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We discuss vacuum condensates associated with emergent QED and with tor-
sion, as well as the possible role of the Kodama wave function in quantum
cosmology.

1. Emergent QED and Gravity

The idea that the photon might be a Goldstone boson of a theory of spon-
taneously broken Lorentz covariance goes back a long way. I myself made a
try, [1] copying closely the Nambu-Jona-Lasinio formalism [2] for the Gold-
stone pion. A few years ago, I revisited the subject, [3] and guessed that the
leading gauge-variant term might be a Mexican hat potential, with a huge,
GUT-scale vacuum expectation value M for the gauge potential. I chose the
quartic coupling constant to be extremely small, of order 10−30, in such a
way that it would vanish in the limit of vanishing dark energy. When the
dust settled, at tree level the effect of adding the extra Mexican-hat term
amounted to fixing the gauge–although the gauge one gets is a curiously
nonlinear one. If gauge invariance is broken, as above, then there is a pre-
ferred gauge, in terms of which the theory most closely follows the dynamics
of the underlying, hidden degrees of freedom. In general, it makes sense to
guess the ”most probable gauge”. My choice is temporal gauge, and the
above scenario is a specific way to express this choice. In temporal gauge,
the longitudinal-photon degrees of freedom are, in a sense, dynamical, be-
cause they have non-vanishing canonical momenta. However, in practice
the Gauss-law constraint makes these degrees of freedom act like a Bose
condensate, described by only a few classical degrees of freedom. It is in-
teresting that, in CPT2001, Nambu discussed just this point in his talk, [4]
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and ascribed this idea to work of Dirac [5] in the 1950’s.
To me it would be very interesting if somehow this longitudinal-photon

condensate might somehow be activated. So recently I gave it a try. The
game is to stay with the Mexican-hat picture above, but to assume that
the vacuum gauge-potential condensate has spacetime dependence. A very
simple, cosmological type of behavior is to assume

Fµν = 0 Aµ = ∂µ Λ(r, t). (1)

Our previous example set Λ = M t. If we choose instead

Λ = Mτ τ2 = t2 − r2

c2
, (2)

it follows that

Φ =
Mt

τ
A = −Mr

c2τ
Φ2 − c2A2 = M2. (3)

This can be constructed from the same Mexican-hat potential as before,
provided that c = 1. I put in the Lorentz violation mostly (but not entirely)
for fun, because the solution admits so easily the generalization. The net
result of this construction is a vacuum which will become, or which has been,
unstable, depending upon whether we live in the past or future ”lightcone”
associated with the gauge function Λ. It seems to me that this might be a
mechanism for catalyzing the cosmological ”reheating” transition, because
the onset of the instability outraces even the accelerated expansion of the
universe.

What about emergent gravitons? The idea goes back to Sakharov, [6]
and the Einstein-Hilbert action is arguably easy to obtain via radiative
loops. Again the problem is what else, if anything, comes along for the
ride. A general attack can quickly lead to quite a mess. [7] At the opposite
extreme, I might guess that the most important violating term is a potential
V (g), depending only upon the determinant g of the metric. The Einstein
equations are than easy to obtain, and they will make trouble unless V ′

vanishes. This leads to a fixed value of the determinant, and a consequent
”emergent unimodular gravity”. So at this level I only see gauge fixing as the
output consequence. Quite a lot more can be said about this approach, [8]
but Alan is better equipped than I to say it [9].

2. An Axial-Vector Condensate

Just as I did for the Goldstone photon, I have tried to ”activate” torsion
degrees of freedom in as simple a way as possible, in order to see how
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they might enter into phenomenology. This led to presuming that there
might exist, for some fermionic degrees of freedom (either standard-model
or beyond-the-standard-model), a Lorentz- violating vacuum condensate of
axial vector current:

< Ψγ5γµΨ > = ηµρA. (4)

Here ηµ is a unit timelike vector, at rest in the CMB rest frame. This
provides a source of torsion. In the context of FRW cosmology, this does
not lead to a modification of the FRW cosmological evolution equations.
But it does lead to a renormalization of the cosmological constant:

H2 = H2
cc −

(4πγρA)2

M4
pl(1 + γ2)

