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Abstract

We model the upcoming U.S. presidential election utilizing a Bayesian
framework in combination with Markov Chain Monte Carlo methods as
provided by rJAGS. Our primary data set consists of polling data from
throughout the entire year prior to the elections in 2004, 2008, and 2012,
in addition to the actual popular vote results in 2004 and 2008. After
attempting to predict the 2004 and 2008 elections, we find that prediction
accuracy is maximized when we only consider (for each state) the 30 polls
taken most closely in time to election day, rather than all of the available
polling data. Utilizing an informative prior that takes into account the
results of the 2004 and 2008 elections, our analysis indicates that President
Obama has a 99.9% chance of winning the 2012 presidential election, and
that he is expected to win with 303 electoral votes.
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1 Introduction

Election prediction in the United States is attempted by scientists across
the country and the world, with statisticians utilizing methodologies across the
entire Frequentist-Bayesian spectrum. The U.S. presidential election in particu-
lar raises interesting challenges as the voting dynamic in every state is different,
requiring the construction of complex models that take into account the nuances
in voting behavior. Each state’s historical voting trends, however, also provide
information that can greatly increase accuracy if incorporated into a prediction
model (Rigdon, 2009). As a frequentist approach cannot necessarily incorporate
this prior information, we elect to utilize a Bayesian methodology to predict the
2012 U.S. presidential election.

Our framework uses a Bayesian estimator that allows one to apply both
prior and current information for each state to determine each candidate’s prob-
ability of winning that state in the presidential election. The estimators incorpo-
rate both the previous elections results (to capture each state’s party tendency)
and current polling data (to capture each state’s current candidate tendency).

As such, we utilize an informative prior based on long-term voting trends
within a state and different probability distributions, as has been explored be-
fore. Once we estimate the probability that a candidate will win a state, these
values can be used to determine the probability that each candidate will win
the election by using a Monte Carlo simulation. The idea of using Bayesian
estimation rather than frequentist estimation techniques has been explored by
others (Jackman & Rivers, 2001; Kaplan & Barnett, 2003), but we use the 2008
data to take an active approach to tuning the parameters of the MC chains, as
well as tuning the number of polls that are actually considered in the likelihood
function.

Our article is organized as follows. The next section provides a dis-
cussion of the polling data set used for our prediction. Next, we describe the
Bayesian methodology used to estimate each candidate’s probability of winning
each state’s Electoral College votes. The following section uses these estima-
tors, coupled with our polling data, to retrospectively provide a prediction and
analysis of the 2008 U.S. presidential election. Lastly, we discuss the results
regarding the 2012 election.
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2 Data

For each of 2004, 2008, and 2012, we utilized publicly available polling
data (from various polling agencies in each state) throughout the year prior
to the election. We opted not to utilize economic data such as unemployment
as we believe the effects of these factors are already captured by polling data.
As such, the comprehensive polling data matrix for a given election consists of
four columns: (A) the date the poll was taken, (B) the percentage of responses
in favor of the Democratic candidate, (C) the percentage of responses in favor
of the Republican candidate, and (D) the total number of responses for the
particular poll.

3 Methodology

3.1 Likelihood

Let pij denote the true proportion of voters in state j who are voting for
candidate i in the election (for simplicity, let i = 1 correspond to the Democratic
candidate, i=2 correspond to the Republican candidate, i = 3 collectively cor-
respond to all third-party candidates or to voters who have declared that they
are still undecided). To obtain an expression for the likelihood function, we
then let Xj = (X1j , X2j , X3j) denote the random vector of sample proportions
obtained from a poll in state j. Then, if the poll for state j has nj respondents,
it follows that Xj = (X1j , X2j , X3j) ∼ Multinomial (nj , p1j , p2j , p3j), and the
joint probability density of Xj is:

gj(Xj|pj) =
nj !

x1j !x2j !x3j !
p
x1j

1j p
x2j

2j p
x3j

3j (1)

Finally, if we let kj denote the number of polls available for state j, we

create a comprehensive polling matrix Aj = (X1
j , . . . ,X

kj

j )T. In the past, other
authors have generally treated Aj = all available polling data for state j in
an effort to utilize as much information as possible; we, however, found that it
would be more optimal to limit the range of our polling data with a modified
A′j ⊂ Aj. The details of how we chose this optimal subset of data from the
comprehensive polling data is discussed in 3.6 Parameter Tuning.

