
A look at data feature extraction and classification

techniques for predicting botnet assaults

Bradley Walls
Management Information Systems

University of Arizona

Tucson, AZ

blwalls@email.arizona.edu

Abstract— Botnets as a cyber security risk continue to evolve

and transform in response to security measures deigned to stop

them. Consequently, cyber security professionals must continue

to develop new counter measures to defeat these threats. In this

paper we build upon a prior body of work that uses machine

learning algorithms to detect botnets within raw network traffic.

Our approach is to look at network flow between two end points

and to extract 23 distinguishing features from their packet

exchange. We then train machine learning algorithms to classify

the network flow as either malicious or benign. The dataset we

use is the standard ISOT Dataset compiled by University of

Victory. The machine learning algorithms implemented are a

neural network, a decision trees, a SVMs, and an ensemble

method known a RUSBoost. Training each of the machine

learning algorithms with the 23 features using 5-fold cross

validation we achieved an average of 99% in recall, precision,

and accuracy across all methods.

Keywords—botnet; cyber-security; PCAP; netflow; machine

learning; fealture extraction

I. INTRODUCTION (HEADING 1)

The term “bot” (a.k.a. web bot, network bot, software bot)
originates from the word robot. What this implies is that a
bot, like a robot, is a piece of software capable of responding
to commands and carrying out autonomous operations. When
used for data gathering and beneficial applications such as
web spidering, bots are welcome and useful tools. However,
when used to distribute malicious software or attack
computers, bots pose a significant threat to computer security.
Criminals have evolved to use large number of bots in a
collaborative fashion, known as botnets, to perform distributed
denial-of-service (DDOS) attacks and distribute malware at
unprecedented rates. While much research has been done in
an attempt to thwart botnet attacks, the growing sophistication
of hackers requires a reciprocal response in research to defend
against such attacks.

In recent years, advanced network monitoring software has
facilitated the collection of large datasets of network traffic
and events. Forensic analysis of these datasets provides an
opportunity to discover identifying characteristics of bots and
botnets. This paper proposes two key research objectives in
regards to this data:

 Examine datasets for features that may act as
powerful discriminants in detecting new bot and
botnet threat events.

 Gain a deeper understanding of the data and relevant
algorithms for selecting feature sets and matching
classification algorithms to fully exploit the data
available for detecting bot and botnet threats.

II. MOTIVATION

On September 17, 2014, in a Statement before the House
Homeland Security Committee, James Comey, Director FBI
[1], described the state of Cyber Threats with the U.S. In his
statement, Mr. Comey elucidated the substantial level of effort
the FBI is engaging in to combat these threats and to stop “…
the world’s most dangerous botnets.” Mr. Comey continued
by highlighting some successes, “...Over the past several
years, the FBI’s efforts to combat these significant cyber
threats have caused the disruption and dismantlement of
numerous botnets, including Butterfly Bot, Rove Digital,
Coreflood, ZeroAccess, and GameOver Zeus, resulting in
numerous arrests, extraditions, and convictions.” The
implications of this address to the House Homeland Security
Committee is that botnets, regardless of recent advances in
detection and defense remain, a significant threat to domestic
security.

Chris Rodrigues, a Senior Industry Analyst (Information &
Network Secturity) reiterates this sentiment in a recent SPIE
article [2] as he advocates that security professionals remain
diligent in their pursuit of new protections against the
continually changing tactics utilized by disreputable
individuals. Mr. Rodrigues indicates that the most recent
trends have hackers and hacker groups utilizing complex
botnets for covert operations to defeat security measures. To
compound the problem work by Mullaney [3] and Lu [4]
indicate that botnets are migrating to the Internet of Things
(IoT) and mobile devices. The results are undeniable, with
daily disruptions and data theft from large corporations such as
Target, Home Depot, the US Postal Service, and many others.
It is obvious, new techniques for defense against bots and
botnets must be explored.

