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Cancer as a metabolic disease
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Abstract

Emerging evidence indicates that impaired cellular energy metabolism is the defining characteristic of nearly all
cancers regardless of cellular or tissue origin. In contrast to normal cells, which derive most of their usable energy
from oxidative phosphorylation, most cancer cells become heavily dependent on substrate level phosphorylation
to meet energy demands. Evidence is reviewed supporting a general hypothesis that genomic instability and
essentially all hallmarks of cancer, including aerobic glycolysis (Warburg effect), can be linked to impaired mito-
chondrial function and energy metabolism. A view of cancer as primarily a metabolic disease will impact
approaches to cancer management and prevention.

Introduction
Cancer is a complex disease involving numerous tempo-
spatial changes in cell physiology, which ultimately lead
to malignant tumors. Abnormal cell growth (neoplasia)
is the biological endpoint of the disease. Tumor cell
invasion of surrounding tissues and distant organs is the
primary cause of morbidity and mortality for most can-
cer patients. The biological process by which normal
cells are transformed into malignant cancer cells has
been the subject of a large research effort in the biome-
dical sciences for many decades. Despite this research
effort, cures or long-term management strategies for
metastatic cancer are as challenging today as they were
40 years ago when President Richard Nixon declared a
war on cancer [1,2].
Confusion surrounds the origin of cancer. Contradic-

tions and paradoxes have plagued the field [3-6]. With-
out a clear idea on cancer origins, it becomes difficult to
formulate a clear strategy for effective management.
Although very specific processes underlie malignant
transformation, a large number of unspecific influences
can initiate the disease including radiation, chemicals,
viruses, inflammation, etc. Indeed, it appears that pro-
longed exposure to almost any provocative agent in the
environment can potentially cause cancer [7,8]. That a
very specific process could be initiated in very unspecific
ways was considered “the oncogenic paradox” by Szent-
Gyorgyi [8]. This paradox has remained largely unre-
solved [7].

In a landmark review, Hanahan and Weinberg sug-
gested that six essential alterations in cell physiology
could underlie malignant cell growth [6]. These six
alterations were described as the hallmarks of nearly all
cancers and included, 1) self-sufficiency in growth sig-
nals, 2) insensitivity to growth inhibitory (antigrowth)
signals, 3) evasion of programmed cell death (apoptosis),
4) limitless replicative potential, 5) sustained vascularity
(angiogenesis), and 6) tissue invasion and metastasis.
Genome instability, leading to increased mutability, was
considered the essential enabling characteristic for man-
ifesting the six hallmarks [6]. However, the mutation
rate for most genes is low making it unlikely that the
numerous pathogenic mutations found in cancer cells
would occur sporadically within a normal human life-
span [7]. This then created another paradox. If muta-
tions are such rare events, then how is it possible that
cancer cells express so many different types and kinds
of mutations?
The loss of genomic “caretakers” or “guardians”,

involved in sensing and repairing DNA damage, was
proposed to explain the increased mutability of tumor
cells [7,9]. The loss of these caretaker systems would
allow genomic instability thus enabling pre-malignant
cells to reach the six essential hallmarks of cancer [6]. It
has been difficult, however, to define with certainty the
origin of pre-malignancy and the mechanisms by which
the caretaker/guardian systems themselves are lost dur-
ing the emergent malignant state [5,7].
In addition to the six recognized hallmarks of cancer,

aerobic glycolysis or the Warburg effect is also a robust
metabolic hallmark of most tumors [10-14]. Although* Correspondence: thomas.seyfried@bc.edu
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no specific gene mutation or chromosomal abnormality
is common to all cancers [7,15-17], nearly all cancers
express aerobic glycolysis, regardless of their tissue or
cellular origin. Aerobic glycolysis in cancer cells involves
elevated glucose uptake with lactic acid production in
the presence of oxygen. This metabolic phenotype is the
basis for tumor imaging using labeled glucose analogues
and has become an important diagnostic tool for cancer
detection and management [18-20]. Genes for glycolysis
are overexpressed in the majority of cancers examined
[21,22].
The origin of the Warburg effect in tumor cells has

been controversial. The discoverer of this phenomenon,
Otto Warburg, initially proposed that aerobic glycolysis
was an epiphenomenon of a more fundamental problem
in cancer cell physiology, i.e., impaired or damaged
respiration [23,24]. An increased glycolytic flux was
viewed as an essential compensatory mechanism of
energy production in order to maintain the viability of
tumor cells. Although aerobic glycolysis and anaerobic
glycolysis are similar in that lactic acid is produced
under both situations, aerobic glycolysis can arise in
tumor cells from damaged respiration whereas anaerobic
glycolysis arises from the absence of oxygen. As oxygen
will reduce anaerobic glycolysis and lactic acid produc-
tion in most normal cells (Pasteur effect), the continued
production of lactic acid in the presence of oxygen can
represent an abnormal Pasteur effect. This is the situa-
tion in most tumor cells. Only those body cells able to
increase glycolysis during intermittent respiratory
damage were considered capable of forming cancers
[24]. Cells unable to elevate glycolysis in response to
respiratory insults, on the other hand, would perish due
to energy failure. Cancer cells would therefore arise
from normal body cells through a gradual and irreversi-
ble damage to their respiratory capacity. Aerobic glyco-
lysis, arising from damaged respiration, is the single
most common phenotype found in cancer.
Based on metabolic data collected from numerous ani-

mal and human tumor samples, Warburg proposed with
considerable certainty and insight that irreversible
damage to respiration was the prime cause of cancer
[23-25]. Warburg’s theory, however, was attacked as
being too simplistic and not consistent with evidence of
apparent normal respiratory function in some tumor
cells [26-34]. The theory did not address the role of
tumor-associated mutations, the phenomenon of metas-
tasis, nor did it link the molecular mechanisms of
uncontrolled cell growth directly to impaired respiration.
Indeed, Warburg’s biographer, Hans Krebs, mentioned
that Warburg’s idea on the primary cause of cancer, i.e.,
the replacement of respiration by fermentation (glycoly-
sis), was only a symptom of cancer and not the cause
[35]. The primary cause was assumed to be at the level

of gene expression. The view of cancer as a metabolic
disease was gradually displaced with the view of cancer
as a genetic disease. While there is renewed interest in
the energy metabolism of cancer cells, it is widely
thought that the Warburg effect and the metabolic
defects expressed in cancer cells arise primarily from
genomic mutability selected during tumor progression
[36-39]. Emerging evidence, however, questions the
genetic origin of cancer and suggests that cancer is pri-
marily a metabolic disease.
Our goal is to revisit the argument of tumor cell ori-

gin and to provide a general hypothesis that genomic
mutability and essentially all hallmarks of cancer,
including the Warburg effect, can be linked to impaired
respiration and energy metabolism. In brief, damage to
cellular respiration precedes and underlies the genome
instability that accompanies tumor development. Once
established, genome instability contributes to further
respiratory impairment, genome mutability, and tumor
progression. In other words, effects become causes. This
hypothesis is based on evidence that nuclear genome
integrity is largely dependent on mitochondrial energy
homeostasis and that all cells require a constant level of
useable energy to maintain viability. While Warburg
recognized the centrality of impaired respiration in the
origin of cancer, he did not link this phenomenon to
what are now recognize as the hallmarks of cancer. We
review evidence that make these linkages and expand
Warburg’s ideas on how impaired energy metabolism
can be exploited for tumor management and prevention.