. (5)

Here Hcc is evidently the value the Hubble parameter would take in the
absence of torsion and the axial condensate. And γ is the Barbero-Immirzi
parameter, prominent in the loop quantum gravity formalism. If this renor-
malization of the dark energy scale is of order unity, one has

4πγρA√
1 + γ2

∼ HM2
pl ∼ 10−60M3

pl ∼ (10−20Mpl)3 ∼ Λ3
QCD. (6)

This is what I call the Zeldovich relation: in natural units the cube of the
QCD scale is of order the Hubble scale. It was noticed by Zeldovich [10]
in 1967 and has been occasionally been rediscovered in the interim. [11] I
encounter it often in my speculative excursions into trying to understand
the dark energy problem, and I now take it seriously. I find that this is a
minority viewpoint. Most people seem to dismiss the Zeldovich relation as
a numerical coincidence.

This axial condensate has another consequence. Because all spinor de-
grees of freedom couple to gravity, they must all feel the effect of the vacuum
torsion. This leads to a Lorentz-violating term in the effective action, one
which is prominent in the SME catalog: [12]

L′ = bµΨγµγ5Ψ (7)

The condensate contribution to this Kostelecky’ b - parameter is

bµ = ηµ
2πγ2ρA

M2
pl(1 + γ2)

. (8)

If the Zeldovich relation holds, then

bµ 6 10−33eV. (9)
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The effect is a billion times smaller than the experimental limit, unless the
condensate density is taken to be much higher than its ”natural” value. Such
behavior would be appropriate for scenarios in which there is a fine-tuned
cancellation of the torsion contribution with a much larger ”primordial”
dark energy. At this meeting I learned of closely related work of Poplawski.
[13] He uses the QCD quark vacuum condensates instead of a Lorentz-
violating axial condensate to arrive at a very similar endpoint.

3. Vacuum Phase Density

Consider a finite box of spatially flat FRW ΛCDM universe, with periodic
boundary conditions [14] applied (”compactification on a torus”). As time
goes on, this box will expand. The dimensions of the box are controlled by
the FRW scale factor, which evolves according to the Einstein equations
of cosmology. If the box contains only pure dark energy, it will expand
exponentially. The problem of what is going on at the microscopic level
within such a box is the fundamental problem of dark energy. The semi-
classical wave function of this box of dark energy is the exponential of a
phase factor, given by the classical action. It turns out to be proportional
to the volume of the box. The coefficient of this phase factor is linear in
the Hubble parameter, in natural units. This leads to the conclusion that
the characteristic volume, for which the ”phase density” is of order 2π, is
of order the QCD scale-the Zeldovich relation again applies.

There is an interesting subplot to this story, which originates in a variant
of first-order gravity invented [15] by MacDowell and Mansouri and elabo-
rated recently by Freidel and Starodubtsev. [16] The idea is to synthesize
the tetrad and connection variables (e, ω) of the first order theory into a
single grand connection A which lives in an internal O(4,1) space. This
way of expressing gravity is provocative and certainly invites its use as a
starting point for enlarging the theory in some way to encompass standard
model degrees of freedom. [17] However, that is not the issue here. Instead
it is easy to find that imposing a ”gauge condition” F = 0 for the field
strength associated with the connection A leads to nontrivial solutions. In
particular, deSitter space, which describes our expanding box of dark en-
ergy, is such a solution. According to this interpretation, the vacuum phase
density, given by the exponential of the MacDowell-Mansouri action (which
is quadratic in the field strength F ) should vanish. The resolution of this
paradox is that the Gauss-Bonnet term, although pure topological, does
contribute vacuum phase. And the MacDowell-Mansouri construction guar-
antees that this topological contribution to the phase density cancels out
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the contribution given by the standard metric theory. This Gauss-Bonnet
term, complete with a remarkably large coefficient of 10120, is essentially
what is known in the loop-gravity community as the Kodama wave func-
tion. [18] However, there it plays a different–and controversial–role. [19] In
any case, what is suggested here is that vacuum topology might be an im-
portant ingredient in the understanding of the Zeldovich relation, of course
assuming–as I always do–that it is more than a numerical accident.
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