III. BACKGROUND

Often in the literature botnets are characterized as simply a
coordinated group of bots spread across many computers
controlled by an individual to accomplish harmful actions.
While this may be accurate from a high level point of view,
the reality is that botnets are instantiated in a variety of very
different ways and understanding the differences is important
to detecting, defending against, and defeating them. In this

Figure 1: Key stages of the botnet lifecycle.

section of the paper we look at several dimensions of botnets
and discuss how we will focus our research. The dimensions
that we discuss below are:

 Good – vs – Bad

 Terminology

 Lifecycle

 Spreading Bots

 Protocols

 Topologies

 Command and Control (C&C)

 Commercial / Open Source Detection Software

A. Good –vs- Bad
Initially bots were small programs run on the Internet to
perform an automated, repetitive function, such as searching
for information on web sites across the Internet. The use of
bots is appealing because they can be easily configured to do
simple tasks at speeds much faster than humans. They will
run 24 hours a day and through replication can be used to
harness the power of distributed processing. One relatively
well known and beneficial botnet is SETI@home [5].
SETI@home is a voluntary distributed computing project
started by the Space Science Laboratory at the University of
California Berkeley. For this project volunteers purposefully
install a bot on their own personal computer (PC). The bot,
when activated, makes contact with SETI servers and
downloads some astronomical data. During times when a
SETI-enabled PC is not being used the SETI bot processes the
data and returns the results to the SETI servers without
intervention of the PC’s owner.

It did not take long for the criminal element on the Internet to
realize how bots and botnets could be used to enhance their
criminal endeavors. In addition to the DDOS attacks and
malware distribution functions mentioned above, botnets are
also know for other mischievous and/or harmful actions such
as click fraud, phishing, and spam spreading. Within the
context of this paper we consider bots from the perspective that
they are used for nefarious purposes.

B. Terminology
As the cyber security landscape has evolved so has the
terminology that is used to describe the components in this
domain. The following list is comprised of a few key terms
often used within the botnet arena.

 Bot / Web bot / Network Bot / Software Bot: The
program (application) which is run that allows and
attacker to gain control over an affected computer.

 Botnet: A network of bot infected computers that have
been compromised.

 Bot Herder: The individual(s) responsible for the
creating the botnet and who will eventually control and
command the botnet.

 Zombie or Drone: An individual computer that has
been infected by a bot and is part of a botnet.

 Botmaster: This is the bot server which commands and
controls a botnet. The botmaster is operated by the Bot
Herder.

C. Lifecycle:
To gain a cursory understanding of how botnets work it is
useful to know the major stages in creating and operating a
botnet. These key stages are illustrated in fig. 1 below:

 In the Setup Stage the bot is created. During bot
conception certain decisions are made regarding
motivation, design, and implementation. Infection
vectors are programmed, payloads are planned, and
C&C details are configured.

 During the distribution stage bots propagate
according to configuration parameters. Bots scan for
vulnerabilities to take advantage of infection vectors.

 Once an infection is successful the bot activates an
internal script that connects back to the C&C server
(or peer), reports its status, and waits for commands.

 After the desired number of bots have reported in and
joined the botnet, the botmaster can control the bots
and command them to action. The botmaster can
even update the bots, providing them with new
capabilities and even a new C&C framework.

D. Spreading Bots
Bots are spread in a similar fashion to any type of malware.
The goal is to get individuals to inadvertently install and
activate the bot on their personal computer systems. This is
typically done by exploiting a computer system vulnerability,
exploiting weak security policies, or social engineering. For
example an unaware computer user is tricked into visiting a
faked website. The website scans for vulnerabilities and
exploits them or tricks the user into downloading malware.
Negash & Che [6], in their paper on modern botnets, provide
additional details and examples of to the botnet infection phase.

E. Protocols
One common method of classifying botnets is by the type of
networking protocol they use for communication. The three
primary application layer networking protocols used for botnet
communication are: Internet Relay Chat (IRC) Protocol, Peer-
to-Peer (P2P) Protocol, and Hypertext Transfer Protocol
(HTTP). These are discussed in detail below.

1) IRC
IRC is an open-standard electronic chat protocol that was
designed for chat programs but was adapted to be used for the
first generation of botnets. The original idea behind IRC was
to provide a mechanism for users to hold group chat sessions in
real-time across the Internet. A basic IRC system comprises
two programs: a server and a client. The server run
continuously on a computer whose address is well known. For
botnets this acts as the C&C server. The client is the program
that runs as an application on the computer(s) that will connect
to the server. These clients when started, connect to the server
and joins one or more “chat” channels. Many clients can
connect to one server. In the case of a botnet, each instance of
the client program is a bot. When IRC bots are first started
they will connect to a preprogrammed server address and port

(a) PULL communications

(b) PUSH communications

Figure 2: C&C Communication Strategies.

number and then proceed through a standard set of exchanges.
Researchers have used knowledge of this standard and
predictable communication exchange to tackle the problem of
IRC botnets. Since these type of botnets were the original
botnets, much research has been done in this area, and
advanced detection techniques have been developed with
detection rates typically in the 99% to 100% range and few to
no false alarms. Early work by Lividas, et al. [7], provides an
example of successfully utilizing machine learning (ML) to
detect IRC botnets. Although IRC botnets are the most simple
and easy to detect, continuing code modifications by botnet
designers have motivated researchers to continue their pursuit
of new and updated detection methods. Awadi and Belaton [8]
recently published new work using a spatial-temporal analysis
of C&C traffic and behavior to make the detection of IRC
botnets more robust.