Energetics of the living cell
In order for cells to remain viable and to perform their
genetically programmed functions they must produce
usable energy. This energy is commonly stored in ATP
and is released during the hydrolysis of the terminal
phosphate bond. This is generally referred to as the free
energy of ATP hydrolysis [40-42]. The standard energy
of ATP hydrolysis under physiological conditions is
known as ΔG’ATP and is tightly regulated in all cells
between -53 to -60 kJ/mol [43]. Most of this energy is
used to power ionic membrane pumps [10,40]. In cells
with functional mitochondria, this energy is derived
mostly from oxidative phosphorylation where approxi-
mately 88% of total cellular energy is produced (about
28/32 total ATP molecules). The other approximate
12% of energy is produced about equally from substrate
level phosphorylation through glycolysis in the cyto-
plasm and through the TCA cycle in the mitochondrial
matrix (2 ATP molecules each). Veech and co-workers
showed that the ΔG’ATP of cells was empirically forma-
lized and measurable through the energies of ion distri-
butions via the sodium pump and its linked transporters
[42]. The energies of ion distributions were explained in

Seyfried and Shelton Nutrition & Metabolism 2010, 7:7
http://www.nutritionandmetabolism.com/content/7/1/7

Page 2 of 22



terms of the Gibbs-Donnan equilibrium, which was
essential for producing electrical, concentration, and
pressure work.
A remarkable finding was the similarity of the ΔG’ATP

among cells with widely differing resting membrane
potentials and mechanisms of energy production. For
example, the ΔG’ATP in heart, liver, and erythrocytes
was approximately - 56 kJ/mol despite having very dif-
ferent electrical potentials of - 86, - 56, and - 6 mV,
respectively [42]. Moreover, energy production in heart
and liver, which contain many mitochondria, is largely
through respiration, whereas energy production in the
erythrocyte, which contains no nucleus or mitochondria,
is entirely through glycolysis. Warburg also showed that
the total energy production in quiescent kidney and
liver cells was remarkably similar to that produced in
proliferating cancer cells [24]. Despite the profound dif-
ferences in resting potentials and in mechanisms of
energy production among these disparate cell types, they
all require a similar amount of total energy to remain
viable.
The constancy of the ΔG’ATP of approximately -56 kJ/

mol is fundamental to cellular homeostasis and its rela-
tionship to cancer cell energy is pivotal. The mainte-
nance of the ΔG’ATP is the “end point” of both genetic
and metabolic processes and any disturbance in this
energy level will compromise cell function and viability
[40]. Cells can die from either too little or too much
energy. Too little energy will lead to cell death by either
necrotic or apoptotic mechanisms, whereas over produc-
tion of ATP, a polyanionic Donnan active material, will
disrupt the Gibbs-Donnan equilibrium, alter the func-
tion of membrane pumps, and inhibit respiration and
viability [42]. Glycolysis or glutaminolysis must increase
in cells suffering mitochondrial impairment in order to
maintain an adequate ΔG’ATP for viability. This fact was
clearly illustrated in showing that total cellular energy
production was essentially the same in respiration-nor-
mal and respiration-deficient fibroblasts [44].
In addition to its role in replenishing TCA cycle inter-

mediates (anaplerosis), glutamine can also provide
energy through stimulation of glycolysis in the cyto-
plasm and through substrate level phosphorylation in
the TCA cycle (glutaminolysis) [45-49]. Energy obtained
through substrate level phosphorylation in the TCA
cycle can compensate for deficiencies in either glycolysis
or oxidative phosphorylation [46,48,50], and can repre-
sent a major source of energy for the glutamine-depen-
dent cancers. More energy is produced through
substrate level phosphorylation in cancer cells than in
normal cells, which produce most of their energy
through oxidative phosphorylation. A major difference
between normal cells and cancer cells is in the origin of
the energy produced rather than in the amount of

energy produced since approximately -56 kJ/mol is the
amount of energy required for cell survival regardless of
whether cells are quiescent or proliferating or are mostly
glycolytic or respiratory. It is important to recognize,
however, that a prolonged reliance on substrate level
phosphorylation for energy production produces gen-
ome instability, cellular disorder, and increased entropy,
i.e., characteristics of cancer [8,24].

Mitochondrial function in cancer cells
Considerable controversy has surrounded the issue of
mitochondrial function in cancer cells
[18,29,30,33,34,51-57]. Sidney Weinhouse and Britton
Chance initiated much of this controversy through their
critical evaluation of the Warburg theory and the role of
mitochondrial function [33,34]. Basically, Weinhouse felt
that quantitatively and qualitatively normal carbon and
electron transport could occur in cancer cells despite
the presence of elevated glycolysis [33,34]. Weinhouse
assumed that oxygen consumption and CO2 production
were indicative of coupled respiration. However, exces-
sive amounts of Donnan active material (ATP) would be
produced if elevated glycolysis were expressed together
with coupled respiration [42]. Accumulation of Donnan
active material will induce cell swelling and produce a
physiological state beyond the Gibbs-Donnan equili-
brium. The occurrence of up-regulated glycolysis
together with normal coupled respiration is incompati-
ble with metabolic homeostasis and cell viability. Chance
and Hess also argued against impaired respiration in
cancer based on their spectrophotometric studies show-
ing mostly normal electron transfer in ascites tumor
cells [58]. These studies, however, failed to assess the
level of ATP production as a consequence of normal
electron transfer and did not exclude the possibility of
elevated ATP production through TCA cycle substrate
level phosphorylation. As discussed below, mitochon-
drial uncoupling can give the false impression of func-
tional respiratory capacity.
Oxygen uptake and CO2 production can occur in

mitochondria that are uncoupled and/or dysfunctional
[24,59]. While reduced oxygen uptake can be indicative
of reduced oxidative phosphorylation, increased oxygen
uptake may or may not be indicative of increased oxida-
tive phosphorylation and ATP production [59-62].
Ramanathan and co-workers showed that oxygen con-
sumption was greater, but oxygen dependent (aerobic)
ATP synthesis was less in cells with greater tumorigenic
potential than in cells with lower tumorigenic potential
[61]. These findings are consistent with mitochondrial
uncoupling in tumor cells. It was for these types of
observations in other systems that Warburg considered
the phenomenon of aerobic glycolysis as too capricious
to serve as a reliable indicator of respiratory status [24].
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Heat production is also greater in poorly differentiated
high glycolytic tumor cells than in differentiated low gly-
colytic cells [63]. Heat production is consistent with
mitochondrial uncoupling in these highly tumorigenic
cells. Although Burk, Schade, Colowick and others con-
vincingly dispelled the main criticisms of the Warburg
theory [55,57,64], citations to the older arguments for
normal respiration in cancer cells persist in current dis-
cussions of the subject.
Besides glucose, glutamine can also serve as a major

energy metabolite for some cancers [65-67]. Glutamine
is often present in high concentrations in culture media
and serum. Cell viability and growth can be maintained
from energy generated through substrate level phos-
phorylation in the TCA cycle using glutamine as a sub-
strate [47,48]. Energy obtained through this pathway
could give the false impression of normal oxidative
phosphorylation, as oxygen consumption and CO2 pro-
duction can arise from glutaminolysis and uncoupled
oxidative phosphorylation. Hence, evidence suggesting
that mitochondrial function is normal in cancer cells
should be considered with caution unless data are pro-
vided, which exclude substrate level phosphorylation
through glutaminolysis or glycolysis as alternative
sources of energy.

Mitochondrial dysfunction in cancer cells
Numerous studies show that tumor mitochondria are
structurally and functionally abnormal and incapable of
generating normal levels of energy [10,60,61,68-74].
Recent evidence also shows that the in vitro growth
environment alters the lipid composition of mitochon-
drial membranes and electron transport chain function
[75]. Moreover, the mitochondrial lipid abnormalities
induced from the in vitro growth environment are dif-
ferent from the lipid abnormalities found between nor-
mal tissue and tumors that are grown in vivo. It appears
that the in vitro growth environment reduces Complex I
activity and obscures the boundaries of the Crabtree
and the Warburg effects. The Crabtree effect involves
the inhibition of respiration by high levels of glucose
[76,77], whereas the Warburg effect involves inhibition
of respiration from impaired oxidative phosphorylation.
While the Crabtree effect is reversible, the Warburg
effect is largely irreversible. Similarities in mitochondrial
lipids found between lung epidermoid carcinoma and
fetal lung cells are also consistent with respiratory
defects in tumor cells [78]. The bioenergetic capacity of
mitochondria is dependent to a large extent on the con-
tent and composition of mitochondrial lipids.
Alterations in mitochondrial membrane lipids and

especially the inner membrane enriched lipid, cardioli-
pin, disrupt the mitochondrial proton motive gradient
(ΔΨm) thus inducing protein-independent uncoupling

with concomitant reduction in respiratory energy pro-
duction [41,73,79-82]. Cancer cells contain abnormalities
in cardiolipin content or composition, which are asso-
ciated with electron transport abnormalities [73]. Cardi-
olipin is the only lipid synthesized almost exclusively in
the mitochondria. Proteins of the electron transport
chain evolved to function in close association with car-
diolipin. Besides altering the function of most electron
transport chain complexes including the F1-ATPase,
abnormalities in cardiolipin content and composition
can also inhibit uptake of ADP through the adenine
nucleotide transporter thus altering the efficiency of oxi-
dative phosphorylation [41,79-81,83]. Abnormalities in
the content and composition of cardiolipin will also pre-
vent oxidation of the coenzyme Q couple thus produ-
cing reactive oxygen species during tumor progression
[73,84]. Increased ROS production can impair genome
stability, tumor suppressor gene function, and control
over cell proliferation [7,85]. Hence, abnormalities in CL
can alter cancer cell respiration in numerous ways.
Cardiolipin abnormalities in cancer cells can arise

