around ≈ 5%. 

An interesting component of these and other papers publish 
over the past year or two is the inclusion of one or two 
common botnet datasets as part of the performance evaluation.  
Prior to this, most botnet papers used a dataset captured in their 
own sandbox environment or a proprietary dataset from a 
security company.  However, since the creation of the ISOT 
Dataset [21], more and more research seem to be utilizing this 
data as a comparative baseline for evaluating how their 
algorithms are performing. 

V. APPROACH 

For this research we will be looking exclusively at TCP flows 
to detect botnets.  There are several motivations: 

 TCP is the foundation for P2P and HTTP-based 
botnets. 



 

Figure 3: Data processing flow. 

 The number of studies focusing on the detection of 
HTTP-based botnets is relatively low (compared to 
the number of those on IRC-based and P2P botnets) 

 In a May 2016 security industry report [22] the ten 
top malware threats were summarized.  Seven of 
these ten malware threats utilized HTTP alone or in a 
hybrid combination with another communication 
mechanism. 

 The newest cyber security danger is the mobile 
botnet.  According to the security reports [23], over 
half use the HTTP protocol the remaining are either 
SMS based or a combination of SMS-HTTP. 

As a starting point to develop our detection approach we will 
adopt the current research trend of using the ISOT dataset as 
the baseline standard for performance evaluation.  The ISOT 
Dataset is described in detail at the University of Victory 
webpage [21] and is a cleverly crafted experimental dataset 
combining several publicly available malicious and non-
malicious datasets.  From a birds-eye perspective the ISOT 
dataset is provided as 12GByte data file with 161 million 
packets.  To handle such a large set of data we first used a 
product call CapLoader by Netresec 
(http://www.netresec.com/) to create flows out of our packets 
and to filter out non-TCP traffic.  We then saved the flow data 
of interest into multiple *.pcap files of a manageable size.  
Next, we created a custom Java program using the jNetPcap 
library to step through the flows and calculate flow statistics.  
These statistics were subsequently saved into a CSV file.  For 
the final stage of our study we used machine learning tools 
within the MATLAB® environment to train, test, and validate 
several classification approaches using our feature set.  Fig. 3 
below depicts our approach and the following subsections 
discuss the details. 

A. ISOT Data & network packets 

As previously mentioned, the ISOT Dataset is described in 
detail at the University of Victory webpage [21] and is an 
experimental dataset combining publicly available malicious 
and non-malicious datasets.  The malicious datasets contain 
network traffic from the Waledac, Storm and Zeus botnets.  
The non-malicious network traffic is a mixture of traffic from a 
massively multiplayer online game (MMOG), a popular bit 
torrent, and general traffic from a medium size enterprise 
network.  The network data was intelligently combined and 
replayed using the TcpReplay tool in order to homogenize the 
network behavior.  The resulting dataset contains 23 
representative subnets with both malicious and non-malicious 
traffic.  One critical key to this dataset is the labeling of 
malicious –vs- non-malicious traffic using recoded MAC 
address labels. 

B. Aggregation & Network Flows 

A network flow (a.k.a. packet flow) is a sequence (or group) 
of 

packets from one destination to another that describes a “call” 
between two end points.  This grouping is a necessary 
component of our approach because we rely on the temporal 
features of an ongoing communication sequence to provide the 
rich feature set that allows for the discrimination between 
malicious and non-malicious traffic.  To accomplish the task 
of data partitioning and identification of flow groups we used 
the CapLoader tool.  Caploader allowed us to load in the large 
ISOT dataset, separate the TCP flows from the UDP flows, 
and save the TCP flows in smaller size PCAP files for easier 
downstream processing. 

Mimicking the flow approach to detection, mentioned above by 
Zhao, et al. [19] and Kirubavathi & Anitha [20], our approach 
builds upon this prior research by increasing the number of 
flow features used for analysis.  The complete set of features 
used within this project are listed in the next section.  The 
motivation for using flows is that prior research examining 
single packets primarily relied on additional information from 
historical captures such as signature of malicious payloads or 
known IP addresses of malicious content providers.  It is the 
desire to move away from having to have such a priori 
knowledge about threats and move to a more general 
behavioral approach to detection.  To this end, as discussed in 
the next section, we do not use IP addresses, port numbers, or 
payload signatures to inform our detection approach. 