2) P2P
Following a historical timeline, subsequent to IRC botnets
came the evolution of P2P botnets. P2P networks share
connections and resources directly with other “peer” computers
on a network rather that going through a managing server. The
P2P network protocol is designed to “overlay” or specify a
logical network on top of another physical network. This
means that nodes of the P2P network connect and
communicate to other nodes in the P2P network through virtual
or logical links independent of the underlying physical links.
While there are many details to this kind of network, when it
comes to botnets utilizing P2P the key feature is that each node
keeps a routing table of connected nodes. The implication is
that if a node can’t accomplish a task or pass a message, it can
search for one that can. This one feature was a boon for botnet
designers as it got around the main vulnerability of IRC
botnets, one central C&C server. As cyber security
professionals developed tools to find and take down the C&C
server, thereby rendering the botnet useless, the P2P botnets
have gotten around this by distributing C&C to all nodes in the
network. Initial work by researchers was done to gain a better
understanding of these botnets. Examples of some of this
research include Grizzard, et al. [9], who presented a case study
that took a detailed look into the operation of the
Trojan.Peacomm P2P botnet and Holz, et al. [10], who did a
deep dive into the function of the Stormnet P2P botnet. As a
result of the new complexity of P2P botnets, different ideas for
detection of botnet began to emerge. One idea was to look for
anomalies in network traffic flows. This approach has gained
of momentum and is showing promising results in detection
botnets of all flavors. Narang, et al. [11], successfully applied
this approach specifically to P2P botnets.

3) HTTP
Simply put, HTTP is the foundation for communication on the
World Wide Web (WWW), so it is only natural that botnets
would eventually adopt this network communications protocol.
The move away from P2P is thought to have occurred for a
couple of reasons. First, implementation of a P2P
communication protocol is complex and difficult to manage.
Second, botmaster commands are propagated through the
network and distributed by other bots. Consequently, the
delivery and response status of instructions is not easily
monitored by the botmaster. This has led botnet developers

back to a model using a single C&C server, but with the
advantages of using HTTP. The primary advantage gained
from using HTTP is that HTTP Botnet traffic activity is
merged (effectively hidden) among all the other traffic of the
Internet. IRC and P2P botnets had their own protocol
structures that could be parsed out of the majority of all other
Internet traffic, but this is not the case for HTTP botnets. Even
though HTTP botnets use a central C&C server there is a
significant difference from the IRC botnet use of a central
C&C server that provides a significant advantage: IRC botnets
use a PUSH C&C communication strategy where HTTP
botnets use a PULL C&C communication strategy. Fig. 2
below illustrates the differences:

In the IRC botnet PUSH C&C communication strategy IRC
bots connect to the preprogrammed IRC C&C server and
corresponding channel and remain connected waiting for the
botmaster to issue commands. The HTTP botnet PULL C&C
communication strategy differs in that the bots are programmed
to periodically visit preprogrammed C&C web servers to check
for new commands and updates. In 2012 a security industry
report [12] summarized nine of the most dangerous botnets for
that year - six of them were HTTP based. Given the
seriousness of the HTTP botnet threat researcher have rallied to
come up with innovate strategies to detect them. Eslahi, et al.
[13], exploits the knowledge of the HTTP botnet connection
process and the preprogrammed check-in nature of these bots
to derive a periodicity classification model for detecting HTTP
botnets. Even with work like Eslahi’s, due to the recent arrival
of HTTP botnets on the botnet scene, research in this area is
minimal by comparison to the number of studies on IRC and
P2P botnets.

F. Topologies
Another popular way of differentiating botnets is by the
architectural layout of their network connections. However, in
most cases the protocol determines and/or limits the topology
possibility for the botnet. The three primary networking
topologies used for botnet connections are: Centralized,
Decentralized, and Hybrid.

1) Centralized
The centralized topology is the configuration used by IRC
botnets and most HTTP botnets.

 Advantages are the simplicity of programing,
managing, and commanding.

 A disadvantage is its single point of failure. If the
C&C Server is removed the entire botnet is rendered
ineffective.

2) Decentralized
The decentralized topology is the configuration used by P2P
botnets.