from any number of unspecific influences to include
damage from mutagens and carcinogens, radiation, low
level hypoxia, inflammation, ROS, or from inherited
mutations that alter mitochondrial energy homeostasis
[73]. Considering the dynamic behavior of mitochondria
involving regular fusions and fissions [86], abnormalities
in mitochondrial lipid composition and especially of car-
diolipin could be rapidly disseminated throughout the
cellular mitochondrial network and could even be
passed along to daughter cells somatically, through cyto-
plasmic inheritance.
Besides lipidomic evidence supporting the Warburg

cancer theory [73], recent studies from Cuezva and col-
leagues also provide compelling proteomic evidence
supporting the theory [21]. Their results showed a drop
in the b-F1-ATPase/Hsp60 ratio concurrent with an
upregulation of the glyceraldehyde-3-phosphate dehy-
drogenase potential in most common human tumors
[72]. These and other observations indicate that the
bioenergetic capacity of tumor cells is largely defective
[87-89]. Viewed collectively, the bulk of the experimen-
tal evidence indicates that mitochondria structure and
function is abnormal in cancer cells. Hence, mitochon-
drial dysfunction will cause cancer cells to rely more
heavily than non-cancer cells on substrate level phos-
phorylation for energy production in order to maintain
membrane pump function and cell viability.

Linking genome instability to mitochondrial dysfunction
Is it genomic instability or is it impaired energy metabo-
lism that is primarily responsible for the origin of can-
cer? This is more than an academic question, as the
answer will impact approaches to cancer management
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and prevention. Metabolic studies in a variety of human
cancers previously showed that that loss of mitochon-
drial function preceded the appearance of malignancy
and aerobic glycolysis [90]. However, the general view
over the last 50 years has been that gene mutations and
chromosomal abnormalities underlie most aspects of
tumor initiation and progression including the Warburg
effect and impaired respiratory function. The gene the-
ory of cancer would argue that mitochondrial dysfunc-
tion is an effect rather than a cause of cancer, whereas
the metabolic impairment theory would argue the
reverse. If gene mutations are the primary cause of can-
cer then the disease can be considered etiologically
complicated requiring multiple solutions for manage-
ment and prevention. This comes from findings that the
numbers and types of mutations differ markedly among
and within different types of tumors. If, on the other
hand, impaired energy metabolism is primarily responsi-
ble for cancer, then most cancers can be considered a
type of metabolic disease requiring fewer and less com-
plicated solutions.
Although mitochondrial function and oxidative phos-

phorylation is impaired in tumor cells, it remains
unclear how these impairments relate to carcinogenesis
and to the large number of somatic mutations and chro-
mosomal abnormalities found in tumors [7,15,91-93].
Most inherited “inborn errors of metabolism” do not
specifically compromise mitochondrial function or cause
cancer in mammals. There are some exceptions, how-
ever, as germ-line mutations in genes encoding proteins
of the TCA cycle can increase risk to certain human
cancers [94]. For example, risk for paraganglioma
involves mutations in the succinate dehydrogenase gene,
whereas risk for leiomyomatosis and renal cell carci-
noma involves mutations in the fumarate hydratase
(fumarase) gene [94-97]. These and similar mutations
directly impair mitochondrial energy production leading
to increased glycolysis and the Warburg effect [98].
Although rare inherited mutations in the p53 tumor
suppressor gene can increase risk for some familial can-
cers of the Li Fraumeni syndrome [99], most p53 defects
found in cancers are not inherited and appear to arise
sporadically, as do the vast majority of cancer-associated
mutations [6,7,100]. In general, cancer-causing germline
mutations are rare and contribute to only about 5-7% of
all cancers [5,7]. While germline mutations can cause a
few cancers, most cancer mutations are somatic and will
contribute more to the progression than to the origin of
most cancers.
The cancer mutator phenotype was invoked to explain

the large number of somatic mutations found in cancer,
but mutations in the p53 caretaker gene are not
expressed in all cancers nor does p53 deletion produce
cancer in mice suggesting a more complicated

involvement of this and other genome guardians in car-
cinogenesis [7,101-104]. While numerous genetic
abnormalities have been described in most human can-
cers, no specific mutation is reliably diagnostic for any
specific type of tumor [7,17,105]. On the other hand,
few if any tumors are known, which express normal
respiration.

Retrograde response and genomic instability
As an alternative to the genome guardian hypothesis for
the origin of somatic mutations, a persistent retrograde
response can underlie the genomic instability and mut-
ability of tumor cells. The retrograde (RTG) response is
the general term for mitochondrial signaling and
involves cellular responses to changes in the functional
state of mitochondria [106-110]. Although the RTG
response has been most studied in yeast, mitochondrial
stress signaling is an analogous response in mammalian
cells [110,111]. Expression of multiple nuclear genes
controlling energy metabolism is profoundly altered fol-
lowing impairment in mitochondrial energy homeostasis
[112,113]. Mitochondrial impairment can arise from
abnormalities in mtDNA, the TCA cycle, the electron
transport chain, or in the proton motive gradient (ΔΨm)
of the inner membrane. Any impairment in mitochon-
drial energy production can trigger an RTG response.
The RTG response evolved in yeast to maintain cell via-
bility following periodic disruption of mitochondrial
ATP production [110,114]. This mostly involves an
energy transition from oxidative phosphorylation to sub-
strate level phosphorylation. Similar systems are also
expressed in mammalian cells [110-113]. Prolonged or
continued activation of the retrograde response, how-
ever, can have dire consequences on nuclear genome
stability and function.
Three main regulatory elements define the RTG

response in yeast to include the Rtg2 signaling protein,
and the Rtg1/Rtg-3 transcriptional factor complex (both
are basic helix-loop-helix-leucine zippers) [110]. Rtg2
contains an N-terminal ATP binding motif that senses
changes in mitochondrial ATP production. Rtg2 also
regulates the function and cellular localization of the
heterodimeric Rtg1/Rtg-3 complex (Figure 1). The RTG
response is “off” in healthy cells with normal mitochon-
drial function. In the off state, the Rtg1/Rtg3 complex is
sequestered in the cytoplasm with Rtg1 attached (dimer-
ized) to a highly phosphorylated form of Rtg3 [110].
Besides its role in the cytoplasm as an energy sensor,
Rtg2 also functions in the nucleus as a regulator of
chromosomal integrity [115].
The RTG response is turned “on” following impair-

ment in mitochondrial energy production. In the on
state, cytoplasmic Rtg2 disengages the Rtg1/Rtg-3 com-
plex through a dephosphorylation of Rtg3 [110]. The
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Rtg1 and Rtg3 proteins then individually enter the
nucleus where Rtg3 binds to R box sites, Rtg1 reengages
Rtg3, and transcription and signaling commences for
multiple energy and anti-apoptotic related genes and
proteins to include MYC, TOR, p53, Ras, CREB, NFkB,
and CHOP [110,112,113,116-118]. The RTG response
also involves the participation of multiple negative and
positive regulators, which facilitate the bioenergetic
transition from respiration to substrate level phosphory-
lation [110].
The primary role of the RTG response is to coordi-

nate the synthesis of ATP through glycolysis alone or
through a combination of glycolysis and glutaminolysis
when respiratory function is impaired [110,111]. The
RTG response would be essential for maintaining a
stable ΔG’ATP for cell viability during periods when
respiration is impaired. A prolonged RTG response,
however, would leave the nuclear genome vulnerable to
instability and mutability [112,117,119]. Mitochondrial
dysfunction also increases levels of cytoplasmic calcium,

the multi-drug resistance phenotype, production of reac-
tive oxygen species, and abnormalities in iron-sulfur
complexes, which together would further accelerate
aberrant RTG signaling and genome mutability
[85,106,107,110,111,120-122]. Chronic tissue inflamma-
tion could further damage mitochondria, which would
accelerate these processes [123,124]. Considered collec-
tively, these findings indicate that the integrity of the
nuclear genome is dependent to a large extent on the
functionality and energy production of the
mitochondria.