3.2 Informative Prior

Now the joint prior distribution of the true voting proportions in state j
is pj = (p1j , p2j , p3j) ∼ Dirichlet(b1j , b2j , b3j), where a Dirichlet distribution is
chosen to allow for conjugacy. Hence, the joint probability density function for
state j can be written as:

fj(p1j , p2j , p3j) = cjp
b1j−1
1j p

b2j−1
2j p

b3j−1
3j (2)
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pij ≥ 0 for i = 1, 2, 3;

3∑
i=1

pij = 1 (3)

where cj = Γ(
∑3

i=1 bij)/
∏3

i=1 Γ(bij).
Now to find the marginals of this distribution, we first rewrite the density

function so that there are only two parameters and then we integrate over p2j ,
as follows:

f1j(p1j) =

∫ 1−p1j

0

cjp
b1j−1
1j p

b2j−1
2j (1− p1j − p2j)

b3j−1dp2j (4)

= cjp
b1j−1
1j

∫ 1−p1j

0

p
b2j−1
2j (1− p1j − p2j)

b3j−1dp2j (5)

= c′jp
b1j−1
1j (1− p1j)

b2j+b3j−1, 0 ≤ p1 ≤ 1 (6)

where c′j = cj
Γ(b2j)Γ(b3j)
Γ(b2j+b3j) =

Γ(
∑3

i=1 bij)

Γ(b1j)Γ(b2j+b3j) . Due to the symmetry of the Dirichlet

joint distribution, it follows that for each i and each j:

fij(pij) ∼ Beta(bij ,

3∑
k=1

bkj − bij). (7)

Hence, to create an informative Beta prior over each pij , we assigned
a hyperparameter bij equal to a weighted average of p̂2008

ij and p̂2004
ij , the true

proportions of voters in state j who voted for category i in 2004 and in 2008.
Furthermore, each hyperparatmer was multiplied by a constant of 50 to ensure∑3

k=1 pkj = 50 in an effort to create optimal variance in each of the marginal
Beta distributions as formulated in (7). As such, we calculated, in the framework
of equation (2), that:

bij = (0.5 · p̂2004
ij + 0.5 · p̂2008

ij ) · 50, for i ≤ 2 (8)

bij = 50− b1j − b2j , for i = 3 (9)

3.3 *Informative Prior Data Adjustments

When using an informative formulation of the hyperparameters, we
found that there were some states that had a 0% prior probability of undecided
or third-party voters (i.e. b3j = 0), in which case the prior probability b3j was

adjusted to 0.01. Additionally, to ensure that
∑3

i=1 bij = 50, the hyperparame-
ters for the votes going to the Democratic candidate (b1j) and the Republican
candidate (b2j) were decreased by 50·0.005 in this case. Hence, for the special
case when b3j = 0, we used the following adjusted hyperparameters:

b′ij = (0.5 · p̂2004
ij + 0.5 · p̂2008

ij − 0.005) · 50, for i ≤ 2 (10)

b′ij = 0.01 · 50, for i = 3 (11)
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3.4 *Prior with Hierarchical Model

To account for the possible interstate dependence of voting tendencies,
a hierarchical model could also be utilized such that the prior Dirichlet distri-
butions for each state are identical. This is formulated by creating identical
hyperparamaters on the hyper prior distribution of bij . In this case, we have:

bij ∼ Gamma(0.5 · p̂2004
i· + 0.5 · p̂2008

i· ,
1

4
(Var p2004

i· + Var p2008
i· )). (12)

where Var p200k
i· is a measure of the variance of polling samples in the year 200k.

In general, however, we found that such a hierarchical model provided no
additional prediction accuracy for the 2008 election, so we will not be utilizing
such a model for the 2012 prediction.

3.5 Posterior

Lastly, given the likelihood function g(Xj|pj) and the joint prior f(pj)
we can now compute the posterior distribution of pj as:

hj(pj|Xj) ∼ gj(Xj|pj) · fj(pj) (13)

∼ nj !

x1j !x2j !x3j !
p
x1j

1j p
x2j

2j p
x3j

3j p
b1j−1
1j p

b2j−1
2j p

b3j−1
3j (14)

∼ p
x1j+b1j−1
1j p

x2j+b2j−1
2j p

x3j+b3j−1
3j (15)

Hence it follows that hj(pj|Xj) ∼ Dirichlet(x1j + b1j , x2j + b2j , x3j + b3j).
Then, in predicting the election we drew samples of p̃ij from the posterior

hj(pj|Xj) and calculated the number of total electoral votes going to candidate
i in each sample as:

X̃i =

51∑
j=1

E(j) · 1{p̃ij=max
k

p̃kj} (16)

where E(j) := the number of electoral votes that state j contributes to the
Electoral College.
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3.6 Parameter Tuning

In an effort to maximize prediction accuracy, rather than sampling di-
rectly from the posterior Dirichlet distribution, we utilized the Monte Carlo
algorithm provided by rJAGS, which incorporates the prior and likelihood for-
mulations (discussed above) to converge to a posterior distribution of the true
voting proportion in each state. In utilizing this methodology, we took a ma-
chine learning approach by tuning the parameters of the rJAGS algorithm. We
accomplished this ”parameter tuning” by running the Monte Carlo chains for
the 2008 election (done by incorporating solely the 2004 election results into the
hyperparameters), determining the parameters of the Monte Carlo algorithm
that maximized accuracy, and then utilizing these ideal parameters when run-
ning the algorithm on the 2012 election.