 An advantage is that there is no single point of
failure, multiple bots can be removed and the botnet
can still function.

 Some disadvantage are the complexity of
programming, managing, and commanding.

3) Hybrid
Various attempts by botnet architects have been attempted at
combining both centralized and decentralized topologies to
gain the most from the advantages of each, while minimizing
the impact of their disadvantages. The paper by Wang, et al.
[26], discusses one such hybrid architecture. This topology
creates a type of tiered network where the first tier is a limited
sized P2P network of “servant” bots and the second tier is
composed of client bots. In the top tier the P2P bots are
responsible for distributing C&C orders, and the limited sized
reduces complexity and eases management concerns. The
second tier has each client bot report to two servant bots, which
eliminates the single point of failure.

IV. PRIOR RESEARCH

Bots and botnets have been a significant threat and a major
source of problems for security professionals over the years.
As such, they have caused significant security concerns, and
much research has been conducted on these software robots.
However, the nature of bots is dynamic and the way botnets
are used is ever changing. In light of the evolving nature of
this type of software construct, continuing efforts on various
battle fronts are underway to devise strategies and
methodologies for defeating this malware. In the prior section
we presented a few examples of research that looked at a
specific category of botnet. In this section we highlight some
additional efforts using detection approaches that can be
applied to two or more types of botnets.

One recent paper by Khattak, et al. [14], does a thorough job
of capturing the contemporary understanding of botnets. The
paper looks into botnet behaviors, how they are used, and
command and control considerations. A survey of current
botnet detection mechanisms is provided and an assessment of
existing defensive techniques is discussed. The key take away
from this paper is that the authors suggest new benefits may be
achieved through the coupling of detectable botnet features
with matching predictive analysis mechanisms.

Another paper by Chakchai So-In, et al. [15], puts forth the
idea of taking a more active approach to network security and
investigates six traditional classification models for network
intrusion detection. The described data mining and
classification models are applied to the KDD CUP 1999
dataset which contains up to 41 attributes of network access
behaviors and a variety of known networking threats. The

dataset was derived through an intrusion detection simulation
of the U.S. Air Force local area networks.

Other research has produced standard frameworks and
software for botnet detection. Bothunter [16] is one such
software package for botnet intrusion detection that is freely
distributed (www.bothunter.net). Bothunter works by
correlating network traffic flows to infection sequence models.
Follow on work by Guofei et al. [17] developed a framework,
titled Botminer, which proposes a technique for botnet
detection that is protocol independent. Botminer perform
detection by clustering traffic on the basis of malicious
activity and communication patterns. Lastly in this sequence
of standard frameworks is additional work by Gu et al. [18]
that evaluates C&C activity. Their framework, BotSniffer, is
based on the observation that pre-programmed activities of
C&C bots within the same botnet will likely demonstrate
spatial-temporal correlation and similarity, thus providing a
detectable flag.

The last two papers discussed in this section present the
currently popular idea of using data mining techniques applied
to network traffic flows. The prevailing idea behind these
techniques is to look at a complete network flow and analyze
the statistics of the flow either individually or over a specified
periods of time. A network flow is the group of packets
transmitted over a network from a source location to a
destination during a single connection session or call. The
statistics and features of these flows are then evaluated using
data mining and machine learning techniques to develop
classification parameters for identifying botnets. In the
approach by Zhao, et al. [19], 13 attributes are captured from
network flows to train a decision tree classifier. Their paper
justifies the selection of a decision tree methodology by
presenting prior work that compares detection results using a
decision tree to results from neural networks, support vector
machines, Gaussian and nearest neighbor classifiers, and
Naïve Bayes algorithms. Kirubavathi & Anitha [20] use a set
of four attributes (some aggregate) captured from network
flows to train three classifiers: a boosted decision tree, a Naïve
Bayesian classifier, and a support vector machine. A unique
contribution of their paper is the examination of flow statistics
using varying sized sliding time windows to bound numerical
calculation. Techniques from both papers show true positive
rates at >90% and false positive rates around ≈ 5%.

An interesting component of these and other papers publish
over the past year or two is the inclusion of one or two
common botnet datasets as part of the performance evaluation.
Prior to this, most botnet papers used a dataset captured in their
own sandbox environment or a proprietary dataset from a
security company. However, since the creation of the ISOT
Dataset [21], more and more research seem to be utilizing this
data as a comparative baseline for evaluating how their
algorithms are performing.