Similarities between yeast cells and mammalian cells to
impaired respiration
Interesting analogies exist between yeast and mamma-
lian cells for the physiological response to impaired
respiration [76,112,117,125,126]. Mammalian cells
increase expression of hypoxia-inducible factor-1a (HIF-
1a) in response to transient hypoxia [127]. HIF-1a is
rapidly degraded under normoxic conditions, but
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becomes stabilized under hypoxia. This is a conserved
physiological response that evolved to protect mamma-
lian mitochondria from hypoxic damage and to provide
an alternative source of energy to respiration, as HIF-1a
induces expression of pyruvate dehydrogenase kinase 1
and most major genes involved with glucose uptake, gly-
colysis, and lactic acid production [127]. HIF-1a expres-
sion is also elevated in most tumor cells whether or not
hypoxia is present and could mediate in part aerobic
glycolysis [20,28,98,128,129]. Although the mechanisms
of HIF-1a stabilization under hypoxic conditions are
well defined, the mechanisms by which HIF-1a is stabi-
lized under aerobic or normoxic conditions are less
clear [129,130].
HIF-1a is generally unstable in cells under normal

aerobic conditions through its interaction with the von
Hippel-Lindau (VHL) tumor suppressor protein, which
facilitates HIF-1a hydroxylation, ubiquitination, and
proteasomal degradation [28]. HIF-1a stabilization
under aerobic conditions can be linked to mitochondrial
dysfunction through abnormalities in calcium homeosta-
sis, ROS generation, NFkB signaling, accumulation of
TCA cycle metabolites (succinate and fumarate), and
oncogenic viral infections [131-135]. It is not yet clear if
genomic instability can arise through prolonged HIF-1a
stabilization under aerobic conditions as would occur
during tumor initiation and progression.
Besides HIF-1a function, the human MYC transcrip-

tion factor also shows homology to the yeast Rtg3 tran-
scription factor [112]. MYC is also a member of the
basic, helix-loop-helix leucine zipper family of transcrip-
tion factors as are RTG1 and RTG3. HIF-1a and MYC
also up-regulate many of the same genes for glycolysis
[136]. Hence, both HIF-1a and MYC share similarities
with components of the yeast RTG system.

Mitochondrial dysfunction and the mutator phenotype
Most human cancer cells display genome instability
involving elevated mutation rates, gross chromosomal
rearrangements, and alterations in chromosome number
[15,17,100,137]. The recent studies of the Singh and the
Jazwinski groups provide compelling evidence that mito-
chondrial dysfunction, operating largely through the
RTG response (mitochondrial stress signaling), can
underlie the mutator phenotype of tumor cells
[71,113,115,117,138]. Chromosomal instability, expres-
sion of gene mutations, and the tumorigenic phenotype
were significantly greater in human cells with mtDNA
depletion than in cells with normal mtDNA. Mitochon-
drial dysfunction can also down-regulate expression of
the apurinic/apyrimidinic endonuclease APE1. This is a
redox-sensitive multifunctional endonuclease that regu-
lates DNA transcription and repair [113,139]. APE1
down regulation will increase genomic mutability. Since

gene expression is different in different tissues, it is
expected that disturbed energy metabolism would pro-
duce different kinds of mutations in different types of
cancers. Even different tumors within the same cancer
type could appear to represent different diseases when
evaluated at the genomic level. When evaluated at the
metabolic level, however, most cancers and tumors are
alike in expressing mitochondrial dysfunction and ele-
vated substrate level phosphorylation. Emerging evi-
dence suggests that mitochondrial dysfunction underlies
the mutator phenotype of tumor cells.
Impaired mitochondrial function can induce abnorm-

alities in tumor suppressor genes and oncogenes. For
example, impaired mitochondrial function can induce
abnormalities in p53 activation, while abnormalities in
p53 expression and regulation can further impair mito-
chondrial function [85,103,113,116,140-143]. The func-
tion of the pRB tumor suppressor protein, which
controls the cell cycle, is also sensitive to ROS produc-
tion through the redox state of the cell [144]. Elevated
expression of the MYC and Ras oncogenes can be linked
to the requirements of substrate level phosphorylation
to maintain tumor cell viability. Hence, the numerous
gene defects found in various cancers can arise as sec-
ondary consequences of mitochondrial dysfunction.
Calcium homeostasis is also dependent on mitochon-

drial function [110]. It appears that calcium homeostasis
is essential for the fidelity of mitosis to include spindle
assembly, sister chromosome separation, and cytokinesis
[145-150]. Disturbances in cytoplasmic calcium homeos-
tasis, arising as a consequence of mitochondrial dysfunc-
tion [111], could contribute to abnormalities in
chromosomal segregation during mitosis. These findings
suggest that the numerous chromosomal abnormalities
found in cancer cells can arise as a consequence of
mitochondrial damage.
Recent studies in yeast indicate that damage to the

inner mitochondrial membrane potential (ΔΨm) follow-
ing loss of mtDNA alters the function of several nuclear
iron-sulfur-dependent DNA repair enzymes involving
the Rad3 helicase, the Pri2 primase, and the Ntg2 gly-
case [107]. Abnormalities in these DNA repair enzymes
contribute to the loss of heterozygosity (LOH) pheno-
type in specific genes of the affected yeast cells. These
findings indicate that LOH, which is commonly
observed in many genes of cancer cells [100], can also
be linked to mitochondrial dysfunction. Considered col-
lectively, these observations suggest that the bulk of the
genetic abnormalities found in cancer cells, ranging
from point mutations to gross chromosomal rearrange-
ments, can arise following damage to the structure and
function of mitochondria.
Impairment of mitochondrial function can occur fol-

lowing prolonged injury or irritation to tissues including
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disruption of morphogenetic fields [123,151]. This
tumorigenic process could be initiated in the cells of
any tissue capable of producing mitochondrial stress sig-
naling following repetitive sub-lethal respiratory damage
over prolonged periods. The accumulation of mitochon-
drial damage over time is what ultimately leads to
malignant tumor formation. Acquired abnormalities in
mitochondrial function would produce a type of vicious
cycle where impaired mitochondrial energy production
initiates genome instability and mutability, which then
accelerates mitochondrial dysfunction and energy
impairment and so on in a cumulative way. An
increased dependency on substrate level phosphorylation
for survival would follow each round of metabolic and
genetic damage thus initiating uncontrolled cell growth
and eventual formation of a malignant neoplasm. In
other words, the well-documented tumor-associated
abnormalities in oncogenes, tumor suppressor genes,
and chromosomal imbalances can arise as a conse-
quence of the progressive impairment of mitochondrial
function.

Mitochondrial dysfunction following viral infection
Viruses have long been recognized as the cause of some
cancers [152]. It is interesting that several cancer-asso-
ciated viruses localize to, or accumulate in, the mito-
chondria. Viral alteration of mitochondrial function
could potentially disrupt energy metabolism thus alter-
ing expression of tumor suppressor genes and onco-
genes over time. Viruses that can affect mitochondrial
function include the Rous sarcoma virus, Epstein-Barr
virus (EBV), Kaposi’s sarcoma-associated herpes virus
(KSHV), human papilloma virus (HPV), hepatitis B virus
(HBV), hepatitis C virus (HCV), and human T-cell leu-
kemia virus type 1 (HTLV-1) [64,153-155]. Although
viral disruption of mitochondrial function will kill most
cells through apoptosis following an acute infection,
those infected cells that can up-regulate substrate level
phosphorylation will survive and potentially produce a
neoplasm following chronic infection. Indeed, the hepa-
titis B × protein (HBx) blocks HIF-1a ubiquitination
thus increasing HIF-1a stability and activity in a
hypoxia-independent manner [135]. Alterations in cal-
cium homeostasis, ROS production, and expression of
NF-kB and HIF-1a are also expected to alter the meta-
bolic state as was previously found for some viral infec-
tions [153,154]. It is interesting in this regard that
carcinogenesis, whether arising from viral infection or
from chemical agent, produces similar impairment in
respiratory enzyme activity and mitochondrial function
[90]. Thus, viruses can potentially cause cancer through
displacement of respiration with substrate level phos-
phorylation in the infected cells. Alterations in expres-
sion of tumor suppressor genes and oncogenes will

follow this energy transformation according to the gen-
eral hypothesis presented here.

