
Getting	a	Wave	Equation	from	Maxwell’s	Equations	
	

	
In	this	writing	I	will	write	electric	field	quantities	in	red	text,	and	
magnetic	field	quantities	in	blue	for	clarity.		The	wave	equation	
for	the	electric	field	will	be	found	for	source-free	regions	first.	
This	yields	a	homogeneous	wave	equation	(an	equation	that	
equals	zero).	The	magnetic	one	is	a	similar	derivation	and	will	
just	be	stated.		Next	the	inhomogeneous	wave	equation	will	be	
derived	which	comes	from	regions	that	have	sources	and	
currents	present.		This	will	be	done	in	terms	of	the	magnetic	
vector	potential	and	electric	scalar	potential,	rather	than	the	
fields	themselves.	
	
Homogeneous	Wave	Equation	(Source-Free	Regions)	
	
Let’s	look	first	at	Maxwell’s	equations	in	differential	form	for	
source-free	regions	(i.e.	no	charges	or	currents	in	the	region).		
	

∇ ∙ 𝐷 = 0                (1)	
	

∇ ∙ 𝐵 = 0                 (2)	
	

∇×𝐸 = −
𝜕𝐵
𝜕𝑡

         (3)	
	

∇×𝐻 =
𝜕𝐷
𝜕𝑡

            (4)	
	
Note	that	the	coloring	scheme	allows	us	to	see	by	inspection	that	
time	derivatives	of	one	type	of	field	lead	to	the	other.			
	
Now	let	us	look	at	the	most	basic	form	of	a	wave	equation:	



	
𝜕!𝜓
𝜕𝑥!

−
1
𝑐!
𝜕!𝜓
𝜕𝑡!

= 0	
	
This	says	if	the	second	spatial	derivative	equals	the	second	time	
derivative	(multiplied	by	a	constant),	the	function	𝜓	describes	a	
wave.		This	equation	is	for	1	dimension,	like	a	wave	traveling	
down	a	string	that’s	vibrating	up	and	down.		Note:	c	in	this	
equation	represents	the	speed	of	propagation	of	the	wave.		
	
So	how	can	Maxwell’s	Equations	be	put	into	this	form?		Doing	so	
will	require	a	very	useful	vector	identity	that	will	be	introduced	
shortly.		Here’s	how	it’s	done:	
	
Consider	first	Eq.	3,	Faraday’s	Law:	
	

∇×𝐸 = −
𝜕𝐵
𝜕𝑡
	

	
In	words	this	says	that	a	time	change	in	a	magnetic	flux	density	is	
accompanied	by	an	electric	field	that	“curls	around”	the	line	
pointing	along	the	direction	in	which	the	magnetic	field	
decreases.		That	negative	sign	(called	Lenz’s	Law)	is	why	we	say	
it’s	along	the	decreasing	direction.			
Now	let’s	take	the	curl	of	both	sides	of	Faraday’s	Law:	
	

∇×∇×𝐸 = −∇×
𝜕𝐵
𝜕𝑡

            (5)	
	
Now	we	introduce	the	vector	identity	mentioned	earlier.		For	any	
vector	𝐴,	

∇×∇×𝐴 = ∇ ∇ ∙ 𝐴 − ∇!𝐴	
	



In	words	this	says	that	the	curl	of	the	curl	of	a	vector	equals	the	
gradient	of	the	divergence	of	the	vector	minus	the	Laplacian	of	
the	vector.		The	vector	Laplacian	is	basically	the	second	spatial	
derivative.		Applying	this	to	Eq.	(5)	gives:	
	

∇ ∇ ∙ 𝐸 − ∇!𝐸 = −∇×
𝜕𝐵
𝜕𝑡

      (6)	
	
At	this	point	let	us	recall	the	two	constitutive	relationships:	
	

𝐷 = 𝜀!𝐸	
	

𝐵 = 𝜇!𝐻	
	
By	these	relationships,	we	could	rewrite	Eq.	6	as	
	

1
𝜀!
∇ ∇ ∙ 𝐷 − ∇!𝐸 = −𝜇!∇×

𝜕𝐻
𝜕𝑡

  	

	
Now	we	can	see	that	the	first	term	contains	a	divergence	of	
electric	flux	density, ∇ ∙ 𝐷	and	by	Eq.	1	we	know	this	is	zero	for	
source-free	regions.		Thus:	
	

−∇!𝐸 = −𝜇!∇×
𝜕𝐻
𝜕𝑡
	

	
Now	let’s	look	at	the	right-hand	side	of	this	equation.		The	curl	
operator	"∇×" is	a	spatial	derivative.		The	time	derivative	and	the	
spatial	derivative	can	be	taken	in	any	order	since	they	are	linear	
operators	acting	on	different	variables	(i.e.	the	partial	time	
derivative	sees	the	spatial	coordinates	as	constants).		Thus	we	
can	rearrange	it	to	state	
	



−∇!𝐸 = −𝜇!
𝜕
𝜕𝑡

∇×𝐻 	
	
Now	we	can	substitute	the	curl	of	the	magnetic	field	according	to	
Eq.	4.	