V. APPROACH

For this research we will be looking exclusively at TCP flows
to detect botnets. There are several motivations:

 TCP is the foundation for P2P and HTTP-based
botnets.

Figure 3: Data processing flow.

 The number of studies focusing on the detection of
HTTP-based botnets is relatively low (compared to
the number of those on IRC-based and P2P botnets)

 In a May 2016 security industry report [22] the ten
top malware threats were summarized. Seven of
these ten malware threats utilized HTTP alone or in a
hybrid combination with another communication
mechanism.

 The newest cyber security danger is the mobile
botnet. According to the security reports [23], over
half use the HTTP protocol the remaining are either
SMS based or a combination of SMS-HTTP.

As a starting point to develop our detection approach we will
adopt the current research trend of using the ISOT dataset as
the baseline standard for performance evaluation. The ISOT
Dataset is described in detail at the University of Victory
webpage [21] and is a cleverly crafted experimental dataset
combining several publicly available malicious and non-
malicious datasets. From a birds-eye perspective the ISOT
dataset is provided as 12GByte data file with 161 million
packets. To handle such a large set of data we first used a
product call CapLoader by Netresec
(http://www.netresec.com/) to create flows out of our packets
and to filter out non-TCP traffic. We then saved the flow data
of interest into multiple *.pcap files of a manageable size.
Next, we created a custom Java program using the jNetPcap
library to step through the flows and calculate flow statistics.
These statistics were subsequently saved into a CSV file. For
the final stage of our study we used machine learning tools
within the MATLAB® environment to train, test, and validate
several classification approaches using our feature set. Fig. 3
below depicts our approach and the following subsections
discuss the details.

A. ISOT Data & network packets

As previously mentioned, the ISOT Dataset is described in
detail at the University of Victory webpage [21] and is an
experimental dataset combining publicly available malicious
and non-malicious datasets. The malicious datasets contain
network traffic from the Waledac, Storm and Zeus botnets.
The non-malicious network traffic is a mixture of traffic from a
massively multiplayer online game (MMOG), a popular bit
torrent, and general traffic from a medium size enterprise
network. The network data was intelligently combined and
replayed using the TcpReplay tool in order to homogenize the
network behavior. The resulting dataset contains 23
representative subnets with both malicious and non-malicious
traffic. One critical key to this dataset is the labeling of
malicious –vs- non-malicious traffic using recoded MAC
address labels.

B. Aggregation & Network Flows

A network flow (a.k.a. packet flow) is a sequence (or group)
of

packets from one destination to another that describes a “call”
between two end points. This grouping is a necessary
component of our approach because we rely on the temporal
features of an ongoing communication sequence to provide the
rich feature set that allows for the discrimination between
malicious and non-malicious traffic. To accomplish the task
of data partitioning and identification of flow groups we used
the CapLoader tool. Caploader allowed us to load in the large
ISOT dataset, separate the TCP flows from the UDP flows,
and save the TCP flows in smaller size PCAP files for easier
downstream processing.

Mimicking the flow approach to detection, mentioned above by
Zhao, et al. [19] and Kirubavathi & Anitha [20], our approach
builds upon this prior research by increasing the number of
flow features used for analysis. The complete set of features
used within this project are listed in the next section. The
motivation for using flows is that prior research examining
single packets primarily relied on additional information from
historical captures such as signature of malicious payloads or
known IP addresses of malicious content providers. It is the
desire to move away from having to have such a priori
knowledge about threats and move to a more general
behavioral approach to detection. To this end, as discussed in
the next section, we do not use IP addresses, port numbers, or
payload signatures to inform our detection approach.

C. Processed Flow Statistics

To calculate the comprehensive set of features used in this
research, we created a Java program that leverages the open
source jNetPcap library. jNetPcap is an ideal library to use for
calculating customized features. jNetPcap provides a Java
wrapper for the libpcap & winpcap libraries allowing for the
capture and management of network traffic. While the
maximum number of features in previous work was 13, we
took the approach of looking at expanding the number a
network traffic feature presented to the machine learning
algorithm in order to let the algorithms determine the
correlations among features and make use of the potentially
subtle discriminating power of any one of the features. It will
be the goal of future work to more closely examine the nature
of each feature and understand the rationale of how the
features are used to provide discriminating power for
classification.

Our Java program (provided at http://www.azsecure-data.org/)
was written to take in the Pcap files saved by the CapLoader
tool and derive the 31 features for each flow. The data was
saved to a CSV file for easy downstream processing.