Mitochondrial suppression of tumorigenicity
While the mutator phenotype of cancer can be linked to
impaired mitochondrial function, normal mitochondrial
function can also suppress tumorigenesis. It is well
documented that tumorigenicity can be suppressed
when cytoplasm from enucleated normal cells is fused
with tumor cells to form cybrids, suggesting that normal
mitochondria can suppress the tumorigenic phenotype
[156-158]. Singh and co-workers provided additional
evidence for the role of mitochondria in the suppression
of tumorigenicity by showing that exogenous transfer of
wild type mitochondria to cells with depleted mitochon-
dria (rho0 cells) could reverse the altered expression of
the APE1 multifunctional protein and the tumorigenic
phenotype [113]. On the other hand, introduction of
mitochondrial mutations can reverse the anti-tumori-
genic effect of normal mitochondria in cybrids [159]. It
is also well documented that nuclei from cancer cells
can be reprogrammed to form normal tissues when
transplanted into normal cytoplasm despite the contin-
ued presence of the tumor-associated genomic defects
in the cells of the derived tissues [160-162]. These find-
ings indicate that nuclear gene mutations alone cannot
account for the origin of cancer and further highlight
the dynamic role of mitochondria in the epigenetic reg-
ulation of carcinogenesis.
It is expected that the presence of normal mitochon-

dria in tumor cells would restore the cellular redox sta-
tus, turn off the RTG response, and reduce or eliminate
the need for glycolysis (Warburg effect) and glutamino-
lysis to maintain viability. In other words, normal mito-
chondrial function would facilitate expression of the
differentiated state thereby suppressing the tumorigenic
or undifferentiated state. This concept can link mito-
chondrial function to the long-standing controversy on
cellular differentiation and tumorigenicity [5,163].
Respiration is required for the emergence and mainte-
nance of differentiation, while loss of respiration leads
to glycolysis, dedifferentiation, and unbridled prolifera-
tion [8,25]. These observations are consistent with the
general hypothesis presented here, that prolonged
impairment of mitochondrial energy metabolism under-
lies carcinogenesis. New studies are necessary to assess
the degree to which cellular energy balance is restored
in cybrids and in reprogrammed tumor cells.

Linking the acquired capabilities of cancer to impaired
energy metabolism
Although the mutator phenotype was considered the
essential enabling characteristic for manifesting the six
hallmarks of cancer, the pathways by which the acquired
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capabilities of cancer are linked specifically to impaired
energy metabolism remain poorly defined. Kromer and
Pouyssegur recently provided an overview on how the
hallmarks of cancer could be linked to signaling cas-
cades and to the metabolic reprogramming of cancer
cells [164]. As the acquired capabilities of self-sufficiency
in growth signals, insensitivity to growth inhibitory
(antigrowth) signals, and limitless replicative potential
are similar, these capabilities can be grouped and dis-
cussed together. The acquired capabilities of evasion of
programmed cell death, angiogenesis, and metastasis
can be discussed separately.

Growth signaling abnormalities and limitless replicative
potential
A central concept in linking abnormalities of growth
signaling and replicative potential to impaired energy
metabolism is in recognizing that proliferation rather
than quiescence is the default state of both microorgan-
isms and metazoans [5,8,165,166]. The cellular default
state is the condition under which cells are found when
they are freed from any active control. Respiring cells in
mature organ systems are quiescent largely because
their replicative potential is under negative control
through the action of tumor suppressor genes like p53
and the retinoblastoma protein, pRB [144,165]. As p53
function is linked to cellular respiration, prolonged
damage to respiration will gradually reduce p53 function
thus inactivating the negative control of p53 and of
other tumor suppressor genes on cell proliferation.
A persistent impairment in respiratory function will

trigger the RTG response, which is necessary for up-reg-
ulating the pathways of glycolysis and glutaminolysis in
order to maintain the ΔG’ATP for viability. The RTG
response will activate MYC, Ras, HIF-1a, Akt, and m-
Tor etc, which are required to facilitate and to sustain
up-regulation of substrate level phosphorylation
[61,110,113,167,168]. In addition to facilitating the
uptake and metabolism of alternative energy substrates
through substrate level phosphorylation, MYC and Ras
further stimulate cell proliferation [136,169,170]. Part of
this mechanism also includes inactivation of pRB, the
function of which is dependent on mitochondrial activ-
ities and the cellular redox state [144]. Disruption of the
pRB signaling pathway will contribute to cell prolifera-
tion and neoplasia [6]. Hence, the growth signaling
abnormalities and limitless replicative potential of tumor
cells can be linked directly to the requirements of glyco-
lysis and glutaminolysis and ultimately to impaired
respiration.
It is interesting that RTG signaling also underlies

replicative life span extension in budding yeast. Yeast
longevity is manifested by the number of buds that a
mother cell produces before it dies [110]. The greater

the loss of mitochondrial function, the greater is the
induction of the RTG response, and the greater the
longevity (bud production) [108]. As mitochondrial
function declines with age, substrate level phosphoryla-
tion becomes necessary to compensate for the lost
energy from respiration if a cell is to remain alive. A
greater reliance on substrate level phosphorylation will
induce oncogene expression and unbridled proliferation,
which could underlie in part the enhanced longevity in
yeast [110,112,119]. When this process occurs in mam-
malian cells, however, the phenomenon is referred to as
neoplasia or “new growth”. We propose that replicative
life span extension in yeast and limitless replicative
potential in tumor cells can be linked through common
bioenergetic mechanisms involving impaired mitochon-
drial function.

Linking telomerase to mitochondrial function
Emerging evidence indicates that telomerase, a ribonu-
cleoprotein complex, plays a role in tumor progression
[171]. Although still somewhat sparse, data suggest that
mitochondrial dysfunction could underlie the relocation
of telomerase from the mitochondria, where it seems to
have a protective role, to the nucleus where it maintains
telomere integrity necessary for limitless replicative
potential [172-174]. Interestingly, telomerase activity is
high during early embryonic development when anaero-
bic glycolysis and cell proliferation is high, but telomer-
ase expression is suppressed in adult tissues, where
cellular energy is derived largely from respiration.
Further studies will be necessary to determine how
changes in telomerase expression and subcellular locali-
zation could be related to mitochondrial dysfunction,
elevated substrate level phosphorylation, and to the lim-
itless replication of tumor cells.

Evasion of programmed cell death (apoptosis)
Apoptosis is a coordinated process that initiates cell
death following a variety of cellular insults. Damage to
mitochondrial energy production is one type of insult
that can trigger the apoptotic cascade, which ultimately
involves release of mitochondrial cytochrome c, activa-
tion of intracellular caspases, and death [6]. In contrast
to normal cells, acquired resistance to apoptosis is a
hallmark of most types of cancer cells [6]. The evasion
of apoptosis is a predictable physiological response of
tumor cells that up-regulate substrate level phosphoryla-
tion for energy production following respiratory damage
during the protracted process of carcinogenesis. Only
those cells capable of making the gradual energy transi-
tion from respiration to substrate level phosphorylation
in response to respiratory damage will be able to evade
apoptosis. Cells unable to make this energy transition
will die and thus never become tumor cells.
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Numerous findings indicate that the genes and signal-
ing pathways needed to up-regulate and sustain sub-
strate level phosphorylation are themselves anti-
apoptotic. For example, sustained glycolysis requires
participation of mTOR, MYC, Ras, HIF-1a, and the
IGF-1/PI3K/Akt signaling pathways
[28,110,112,113,128,168]. The up-regulation of these
genes and pathways together with inactivation of tumor
suppressor genes like p53, which is required to initiate
apoptosis, will disengage the apoptotic-signaling cascade
thus preventing programmed cell death [142].
Abnormalities in the mitochondrial membrane poten-

tial (ΔΨm) can also induce expression of known anti-
apoptotic genes (Bcl2 and Ccl-XL) [111]. Tumor cells
will continue to evade apoptosis as long as they have
access to glucose and glutamine, which are required to
maintain substrate level phosphorylation. Glycolytic
tumor cells, however, can readily express a robust apop-
totic phenotype if their glucose supply is targeted. This
was clearly illustrated in experimental brain tumors
using calorie restriction [168,175,176]. Hence, the eva-
sion of apoptosis in tumor cells can be linked directly to
a dependency on substrate level phosphorylation, which
itself is a consequence of impaired respiratory function.

Sustained vascularity (angiogenesis)
Angiogenesis involves neovascularization or the forma-
tion of new capillaries from existing blood vessels and is
associated with the processes of tissue inflammation,
wound healing, and tumorigenesis [123,124,177,178].
Angiogenesis is required for most tumors to grow
beyond an approximate size of 0.2-2.0 mm [179]. Vascu-
larity is necessary in order to provide the tumor with
essential energy nutrients to include glucose and gluta-
mine, and to remove toxic tumor waste products such
as lactic acid and ammonia [49]. In addition to its role
in up-regulating glycolysis in response to hypoxia, HIF-
1a is also the main transcription factor for vascular
endothelial growth factor (VEGF), which stimulates
angiogenesis [168,180-182]. HIF-1a is part of the IGF-1/
PI3K/Akt signaling pathway that also indirectly influ-
ences expression of b FGF, another key angiogenesis
growth factor [168,183]. Hence the sustained vascularity
of tumors can be linked mechanistically to the metabolic
requirements of substrate level phosphorylation neces-
sary for tumor cell survival.

