Math 1496 Calculus I - Final 2016

Name

This test consists of 2 parts. You are required to do all of part A \#1-6 and any 4 of part B. The point value for each question is in the parenthesis. Please show all of your work for full credit!

1. (15) Calculate the following limits.
(i) $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$
(ii) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 3 x}$
(iii) $\lim _{x \rightarrow \infty} \frac{3 x^{3}-4 x^{2}+x-1}{2 x^{3}-x+5}$
(iv) $\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}$
2. (15) Calculate the first derivative (either $f^{\prime}(x)$ or y^{\prime}) of the following. Do not simplify your answer
(i) $y=\frac{\ln x}{x}$
(ii) $y=x^{\tan x}$
(iii) $x y^{4}-x y=x+y+3$
(iv) $y=e^{x} \cos 5 x$
3. (15) Integrate the following.
(i) $\int \sin ^{3} x \cos x d x$
(ii) $\int x \sqrt{x+1} d x$
(iii) $\int_{0}^{1} \frac{e^{x}}{e^{x}+1} d x$
(iv) $\int_{0}^{2} x^{2} e^{x^{3}} d x$
4. (5) Find the equation of the tangent to $y=x^{2}-\frac{4}{x^{2}}$ and $x=2$.
5. (5) Find the absolute minimum and absolute maximum of $f(x)=x^{3}-12 x+1$ on $[1,5]$.
6. (5) Find the area between $y=x^{2}$ and $y=2 x-x^{2}$. Sketch the region.

Part B-Choose any 4 of the following 5

7. (10) Consider the function

$$
f(x)=\left\{\begin{aligned}
2 x^{2}-1, & x \leq 1 \\
2 x-1, & x>1
\end{aligned}\right.
$$

Is $f(x)$ continuous at $x=1$? Is $f(x)$ differentiable at $x=1$. Provide a sketch of $f(x)$
8. (10) Consider the function

$$
f(x)=x^{3}-6 x^{2}+9 x
$$

Determine:
(i) The critical points
(ii) When y is increasing and decreasing
(iii) Determine whether any of the critical points are minimum or maximum
(iv) Inflection points
(iv) When y is concave up and down
(v) Then sketch the curve and label.

9. (10) Car A is traveling west at $50 \mathrm{mi} / \mathrm{hr}$ and car B is traveling north at $60 \mathrm{mi} / \mathrm{hr}$. Both are headed for the intersection of the two roads. At what rate are the cars approaching each other when car A is 0.3 mi and car B is 0.4 mi from the intersection?
10. (10) A rectangular box with a square bottom is to be constructed using 96 sq . ft . of material. Find the dimensions of the box that maximizes volume.
11. (10) Find the volumes of revolution when the region bound by the following curve

$$
y=x, \quad y=2-x, \quad y=0
$$

is revolved about the x and y axis.

Basic Formulas

Areas

$$
\begin{aligned}
\text { circle } A & =\pi r^{2} & \text { rectangle } A & =l w \\
\text { sphere } A & =4 \pi r^{2} & \text { triangle } A & =\frac{1}{2} b h \\
\text { box } A & =2 l w+2 l h+2 w h & & \text { cylinder } A
\end{aligned}=2 \pi r^{2}+2 \pi r h ~ \$
$$

Volumes

$$
\begin{aligned}
\text { cylinder } V & =\pi r^{2} h & \text { box } V & =l w h \\
\text { sphere } V & =\frac{4}{3} \pi r^{3} & \text { cone } V & =\frac{1}{3} \pi r^{2} h
\end{aligned}
$$

Pythagorean Thm. $\quad a^{2}+b^{2}=c^{2}$