D. Machine Learning & Classificaion
For this research we use a family of machine learning
algorithms that fall under the category of supervised machine
learning (ML) algorithms. The overarching goal of supervised
machine learning is to build a model that makes predictions

http://www.netresec.com/

Figure 5: Examples of data exploration plots. Means of Average

FWD On-Wire & All TTL Size.

Known
Data

Step 1: Training Stage

Model
(train model)

Known
Responses

New
Data

Step 2: Classification Stage

Model
(use model)

Predicted
Responses

Figure 4: Two step Supervised Machine Learning Process.

based on a coupling between observations and outcomes.
Adaptive algorithms are used to identify patterns in data and
learn from the observations. Supervised learning occurs in two
steps, shown in fig. 4 below. In Step 1, a known set of input
data and known responses to the data are used to train model.
Next, in Step 2, the model is used to generate reasonable
predictions in response to new data.

Supervised ML is typically thought of as having two broad
categories: regression and classification. In regression,
continuous predictions for an observation are generated.
Stock market predictions in response to some observed news
report is one popular regression example. For classification
the goal is about learning to assign objects to one of a set of
classes given an observation. This second category of
supervised ML algorithms is what we will be using for this
project. Our goal is to assign a network flow to the category
of either malicious traffic or non-malicious traffic given a set
of features as our observation.

Neural networks, decision trees, SVMs, and ensemble
methods are popular classification-focused supervised ML
algorithms.

MATLAB® is a leading mathematical computing software that
provides a convenient set of tools and libraries to support ML
for our investigations. More specifically, MATLAB® supports
each of the ML algorithms used in this research.

E. Performance Analysis
For performance analysis of our various algorithms we use the
standard error matrix format also known as the confusion
matrix. The confusion matrix gives a simple and compact way
of visualizing performance of our machine learning
algorithms.

One nice aspect of the confusion matrix is that it is easy to
pick out Type I and Type II errors. The confusion matrix also
makes it straight forward to calculate secondary performance
metrics, such as sensitivity, precision, accuracy, and F1 score.

 The “False Positive” coordinate is equal to the Type I
error. This is also known as a “false hit”. Statistically
speaking, Type I errors occur when the null hypothesis
(H0) is true, but rejected.

 The “False Negative” coordinate is equal to the Type II
error. This is also known as a direct “miss”. Statistically
speaking, Type II errors occur when the null hypothesis
(H0) is false, but fails to be rejected.

 Sensitivity, also known as Recall, measures the
proportion of positives that are correctly labeled as
positive. It is calculated by:

 Precision, also known as the Positive Predictive Value,

measures the proportion of positive results that are

positive. It is calculated by:

 Accuracy is the degree of closeness of measurements of a

quantity to that quantity’s true value. It is calculated by:

 F1 scores are a measure of a test’s accuracy. It is the

harmonic mean of Sensitivity and Precision. It is

calculated by:

VI. RESULTS

Prior to applying the network feature to the machine learning
algorithm we performed data exploration. Our goal was to
look for evidence that our features would have some measure
of discriminating power.

Our initial data exploration included generating histograms of
the mean values for each feature. For each chart we overlaid
the plot for both malicious and non-malicious to see if we
could identify any features that by themselves could provide
some measure of discrimination. In fig. 5 below we show two
examples of these plots - one that shows good discriminating
power and one that is not so good.

After examining the individual feature means, we looked at
some cross-feature distributions. Again, the motivation was to
see if our features contained variables that would allow for
discrimination between malicious and non-malicious network
flows. In fig. 6 below we show three examples of these plots -

Figure 6: Examples of data exploration plots. Means of Average FWD

On-Wire & All TTL Size.

Figure 7: Classification Confusion Matrix Results

one that is not so good and two that show good discriminating
power.

Once our data exploration was complete and we had
confidence that discrimination was possible, MATLAB® was
used to implement the four popular machine learning
algorithms: Neural Network, Decision Tree, SVM, and
RUSBoot.

For the Neural Network we used a 70% hold out method to
separate the data into training and testing data. In the case of
the Decision Tree, SVM, and RUSBoot we used a 5-fold cross-
validation for training and testing. The confusion matrices for
each of our trained classifiers is provided in fig. 7.

The summary performance statistics are given in Table 1.

Table 1: Summary performance statistics

The good True-Positive and True-Negative is indicative of a
set of features that had good discriminating power. Comparing
these results to those of our two primary reference studies that
utilized flow features, we see improved outcomes through our
use of additional features (Tables 2 & 3):

Table 2: Results by Kirubavat & Anitha [20]

Table 3: Results by Kalaivani & Vijaya [24]

While our improved results over the previous studies lends

credibility to our feature selection and classification

approaches, there are several important considerations to take

into account when comparing results.