Invasion and metastasis
Metastasis is the general term used to describe the
spread of cancer cells from the primary tumor to sur-
rounding tissues and to distant organs and is a primary
cause of cancer morbidity and mortality [6,184,185].
Metastasis involves a complex series of sequential and
interrelated steps. In order to complete the metastatic

cascade, cancer cells must detach from the primary
tumor, intravasate into the circulation and lymphatic
system, evade immune attack, extravasate at a distant
capillary bed, and invade and proliferate in distant
organs [185-189]. Metastatic cells also establish a micro-
environment that facilitates angiogenesis and prolifera-
tion, resulting in macroscopic, malignant secondary
tumors. A difficulty in better characterizing the molecu-
lar mechanisms of metastasis comes in large part from
the lack of animal models that manifest all steps of the
cascade. Tumor cells that are naturally metastatic
should not require intravenous injection in animal mod-
els to initiate the metastatic phenotype [190,191]. In
vitro models, on the other hand, do not replicate all the
steps required for systemic metastasis in vivo. Although
the major steps of metastasis are well documented, the
process by which metastatic cells arise from within
populations of non-metastatic cells of the primary
tumor is largely unknown [185,192,193].
Several mechanisms have been advanced to account

for the origin of metastasis. The epithelial-mesenchymal
transition (EMT) posits that metastatic cells arise from
epithelial cells through a step-wise accumulation of gene
mutations that eventually transform an epithelial cell
into a tumor cell with mesenchymal features
[6,100,194-196]. The idea comes from findings that
many cancers generally arise in epithelial tissues where
abnormalities in cell-cell and cell-matrix interactions
occur during tumor progression. Eventually neoplastic
cells emerge that appear as mesenchymal cells, which
lack cell-cell adhesion and are dysmorphic in shape
[185]. These transformed epithelial cells eventually
acquire the multiple effector mechanisms of metastasis
[185]. Recent studies suggest that ectopic co-expression
of only two genes might be all that is necessary to facili-
tate EMT in some gliomas [197]. Considerable contro-
versy surrounds the EMT hypothesis of metastasis,
however, as EMT is not often detected in tumor patho-
logical preparations [198,199].
The macrophage hypothesis of metastasis suggests

that metastatic cells arise following fusions of macro-
phages or bone marrow derived hematopoietic cells with
committed tumor cells [193,200,201]. It is well docu-
mented that metastatic cancer cells, arising from a vari-
ety of tissues, possess numerous properties of
macrophages or cells of myeloid lineage including pha-
gocytosis and fusogenicity [190,202-208]. Macrophages
and other types of myeloid cells are already genetically
programmed to enter and exit tissues. Many of the nor-
mal behaviors of macrophages elaborate each step of the
metastatic cascade [204]. Fusion of a myeloid cell
(macrophage) with a tumor cell could produce a hybrid
cell possessing the replicative capacity of the tumor cell
and the properties of macrophages including the
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invasive and inflammatory properties [193,205,209]. As
myeloid cells are also part of the immune system, eva-
sion of immune surveillance would be another expected
characteristic of metastatic cells derived from macro-
phage-like cells [205]. Indeed, metastatic melanoma cells
can phagocytose live T-cells, which are supposed to kill
the tumor cells [210].
Fusions among metastatic myeloid cells at the primary

tumor site could, through reprogramming strategies,
also produce functional epithelial cells at secondary sites
potentially simulating the histological characteristics of
the original tissue of origin [200,211,212]. The macro-
phage fusion hypothesis would also fit with the roles of
hematopoietic stem cells in the metastatic niche
[208,213]. While the fusion hypothesis is attractive, it
would be an exception to the observations showing sup-
pressed tumorigenicity following hybridization between
normal cells and tumor cells [163], though some excep-
tions have been reported [205,206]. However, neither
the EMT hypothesis nor the macrophage fusion hypoth-
esis link the origin of metastasis to the Warburg effect
or to impaired energy metabolism.
Recent findings of cardiolipin abnormalities in sys-

temic metastatic mouse tumor cells with macrophage
properties can link metastasis to impaired respiratory
function in these cells [73,190,204]. Most tissues contain
resident phagocytes as part of their histoarchitecture or
stroma [214]. Tumor associated macrophages (TAM)
also become a major cell type in many cancers [215].
While TAM can facilitate the invasive and metastatic
properties of tumor cells [213,216], metastatic tumor
cells can also express several properties of TAM
[190,204].
Damage to the respiratory capacity of resident tissue

phagocytes, TAM, or macrophage hybrids would trigger
a RTG response, force a reliance on substrate level
phosphorylation for energy, and eventually, over time,
lead to dysregulated growth and genomic instability as
described in the general hypothesis. Metastatic behavior
would be an expected outcome following impaired
respiratory function in hematopoietic or myeloid-type
cells, as macrophages are already mesenchymal cells
that embody the capacity to degrade the extracellular
matrix, to enter and to exit tissues from the blood
stream, to migrate through tissues, and to survive in
hypoxic environments. A sampling of human metastatic
cancers with properties of macrophage-like cells include
brain [204,217-220], breast [221-225], lung
[202,225-229], skin [203,205,209,210,230-233], gastric
[234], colon [235,236], pancreas [237,238], bladder [239],
kidney [240], ovarian [241,242], and muscle [243,244]. It
is important to mention that these macrophage proper-
ties are expressed in the tumor cells themselves and are
not to be confused with similar properties expressed in

the non-neoplastic TAM, which are also present in
tumors and can facilitate tumor progression
[190,213,215,216,245]. Poor prognosis is generally asso-
ciated with those cancers that display characteristics of
macrophages [210,221]. Hence, damage to the respira-
tory capacity of myeloid or macrophage-like cells would
produce “rogue macrophages” leading to cancers with
the highest metastatic behavior.
The plethora of the cell surface molecules thought to

participate in metastatic tumor cell behavior are also
expressed on myeloid cells especially macrophages
[185,213]. A robust Warburg effect in human metastatic
lesions, detected with combined 18F-fluorodeoxyglucose-
positron emission tomography imaging, indicates that
metastatic cells have impaired energy metabolism like
that of most cancer cells [18,20,246]. Hence, invasion
and metastasis can be linked to impaired energy meta-
bolism if this impairment occurs in cells of hematopoie-
tic or myeloid origin.

Connecting the links
The path from normal cell physiology to malignant
behavior, where all major cancer hallmarks are
expressed, is depicted in Figure 2 and is based on the
evidence reviewed above. Any unspecific condition that
damages a cell’s oxidative phosphorylation, but is not
severe enough to induce apoptosis, can potentially initi-
ate the path to a malignant cancer. Some of the many
unspecific conditions contributing to carcinogenesis can
include inflammation, carcinogens, radiation (ionizing or
ultraviolet), intermittent hypoxia, rare germline muta-
tions, viral infections, and disruption of tissue morpho-
genetic fields. Any of these conditions can damage the
structure and function of mitochondria thus activating a
specific RTG response in the damaged cell. If the mito-
chondrial damage persists, the RTG response will per-
sist. Uncorrected mitochondrial damage will require a
continuous compensatory energy response involving
substrate level phosphorylation in order to maintain the
ΔG’ATP of approximately -56 kJ/mol for cell viability.
Tumor progression is linked to a greater dependence on
substrate level phosphorylation, which eventually
becomes irreversible. As the integrity of the nuclear gen-
ome is dependent on the efficiency of mitochondrial
energy production, the continued impairment of mito-
chondrial energy production will gradually undermine
nuclear genome integrity leading to a mutator pheno-
type and a plethora of somatic mutations. Activation of
oncogenes, inactivation of tumor suppressor genes, and
aneuploidy will be the consequence of protracted mito-
chondrial dysfunction. These gene abnormalities will
contribute further to mitochondrial dysfunction while
also enhancing those energy pathways needed to up-reg-
ulate and sustain substrate level phosphorylation. The
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greater the dependency on substrate level phosphoryla-
tion over time the greater will be the degree of malig-
nancy. Damage to the respiratory capacity of tissue
myeloid cells can also produce invasive and metastatic
properties according to the macrophage hypothesis of
metastasis. This metabolic scenario can account for all
major acquired characteristics of cancer to include the
Warburg effect.