C. Processed Flow Statistics 

To calculate the comprehensive set of features used in this 
research, we created a Java program that leverages the open 
source jNetPcap library.  jNetPcap is an ideal library to use for 
calculating customized features.  jNetPcap provides a Java 
wrapper for the libpcap & winpcap libraries allowing for the 
capture and management of network traffic.  While the 
maximum number of features in previous work was 13, we 
took the approach of looking at expanding the number a 
network traffic feature presented to the machine learning 
algorithm in order to let the algorithms determine the 
correlations among features and make use of the potentially 
subtle discriminating power of any one of the features.  It will 
be the goal of future work to more closely examine the nature 
of each feature and understand the rationale of how the 
features are used to provide discriminating power for 
classification. 

Our Java program (provided at http://www.azsecure-data.org/) 
was written to take in the Pcap files saved by the CapLoader 
tool and derive the 31 features for each flow.  The data was 
saved to a CSV file for easy downstream processing. 

D. Machine Learning & Classificaion 
For this research we use a family of machine learning 
algorithms that fall under the category of supervised machine 
learning (ML) algorithms.  The overarching goal of supervised 
machine learning is to build a model that makes predictions 

http://www.netresec.com/


 

 
Figure 5: Examples of data exploration plots.  Means of Average 

FWD On-Wire & All TTL Size. 
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Figure 4: Two step Supervised Machine Learning Process. 

based on a coupling between observations and outcomes.  
Adaptive algorithms are used to identify patterns in data and 
learn from the observations.  Supervised learning occurs in two 
steps, shown in fig. 4 below.  In Step 1, a known set of input 
data and known responses to the data are used to train model.  
Next, in Step 2, the model is used to generate reasonable 
predictions in response to new data. 

Supervised ML is typically thought of as having two broad 
categories: regression and classification.  In regression, 
continuous predictions for an observation are generated.  
Stock market predictions in response to some observed news 
report is one popular regression example.  For classification 
the goal is about learning to assign objects to one of a set of 
classes given an observation.  This second category of 
supervised ML algorithms is what we will be using for this 
project.  Our goal is to assign a network flow to the category 
of either malicious traffic or non-malicious traffic given a set 
of features as our observation.   

Neural networks, decision trees, SVMs, and ensemble 
methods are popular classification-focused supervised ML 
algorithms. 

MATLAB® is a leading mathematical computing software that 
provides a convenient set of tools and libraries to support ML 
for our investigations.  More specifically, MATLAB® supports 
each of the ML algorithms used in this research. 

E. Performance Analysis 
For performance analysis of our various algorithms we use the 
standard error matrix format also known as the confusion 
matrix.  The confusion matrix gives a simple and compact way 
of visualizing performance of our machine learning 
algorithms.   

One nice aspect of the confusion matrix is that it is easy to 
pick out Type I and Type II errors.  The confusion matrix also 
makes it straight forward to calculate secondary performance 
metrics, such as sensitivity, precision, accuracy, and F1 score. 

 The “False Positive” coordinate is equal to the Type I 
error.  This is also known as a “false hit”.  Statistically 
speaking, Type I errors occur when the null hypothesis 
(H0) is true, but rejected. 

 The “False Negative” coordinate is equal to the Type II 
error.  This is also known as a direct “miss”.  Statistically 
speaking, Type II errors occur when the null hypothesis 
(H0) is false, but fails to be rejected. 

 Sensitivity, also known as Recall, measures the 
proportion of positives that are correctly labeled as 
positive.  It is calculated by: 

 

 Precision, also known as the Positive Predictive Value, 

measures the proportion of positive results that are 

positive.  It is calculated by: 

 

 Accuracy is the degree of closeness of measurements of a 

quantity to that quantity’s true value. It is calculated by: 

 

 F1 scores are a measure of a test’s accuracy.  It is the 

harmonic mean of Sensitivity and Precision. It is 

calculated by: 

 

VI. RESULTS 

Prior to applying the network feature to the machine learning 
algorithm we performed data exploration.  Our goal was to 
look for evidence that our features would have some measure 
of discriminating power. 

Our initial data exploration included generating histograms of 
the mean values for each feature.  For each chart we overlaid 
the plot for both malicious and non-malicious to see if we 
could identify any features that by themselves could provide 
some measure of discrimination.  In fig. 5 below we show two 
examples of these plots - one that shows good discriminating 
power and one that is not so good. 

After examining the individual feature means, we looked at 
some cross-feature distributions.  Again, the motivation was to 
see if our features contained variables that would allow for 
discrimination between malicious and non-malicious network 
flows. In fig. 6 below we show three examples of these plots - 



 

 
Figure 6: Examples of data exploration plots.  Means of Average FWD 

On-Wire & All TTL Size. 