−∇!𝐸 = −𝜇!
𝜕
𝜕𝑡

𝜕𝐷
𝜕𝑡

	

	
Using	the	first	constitutive	relationship,	𝐷 = 𝜀!𝐸,	and	combining	
the	two	time	derivatives,	this	can	be	written	
	

−∇!𝐸 = −𝜇!𝜀!
𝜕!𝐸
𝜕𝑡!

	
	
Now	moving	the	right	side	over	to	the	left	and	rearranging	gives	
	

∇!𝐸 − 𝜇!𝜀!
𝜕!𝐸
𝜕𝑡!

= 0	
	
Since	the	Laplacian	operator, ∇!,	is	a	second	spatial	derivative,	
we	can	now	state	(with	the	continued	assumption	our	wave	is	
along	only	the	x-axis	of	our	chosen	reference	frame):	
	

𝜕!𝐸
𝜕𝑥!

− 𝜇!𝜀!
𝜕!𝐸
𝜕𝑡!

= 0	
	
Which	is	a	1-D	wave	equation	in	𝐸.		Recalling	that	the	coefficient	
on	the	second	time	derivative	is	 !

!!
,	where	c	is	the	speed	of	the	

wave,	we	can	see	the	wave	travels	at	a	speed	of	
	

𝑐 =
1
𝜇!𝜀!

= 299,792,458𝑚 𝑠	



	
which	is	the	known	speed	of	light.			
The	same	relationship	can	be	worked	out	for	the	magnetic	field	
resulting	in	
	

𝜕!𝐻
𝜕𝑥!

− 𝜇!𝜀!
𝜕!𝐻
𝜕𝑡!

= 0	
	
Notice	that	Maxwell’s	equations	are	first-order	differential	
equations	that	are	coupled.		That	is,	Eqs.	3	&	4	have	only	first	
order	differentials	(curls)	but	have	both	electric	and	magnetic	
quantities.		These	wave	equations	we’ve	just	derived	are	now	
uncoupled	but	are	done	so	at	the	expense	of	raising	them	to	
second-order	differential	equations.	
	
	
Inhomogeneous	Wave	Equation	(Sources	Present)	
	
Now	let’s	look	at	Maxwell’s	equations	in	differential	form	for	
regions	containing	sources.		
	

∇ ∙ 𝐷 = 𝜌!                 (7)	
	

∇ ∙ 𝐵 = 0                 (8)	
	

∇×𝐸 = −
𝜕𝐵
𝜕𝑡

         (9)	
	

∇×𝐻 = 𝐽 +
𝜕𝐷
𝜕𝑡

     (10)	
	
Note	that	Eq.	7	is	now	equated	to	an	electric	volume	charge	
density,	𝜌! ,	and	Eq.	10	has	an	additional	term	on	the	right	side,	𝐽,	



the	current	density.		These	will	result	in	inhomogeneous	wave	
equations.		
	
Now	we	will	derive	the	electric	scalar	potential	V	and	magnetic	
vector	potential,	𝐴.		The	final	wave	equation	will	be	in	terms	of	
these,	not	the	fields	themselves.	
	
Magnetic	Vector	Potential 𝐴	
	
With	Eq.	8,	we	can	see	that	the	divergence	of	the	magnetic	flux	
density	is	always	zero.		A	mathematical	identity	states	that	
	

∇ ∙ ∇×𝐹 = 0	
	
That	is,	the	divergence	of	the	curl	is	always	zero.		Since	the	
divergence	of	𝐵	is	zero	in	Eq.	8,	we	can	let	𝐵	equal	the	curl	of	
some	other	vector	called	the	magnetic	vector	potential,	𝐴.		
	