Implications of the hypothesis to cancer management
If cancer is primarily a disease of energy metabolism as
reviewed here, then rational approaches to cancer man-
agement can be found in therapies that specifically tar-
get energy metabolism. Although mitochondrial
replacement therapy could in principle restore a more
normal energy metabolism and differentiated state to
tumor cells, it is unlikely that this therapeutic approach
would be available in the foreseeable future. However,
numerous studies show that dietary energy restriction is
a general metabolic therapy that naturally lowers circu-
lating glucose levels and significantly reduces growth
and progression of numerous tumor types to include

cancers of the mammary, brain, colon, pancreas, lung,
and prostate [10,247-256]. The influence of energy
restriction on tumor growth, however, can depend on
host background and tumor growth site, as energy
restriction is effective in reducing the U87 human
glioma when grown orthotopically in the brain of
immunodeficient SCID mice [175], but not when grown
outside the brain in non-obese diabetic SCID mice
[257]. Nevertheless, the bulk of evidence indicates that
dietary energy restriction can retard the growth rate of
many tumors regardless of the specific genetic defects
expressed within the tumor.
Targeting Glucose
Reduced glucose availability will target aerobic glycolysis
and the pentose phosphate shunt; pathways required for
the survival and proliferation of many types of tumor
cells. Dietary energy restriction specifically targets the
IGF-1/PI3K/Akt/HIF-1a signaling pathway, which
underlies several cancer hallmarks to include cell prolif-
eration, evasion of apoptosis, and angiogenesis
[168,175,176,250,251,254,258-265]. Calorie restriction
also causes a simultaneous down-regulation of multiple

Figure 2 Linking the hallmarks of cancer to impaired energy metabolism. See text for discussion. SLP and OxPhos represent substrate level
phosphorylation and oxidative phosphorylation, respectively. The progressive damage to mitochondria during carcinogenesis is illustrated with a
change in shape.

Seyfried and Shelton Nutrition & Metabolism 2010, 7:7
http://www.nutritionandmetabolism.com/content/7/1/7

Page 12 of 22



genes and metabolic pathways regulating glycolysis
[266-268]. This is important, as enhanced glycolysis is
required for the rapid growth and survival of many
tumor cells [21,22]. In addition, recent findings suggest
that a large subset of gliomas have acquired mutations
in the TCA cycle gene, isocitrate dehydrogenase (IDH1)
[105]. Such mutations are expected to limit the function
of the TCA cycle, thus increasing the glycolytic depen-
dence of these tumors. Tumors with these types of
mutations could be especially vulnerable to management
through dietary energy restriction. Hence, dietary energy
or calorie restriction can be considered a broad-spec-
trum, non-toxic metabolic therapy that inhibits multiple
signaling pathways required for progression of malignant
tumors regardless of tissue origin.
Besides lowering circulating glucose levels, dietary

energy restriction elevates circulating levels of fatty acids
and ketone bodies (b-hydroxybutyrate and acetoacetate)
[266,269,270]. Fats and especially ketone bodies can
replace glucose as a primary metabolic fuel under cal-
orie restriction. This is a conserved physiological adapta-
tion that evolved to spare protein during periods of
starvation [271,272]. Many tumors, however, have
abnormalities in the genes and enzymes needed to
metabolize ketone bodies for energy [273-275]. A transi-
tion from carbohydrate to ketones for energy is a simple
way to target energy metabolism in glycolysis-dependent
tumor cells while enhancing the metabolic efficiency of
normal cells [276,277]. The shift from the metabolism
of glucose to the metabolism of ketone bodies for
energy is due largely to the shift in circulating levels of
insulin and glucagon, key hormones that mediate energy
metabolism. Insulin, which stimulates glycolysis, is
reduced under dietary restriction, while glucagon, which
inhibits glycolysis and mobilizes fats, is increased. Glu-
cose reduction not only reduces insulin, but also reduces
circulating levels of IGF-1, which is necessary for driving
tumor cell metabolism and growth [168,278]. Glucocor-
ticoids, which enhance glucagon action and the stress
response, are also elevated under dietary energy restric-
tion [261]. The shift in levels of these metabolic hor-
mones would place greater physiological stress on the
tumor cells than on normal cells since the tumor cells
lack metabolic flexibility due to accumulated genetic
mutations [10,15,277].
Inferences that tumor cells have a growth advantage

over normal cells are inconsistent with principles of evo-
lutionary biology [10,277]. Although viewed as a growth
advantage, the dysregulated growth of tumor cells is
actually an aberrant phenotype. How can tumor cells
that express multiple mutations and mitochondrial
abnormalities be more “fit” or “advantaged” than normal
cells that possess a flexible genome, normal respiratory
capacity, and adaptive versatility? The short answer is

that they are not. Normal cells can grow much faster
than tumor cells during normal wound repair. Metabo-
lism of ketone bodies and fatty acids for energy requires
inner mitochondrial membrane integrity and efficient
respiration, which tumor cells largely lack [10,273,278].
In contrast to the tumor cells, normal cells evolved to
survive extreme shifts in the physiological environment
and can readily adapt to fat metabolism when glucose
becomes limiting. Glucose transporter expression is
higher in mouse brain tumor cells than in neighboring
normal cells when circulating glucose levels are high,
but the transporter phenotype of these cells becomes
reversed under dietary energy restriction [168]. These
findings highlight the different responses to energy
stress between the metabolically incompetent tumor
cells and competent normal cells. Consequently, a shift
in energy metabolism from glucose to ketone bodies
protects respiratory competent normal cells while tar-
geting the genetically defective and respiratory chal-
lenged tumor cells, which depend more heavily on
glycolysis than normal cells for survival [10,278,279].
Proof of concept for cancer metabolic therapy was

illustrated for the management of malignant astrocy-
toma in mice, and malignant glioma in children
[273,276,280]. Prostate and gastric cancer also appears
manageable using low carbohydrate ketogenic diets
[252,281,282]. Recent studies show that dietary energy
restriction enhances phosphorylation of adenosine
monophosphate kinase (AMPK), which induces apopto-
sis in glycolytic-dependent astrocytoma cells, but pro-
tects normal brain cells from death [283]. This further
illustrates the differential response of normal cells and
tumor cells to energy stress.
A possible concern is how any therapy, which reduces

food intake and body weight, can be recommended to
individuals who might be losing body weight because of
cancer cachexia. Cancer cachexia generally involves
anorexia, weight loss, muscle atrophy, and anemia
[284,285]. Although some cancer patients could be
obese, rapid weight loss from cachexia involving both
proteins and fat is a health concern [285]. It is impor-
tant to recognize that pro-cachexia molecules such as
proteolysis-inducing factor are released from the tumor
cells into the circulation and contribute to the cachexia
phenotype [286,287]. By targeting the glycolytically
active tumor cells that produce pro-cachexia molecules,
restricted diet therapies can potentially reduce tumor
cachexia [278,287]. These therapies could be supple-
mented with omega-3 fatty acids, which can also reduce
the cachexia phenotype [285]. Omega-3 fatty acids from
fish oil also have the benefit of maintaining low glucose
while elevating ketone levels. Once the tumor becomes
managed, individuals can increase caloric consumption
to achieve weight gain.
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Metabolic therapies involving calorie restriction
should be effective in targeting energy-defective cells
within a given tumor, and for managing a broad range
of glycolysis-dependent tumors. There are no known
drugs that can simultaneously target as many tumor-
associated signaling pathways as can calorie restriction
[168]. Hence, energy restriction can be a cost-effective
adjuvant therapy to traditional chemo- or radiation
therapies, which are more toxic, costly, and generally
less focused in their therapeutic action, than is dietary
energy restriction.
In addition to dietary energy restriction, several small

molecules that target aerobic glycolysis are under consid-
eration as novel tumor therapeutics to include 2-deoxyglu-
cose, lonidamine, 3-bromopyruvate, imatinib, oxythiamine,
and 6-aminonicotinimide among others [129,288-290].
Toxicity can become an issue, however, as some of these
compounds target pathways other than glycolysis or
nucleotide synthesis and high dosages are sometimes
required to achieve efficacy in vivo. A recent study found
significant therapeutic synergy in combining low doses of
2-deoxyglucose with a calorie restricted ketogenic diet for
managing malignant astrocytoma in mice [291].
It appears that the therapeutic efficacy of anti-glycoly-

tic cancer drugs could be significantly enhanced when
combined with dietary energy restriction. The adminis-
tration of anti-glycolytic drugs together with energy
restricted diets, which lower circulating glucose levels
while elevating ketone levels, could act as a powerful
double “metabolic punch” for the rapid killing of glyco-
lysis dependent tumor cells. This therapeutic approach
could open new avenues in cancer drug development, as
many drugs that might have minimal therapeutic effi-
cacy or high toxicity when administered alone could
become therapeutically relevant and less toxic when
combined with energy restricted diets.
Targeting the microenvironment
Some tumors behave as wounds that do not heal [292].
Growth factors and cytokines released by fibroblasts and
macrophages, cells programmed to heal wounds, can
actually provoke chronic inflammation and tumor pro-
gression [213,245]. Part of the wound healing process
also involves degradation of the extracellular matrix and
enhancement of angiogenesis, which further contribute
to tumor progression [180,213]. Dietary energy restric-
tion targets inflammation and the signaling pathways
involved with driving tumor angiogenesis [168,258,293].
Indeed, calorie restriction is considered a simple and
effective therapy for targeting tumor angiogenesis and
inflammation [176,250,279]. As calorie or dietary energy
restriction is a systemic therapy that simultaneously tar-
gets both the tumor cells as well as the tumor microen-
vironment, this approach can be effective in retarding
tumor progression.