 

 

Figure 7: Classification Confusion Matrix Results 

one that is not so good and two that show good discriminating 
power. 

Once our data exploration was complete and we had 
confidence that discrimination was possible, MATLAB® was 
used to implement the four popular machine learning 
algorithms: Neural Network, Decision Tree, SVM, and 
RUSBoot. 

For the Neural Network we used a 70% hold out method to 
separate the data into training and testing data.  In the case of 
the Decision Tree, SVM, and RUSBoot we used a 5-fold cross-
validation for training and testing.  The confusion matrices for 
each of our trained classifiers is provided in fig. 7.  

The summary performance statistics are given in Table 1.  

Table 1: Summary performance statistics 

The good True-Positive and True-Negative is indicative of a 
set of features that had good discriminating power.  Comparing 
these results to those of our two primary reference studies that 
utilized flow features, we see improved outcomes through our 
use of additional features (Tables 2 & 3): 

 
Table 2: Results by Kirubavat & Anitha [20] 

 
Table 3: Results by Kalaivani & Vijaya [24] 

While our improved results over the previous studies lends 

credibility to our feature selection and classification 

approaches, there are several important considerations to take 

into account when comparing results. 

 Kirubavat & Anitha’s paper includes 4 flow features, not 

including source and destination IP Address, as part of 

their feature set.  

 Kirubavat & Anitha achieve an additional dimension to 

their captured data by using specified feature captured for 

a flow over a specified time window. 

 Kirubavat & Anitha paper uses the ISOT data combined 

with other network traffic including additional botnet 

examples. 

 Kalaivani & Vijaya’s paper includes include 16 flow 

features, including source and destination IP Address, as 

part of their feature set. 

 Kalaivani & Vijaya’s paper uses the CTU-13 data 

combined this dataset is larger and more complex that the 

ISOT data with additional botnet examples. 

VII. LIMITATION & FUTURE DIRECTIONS 

One caveat to our investigation is that we examined each flow 
in its entirety.  This means that statistical features for the flows 
are calculated over the entire flow.  In the ISOT dataset some 
flows consist of a few quick packets and some flows are 



thousands of packets over minutes.  We believe that this leads 
to two issues: 

 Our approach as currently implemented is not suitable for 
real-time field deployment to prevent botnet attacks.  
Instead, the current research is better positioned as a 
forensics tool for offline analysis.  However, with slight 
modification we could easily reposition this work. 

 Analysis of botnet traffic using the ISOT dataset 
represents a first step towards validating our approach.  
However, the generalizability and true performance of our 
approach can only be validated by testing against a more 
expansive dataset that includes additional malware and 
non-malware network flows. 

To move the state of botnet threat detection forward we see 
two natural extensions to this work in the areas of sample data 
and feature analysis. 

Data Collection: 
Datasets that meet the following criteria: 

 It is real data 

 It is recent data 

 It contains a wide variety of network intrusions 

 Malicious network intrusions can be identified after 
they have occurred 

Feature Analysis: 
For this work we took the brute force approach of simply 
collecting lots of features to create the vector inputs to the 
classification algorithms.  Future work should include a more 
sophisticated examination of features, along with: 

 Data mining to find patterns 

 Analysis of features for understand of why they 
discriminate 

 Assessment of feature set correlations 

 Identification of additional classification algorithms 

 Testing and evaluation of additional classifiers 

VIII. CONCLUSION 

In this research we achieved our overarching objective to 
examine network traffic datasets for features that may act as 
powerful discriminants in detecting new and existing botnet 
threat.  In our approach we looked at 28 network flow features 
that when taken together as a whole and applied to a set of 
machine learning algorithms achieved an average of 99% in 
recall, precision, and accuracy.  We saw consistent results 
across four different classification techniques indicating that 
the set of features we collected provides a robust mechanism 
for discrimination between malicious and non-malicious 
network flows for the dataset evaluated.  We suggest future 
studies to include: a more analytic examination of the feature 
set, a more comprehensive dataset, and an expansion of 
investigated classification techniques.  

The threat of botnets will continue and they will evolve.  Even 
as of the writing of this report the market for botnets is 
expanding because now anyone, for a price, can rent a botnet 
[25].  The incentives for botnet creators is growing and as 
detection technologies advance so will the creativity and 
sophistication that is used to create this malware.  Thus, we 
must continue to conduct research such as this to be vigilant in 
developing new way of detecting and defeating these threats. 
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