 Kirubavat & Anitha’s paper includes 4 flow features, not

including source and destination IP Address, as part of

their feature set.

 Kirubavat & Anitha achieve an additional dimension to

their captured data by using specified feature captured for

a flow over a specified time window.

 Kirubavat & Anitha paper uses the ISOT data combined

with other network traffic including additional botnet

examples.

 Kalaivani & Vijaya’s paper includes include 16 flow

features, including source and destination IP Address, as

part of their feature set.

 Kalaivani & Vijaya’s paper uses the CTU-13 data

combined this dataset is larger and more complex that the

ISOT data with additional botnet examples.

VII. LIMITATION & FUTURE DIRECTIONS

One caveat to our investigation is that we examined each flow
in its entirety. This means that statistical features for the flows
are calculated over the entire flow. In the ISOT dataset some
flows consist of a few quick packets and some flows are

thousands of packets over minutes. We believe that this leads
to two issues:

 Our approach as currently implemented is not suitable for
real-time field deployment to prevent botnet attacks.
Instead, the current research is better positioned as a
forensics tool for offline analysis. However, with slight
modification we could easily reposition this work.

 Analysis of botnet traffic using the ISOT dataset
represents a first step towards validating our approach.
However, the generalizability and true performance of our
approach can only be validated by testing against a more
expansive dataset that includes additional malware and
non-malware network flows.

To move the state of botnet threat detection forward we see
two natural extensions to this work in the areas of sample data
and feature analysis.

Data Collection:
Datasets that meet the following criteria:

 It is real data

 It is recent data

 It contains a wide variety of network intrusions

 Malicious network intrusions can be identified after
they have occurred

Feature Analysis:
For this work we took the brute force approach of simply
collecting lots of features to create the vector inputs to the
classification algorithms. Future work should include a more
sophisticated examination of features, along with:

 Data mining to find patterns

 Analysis of features for understand of why they
discriminate

 Assessment of feature set correlations

 Identification of additional classification algorithms

 Testing and evaluation of additional classifiers

VIII. CONCLUSION

In this research we achieved our overarching objective to
examine network traffic datasets for features that may act as
powerful discriminants in detecting new and existing botnet
threat. In our approach we looked at 28 network flow features
that when taken together as a whole and applied to a set of
machine learning algorithms achieved an average of 99% in
recall, precision, and accuracy. We saw consistent results
across four different classification techniques indicating that
the set of features we collected provides a robust mechanism
for discrimination between malicious and non-malicious
network flows for the dataset evaluated. We suggest future
studies to include: a more analytic examination of the feature
set, a more comprehensive dataset, and an expansion of
investigated classification techniques.

The threat of botnets will continue and they will evolve. Even
as of the writing of this report the market for botnets is
expanding because now anyone, for a price, can rent a botnet
[25]. The incentives for botnet creators is growing and as
detection technologies advance so will the creativity and
sophistication that is used to create this malware. Thus, we
must continue to conduct research such as this to be vigilant in
developing new way of detecting and defeating these threats.

REFERENCES
[1] http://www.fbi.gov/news/testimony/worldwide-threats-to-the-homeland
[2] Rodrigues, Chris, “The Forgotten Barometer: Bot Detection as an

Integral Security Technology,” SPIE Stratecast Perspective & Insight for
Executives (August 2014)

[3] Mullaney, C. (2012). Android.Bmaster: A million-dollar mobile botnet.
Retrieved from http://www.symantec.com/connect/blogs/
androidbmaster-million-dollar-mobile-botnet:Symantec

[4] Lu, Z., Wang, W., & Wang C. (2014). How can botnets cause storms?
Understanding the evolution and impact of mobile botnets. INFOCOM,
2014 Proceedings IEEE (pp. 1501–1509), Toronto, ON.

[5] http://setiathome.ssl.berkeley.edu/
[6] Negash, N; Che, X. (2015) An Overview of Modern Botnets,

Information Security Journal: A Global Perspective, 24:4-6, 127-132
[7] Livadas, Carl, et al. "Usilng machine learning technliques to identify

botnet traffic." Proceedings. 2006 31st IEEE Conference on Local
Computer Networks. IEEE, 2006.

[8] Awadi, A. H. R. A., & Belaton, B. (2015). Multi-phase IRC botnet and
botnet behavior detection model. arXiv preprint arXiv:1501.03241.