Targeting Glutamine
Although dietary energy restriction and anti-glycolytic
cancer drugs will have therapeutic efficacy against many
tumors that depend largely on glycolysis and glucose for
growth, these therapeutic approaches could be less
effective against those tumor cells that depend more
heavily on glutamine than on glucose for energy
[47,65-67]. Glutamine is a major energy metabolite for
many tumor cells and especially for cells of hematopoie-
tic or myeloid lineage [47,49,294,295]. This is important
as cells of myeloid lineage are considered the origin of
many metastatic cancers [17,190,204,221,230]. Moreover,
glutamine is necessary for the synthesis of those cyto-
kines involved in cancer cachexia including tumor
necrosis factor alpha, (TNF-a) and the interleukins 1
and 6 (IL-1 and -6) [66,284,295,296]. This further indi-
cates a metabolic linkage between metastatic cancer and
myeloid cells, e.g., macrophages. It therefore becomes
important to also consider glutamine targeting for the
metabolic management of metastatic cancer.
Glutamine can be deaminated to glutamate and then

metabolized to a-ketoglutarate, a key metabolite of the
TCA cycle [49,67]. This occurs either through transami-
nation or through enhanced glutamate dehydrogenase
activity depending on the availability of glucose [67].
Besides generating energy through substrate level phos-
phorylation in the TCA cycle, i.e., transphosphorylation
of GTP to ATP, the anapleurotic effect of glutamine can
also elevate levels of metabolic substrates, which stimu-
late glycolysis [49,66]. Glutamine metabolism can be tar-
geted in humans using the glutamine binding drug,
phenylacetate, or the glutamine analogue DON (6-
Diazo-5-oxo-L-norleucine) [297]. Toxicity, however, can
be an issue in attempts to target glutamine metabolism
using DON [130,294]. Recent studies suggest that the
green tea polyphenol (EGCG) could target glutamine
metabolism by inhibiting glutamate dehydrogenase
activity under low glucose conditions [67]. This and
other glutamine-targeting strategies could be even more
effective when combined with energy restricting diets,
which lower glucose levels while elevating ketone
bodies. Hence, effective non-toxic targeting of both glu-
cose and glutamine metabolism should be a simple ther-
apeutic approach for the global management of most
localized and metastatic cancers.

Implications of the hypothesis to cancer prevention
If impaired mitochondrial energy metabolism underlies
the origin of most cancers as proposed here, then pro-
tecting mitochondria from damage becomes a logical
and simple approach for preventing cancer. It is well
documented that the incidence of cancer can be signifi-
cantly reduced by avoiding exposure to those agents or
conditions that provoke tissue inflammation such as
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smoking, alcohol, carcinogenic chemicals, ionizing radia-
tion, obesity etc [1,25,298]. Chronic inflammation,
regardless of origin, damages tissue morphogenetic fields
that eventually produce neoplastic cells [123,124,166].
Part of this tissue damage will involve injury to the
mitochondria in the affected cells. The prevention of
inflammation and damage to the tissue microenviron-
ment will go far in reducing the incidence of most can-
cers. Vaccines against some oncogenic viruses can also
reduce the incidence of cancers, as these viruses can
damage mitochondria in infected tissues. Hence, simply
reducing exposure to cancer risk factors, which produce
chronic inflammation and mitochondrial damage, will
reduce the incidence of at least 80% of all cancers
[1,25]. In principle, there are few chronic diseases more
easily preventable than cancer.
In addition to avoiding exposure to established cancer

risk factors, the metabolism of ketone bodies protects
the mitochondria from inflammation and damaging
ROS. ROS production increases naturally with age and
damages cellular proteins, lipids, and nucleic acids.
Accumulation of ROS decreases the efficiency of mito-
chondrial energy production. The origin of mitochon-
drial ROS comes largely from the spontaneous reaction
of molecular oxygen (O2) with the semiquinone radical
of coenzyme Q, .QH, to generate the superoxide radical
O2-

. [40,84,299]. Coenzyme Q is a hydrophobic mole-
cule that resides in the inner mitochondrial membrane
and is essential for electron transfer. Ketone body meta-
bolism increases the ratio of the oxidized form to the
fully reduced form of coenzyme Q (CoQ/CoQH2) [40].
Oxidation of the coenzyme Q couple reduces the
amount of the semiquinone radical, thus decreasing
superoxide production [84].
Since the cytosolic free NADP+/NADPH concentra-

tion couple is in near equilibrium with the glutathione
couple, ketone body metabolism will also increase the
reduced form of glutathione thus facilitating destruction
of hydrogen peroxide [10,84,300]. The reduction of free
radicals through ketone body metabolism will therefore
reduce tissue inflammation provoked by ROS while
enhancing the energy efficiency of mitochondria. Ketone
bodies are not only a more efficient metabolic fuel than
glucose, but also possess anti-inflammatory potential.
Metabolism of ketone bodies for energy will maintain
mitochondrial health and efficiency thus reducing the
incidence of cancer.
The simplest means of initiating the metabolism of

ketone bodies is through dietary energy restriction with
adequate nutrition. It is important to emphasize adequate
nutrition, as calorie restriction associated with malnutri-
tion can potentially increase cancer incidence [301-303].
Consequently, consumption of foods containing the
active groups of respiratory enzymes (iron salts,

riboflavin, nicotinamide, and pantothenic acid) could be
effective in maintaining health when combined with diet-
ary energy restriction [25]. The lowering of circulating
glucose levels through calorie restriction facilitates the
uptake and metabolism of ketone bodies for use as an
alternative respiratory fuel [84,273,278]. The metabolism
of ketone bodies increases succinate dehydrogenase activ-
ity while enhancing the overall efficiency of energy pro-
duction through respiration [304,305]. In essence, dietary
energy restriction and ketone body metabolism delays
entropy [270]. As cancer is a disease of accelerated
entropy [8,25], dietary energy restriction targets the very
essence of the disease.
It is well documented that dietary energy restriction

can reduce the incidence of both inherited and acquired
cancers in experimental animals [256,258,306-309]. Evi-
dence also indicates that dietary energy restriction can
reduce the incidence of several human cancers
[310,311]. The implementation of periodic dietary
energy restriction, which targets multiple cancer provok-
ing factors, can be a simple and cost effective life-style
change that is capable of reducing the incidence of can-
cer. Dietary energy restriction in rodents, however, is
comparable to water only therapeutic fasting or to very
low caloric diets (500-600 kcal/day) in humans [270]. In
light of this fact, it remains to be determined if mem-
bers of our species are willing or motivated enough to
adopt the life style changes necessary to prevent cancer.

Conclusions
Evidence is reviewed supporting a general hypothesis
that cancer is primarily a disease of energy metabolism.
All of the major hallmarks of the disease can be linked
to impaired mitochondrial function. In order to main-
tain viability, tumor cells gradually transition to sub-
strate level phosphorylation using glucose and glutamine
as energy substrates. While cancer causing germline
mutations are rare, the abundance of somatic genomic
abnormalities found in the majority of cancers can arise
as a secondary consequence of mitochondrial dysfunc-
tion. Once established, somatic genomic instability can
contribute to further mitochondrial defects and to the
metabolic inflexibility of the tumor cells. Systemic
metastasis is the predicted outcome following protracted
mitochondrial damage to cells of myeloid origin. Tumor
cells of myeloid origin would naturally embody the
capacity to exit and enter tissues. Two major conclu-
sions emerge from the hypothesis; first that many can-
cers can regress if energy intake is restricted and,
second, that many cancers can be prevented if energy
intake is restricted. Consequently, energy restricted diets
combined with drugs targeting glucose and glutamine
can provide a rational strategy for the longer-term man-
agement and prevention of most cancers.
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