𝐵 = ∇×𝐴	
	
Electric	Scalar	Potential	V	
	
Now	Eq.	8	must	be	zero	because	it	is	the	divergence	of	a	curl.		
Next	let’s	insert	this	result	into	Eq.	9	
	

∇×𝐸 = −
𝜕∇×𝐴
𝜕𝑡

	
	
Since	these	are	both	curls,	which	are	linear	operators,	we	can	
collect	terms	
	



                      ∇× 𝐸 +
𝜕𝐴
𝜕𝑡

= 0              (11)	

	
Another	useful	mathematical	identity	can	now	be	employed,	
namely	that	
	

∇× −∇𝑉 = 0	
	
The	curl	of	a	(negative)	gradient	is	identically	zero.		Equation	11	
is	in	exactly	this	form	so	we	may	set	the	operand	of	the	curl	
operator	as	a	negative	gradient	of	another	scalar	quantity	called	
the	electric	scalar	potential,	𝑉	(i.e.	voltage)	
	

𝐸 +
𝜕𝐴
𝜕𝑡

= −∇𝑉	
Or	

                         𝐸 = −∇𝑉 −
𝜕𝐴
𝜕𝑡

                  (12)	
	
If	the	situation	is	static,	Eq.	12	becomes	the	familiar	𝐸 = −∇𝑉.	
	
Inhomogeneous	Wave	Equation	in	𝐴	
	
If	we	now	consider	Eq.	10	and	substitute	the	constitutive	
relations	for	homogeneous	media	we	have	
	

∇×𝐵 = 𝜇𝐽 + 𝜇𝜀
𝜕𝐸
𝜕𝑡
	

	
If	we	now	use	the	relations	𝐵 = ∇×𝐴	and	𝐸 = −∇𝑉 − !!

!"
,	we	get	

	



∇×∇×𝐴 = 𝜇𝐽 + 𝜇𝜀
𝜕
𝜕𝑡

−∇𝑉 −
𝜕𝐴
𝜕𝑡

	

	
Employing	the	relation	∇×∇×𝐴 = ∇ ∇ ∙ 𝐴 − ∇!𝐴,	we	get	
	

∇ ∇ ∙ 𝐴 − ∇!𝐴 =  𝜇𝐽 − 𝜇𝜀∇
𝜕𝑉
𝜕𝑡

− 𝜇𝜀
𝜕!𝐴
𝜕𝑡!

	
	
Rearranging	gives		
	

         ∇!𝐴 − 𝜇𝜀
𝜕!𝐴
𝜕𝑡!

= − 𝜇𝐽 + ∇ ∇ ∙ 𝐴 + 𝜇𝜀
𝜕𝑉
𝜕𝑡

       (13)	

	
At	this	point	we	introduce	one	more	relationship	called	the	
Lorenz	gauge.		This	is	required	to	give	a	unique	vector	potential	
𝐴,	and	is	done	by	specifying	its	divergence.		This	additional	
degree	of	freedom	can	be	defined	to	simplify	the	right	side	of	Eq.	
13.		The	Lorenz	gauge	is	defined	as	
	

                          ∇ ∙ 𝐴 + 𝜇𝜀
𝜕𝑉
𝜕𝑡

= 0                                (14)	
	
	
So	that		
	

                              ∇!𝐴 − 𝜇𝜀
𝜕!𝐴
𝜕𝑡!

= − 𝜇𝐽                      (15)	
	
Which	is	indeed	an	inhomogeneous	wave	equation	in	the	
magnetic	vector	potential.	
	
	
	



Inhomogeneous	Wave	Equation	in	V	
	
Using	Eq.	7	and	𝐷 = 𝜀𝐸	we	see	that	∇ ∙ 𝐸 = 𝜌!/𝜀.		Using	Eq.	12	we	
can	then	state	

∇ ∙ ∇𝑉 +
𝜕𝐴
𝜕𝑡

= −
𝜌!
𝜀
	

	
Distributing	the	vector	operator	on	the	left	hand	side	gives		
	

                       ∇!𝑉 +
𝜕
𝜕𝑡

∇ ∙ 𝐴 = −
𝜌!
𝜀

                   (16)	
	
If	we	solve	the	Lorenz	gauge	of	Eq.	14	for	an	alternate	expression	
for	∇ ∙ 𝐴,	we	get	
	

∇ ∙ 𝐴 = −𝜇𝜀
𝜕𝑉
𝜕𝑡
	

	
Putting	this	into	Eq.	16	gives	
	

∇!𝑉 +
𝜕
𝜕𝑡

−𝜇𝜀
𝜕𝑉
𝜕𝑡

= −
𝜌!
𝜀
	

	
Or	
	

                        ∇!𝑉 − 𝜇𝜀
𝜕!𝑉
𝜕𝑡!

= −
𝜌!
𝜀

                        (17)	
	
Which	is	an	inhomogeneous	wave	equation	in	the	electric	scalar	
potential.	