[9] Grizzard, J. B., Sharma, V., Nunnery, C., Kang, B. B., & Dagon, D.
(2007). Peer-to-Peer Botnets: Overview and Case Study. HotBots.

[10] Holz, T., Steiner, M., Dahl, F., Biersack, E., and Freiling, F. 2008.
Measurements and mitigation of peer-to-peer-based botnets: a case study
on storm worm. In Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats (LEET'08), Fabian Monrose (Ed.).
USENIX Association, Berkeley, CA, USA, Article 9 , 9 pages.

[11] Narang, P., Reddy, J. M., & Hota, C. (2013, August). Feature selection
for detection of peer-to-peer botnet traffic. In Proceedings of the 6th
ACM India Computing Convention (p. 16). ACM.

[12] http://www.siliconindia.com/news/enterpriseit/9-Most-Dangerous-
Botnets-of-2012-nid-135433-cid-7.html

[13] Eslahi, M., Rohmad, M. S., Nilsaz, H., Naseri, M. V., Tahir, N. M., &
Hashim, H. (2015, April). Periodicity classification of HTTP traffic to
detect HTTP Botnets. In Computer Applications & Industrial Electronics
(ISCAIE), 2015 IEEE Symposium on (pp. 119-123). IEEE.

[14] Khattak, S. ; Ramay, N.R. ; Khan, K.R. ; Syed, A.A. ; Khayam, S.A. ,
“A Taxonomy of Botnet Behavior, Detection, and
Defense,”, Communications Surveys & Tutorials, IEEE Volume: 16
, Issue: 2 ,Publication Year: 2014 , Page(s): 898 – 924

[15] Chakchai So-In; Mongkonchai, N.; Aimtongkham, P.; Wijitsopon,
K.;Rujirakul, K. ,“An evaluation of data mining classification models for
network intrusion detection,” Digital Information and Communication
Technology and it's Applications (DICTAP), 2014 Fourth International
Conference on, Publication Year: 2014 , Page(s): 90 – 94

[16] Gu, G., Porras, P. A., Yegneswaran, V., Fong, M. W., & Lee, W. (2007,
August). Bothunter: Detecting malware infection through ids-driven
dialog correlation. In Usenix Security (Vol. 7, pp. 1-16).

[17] Guofei, G., Roberto, P., Junjie, Z., Wenke, L.: BotMiner: clustering
analysis of network traffic for protocol- and structure-independent
botnet detection. In: Proceedings of the 17th Conference on Security
Symposium. USENIX Association, San Jose (2008)

[18] Gu, G., Zhang, J., & Lee, W. (2008). BotSniffer: Detecting Botnet
Command and Control Channels in Network Traffic. Proceedings of the
15th Annual Network and Distributed System Security Symposium.

[19] Zhao, D., Traore, I., Sayed, B., Lu, W., Saad, S., Ghorbani, A., &
Garant, D. (2013). Botnet detection based on traffic behavior analysis
and flow intervals. Computers & Security, 39, 2-16.

[20] Kirubavathi, G., & Anitha, R. (2016). Botnet detection via mining of
traffic flow characteristics. Comp. & Electrical Engineering, 50, 91-101.

[21] www.uvic.ca/engineering/ece/isot/datasets/
[22] news.softpedia.com/news/top-10-malware-threats-may-2016-edition-

505542.shtml
[23] www.virusbulletin.com/virusbulletin/2015/03/timeline-mobile-botnets/
[24] Kalaivani, P., and M. S. Vijaya. "Mining Based Detection of botnet

traffic in Network Flow." IRACST. Vol. 6, No.1, Jan 2016
[25] www.zdnet.com/article/study-finds-the-average-price-for-renting-a-

botnet/
[26] Wang, Ping, Sherri Sparks, and Cliff C. Zou. "An Advanced Hybrid

Peer-to-Peer Botnet." IEEE Transactions on Dependable and Secure
Computing 7.2 (2010): 113

http://www.fbi.gov/news/testimony/worldwide-threats-to-the-homeland
http://www.uvic.ca/engineering/ece/isot/datasets/
http://news.softpedia.com/news/top-10-malware-threats-may-2016-edition-505542.shtml
http://news.softpedia.com/news/top-10-malware-threats-may-2016-edition-505542.shtml
http://www.virusbulletin.com/virusbulletin/2015/03/timeline-mobile-botnets/
http://www.zdnet.com/article/study-finds-the-average-price-for-renting-a-botnet/
http://www.zdnet.com/article/study-finds-the-average-price-for-renting-a-botnet/