Firstly, through trial and error we discovered that we could optimize our
accuracy in predicting the 2008 election by using two different ways of limiting
the polling range: (1) Use only those polls that were taken during a pre-specified
interval of days (e.g. only polls taken between 30 and 90 days prior to the elec-
tion); or (2) Use only a pre-specified number of recent polls (e.g. only the 20
most recent polls for each state). We then tuned the ideal parameters for each
of these techniques when predicting the 2008 election and found that, in gen-
eral, technique 2 of limiting the polling range performed better. We found that
the ideal parameter for technique 2 involved constructing A′j such that no more
than the 30 most recent polls were utilized for each state j.

Secondly, when running the Monte Carlo algorithm for the 2008 election,
we tried to obtain adequate convergence of each state’s posterior distribution
by tuning the following five parameters: the number of adapt steps, number
of burn-in steps, number of chains, number of saved steps, and the number of
steps to thin. We found that the accuracy of our predictions was maximized and
adequate convergence was obtained when using 500 adapt steps, 1000 burn-in
steps, 3 chains, 10000 saved steps, and 1 step to thin.

To provide examples of the strength of the convergence of our posterior
distributions (for our most accurate 2012 results), we have included convergence
and posterior distribution plots for nine states in 7 Appendix.
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4 Retrospective Analysis

4.1 General Results

In our most accurate analysis of the 2008 election, we predicted that
Barrack Obama would win the election with 99.98% probability, a 95% central
interval of [347,371] electoral votes (which contains the actual electoral vote
count of 365), and a median of 357 electoral votes. Indeed, our results show
that Barrack Obama had a 18.32% chance of obtaining more than 365 votes.

Our prediction and the actual electoral map is shown below, where higher
color intensity indicates a larger margin of victory for the party of that color:
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Analysis of the predicted versus actual state maps reveals a couple of
interesting observations about the model. Our predictions were nearly all ac-
curate at the state level except for Missouri and Indiana, which were predicted
to be Republican and Democratic, respectively. The net result of these two in-
correct predictions is to give the Republican candidate one extra vote, because
Indiana has 1 more electoral vote than Missouri.

We can also see that our model tends to overestimate the margin of
victory for both candidates; our marginal posterior mean plot tends to be the
same color but darker than the corresponding actual results. In general, we
tend to correctly predict the state-level winners but overestimate the winner’s
margin of victory.

A histogram of the sample taken from our converged posterior distribu-
tion for the 2008 election is shown below:

4.2 Sensitivity Analysis

We also tested the prediction accuracy of our model using an uninforma-
tive prior (bij = 50/3), in which case we concluded that Barrack Obama would
win the 2008 election with a central 95% interval of [347, 371] electoral votes
and a median of 357 votes. These results are identical to our results obtained
when utilizing and informative prior.
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5 Results & Conclusion

5.1 General Results

In an analysis of the 2012 election, we predicted that Barrack Obama
will win the election with 99.9% probability, inside the central 95% interval of
[285,332] electoral votes, with a median of 303 electoral votes, and with a mean
of 307.8 electoral votes.

The general 2012 results are shown graphically below:
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5.2 Romney-Optimistic Scenario

We also attempted to model a Romney-Optimistic scenario by maxi-
mizing Mitt Romney’s probability of winning the election with respect to the
tuning parameters of limiting the poll range (as discussed in 3.6 Parameter
Tuning). Hence, by using only the 3 most recent polls, we found that Barrack
Obama will win the election with 96.7% probability and a 95% central interval
of [269,332] electoral votes.

The Romney-Optimistic results are shown graphically below:
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In particular, we found that Ohio is the only swing state whose mean
differentials in the 3.3% of Romeny-Optimistic posterior samples in which Mitt
Romney wins the election and whose mean differentials in the 96.7% of samples
in which Barrack Obama wins had opposite signs (where the mean differential
for state j is defined as p̂1j − p̂2j). Hence, if, a priori, we gave Ohio to Mitt
Romney, we found that his chances of winning the election were increased to
roughly 22%, as shown below:

5.3 Sensitivity Analysis

We also tested the prediction accuracy of our general and Romney-
Optimistic models using uninformative priors. For the general model, we con-
cluded that Barrack Obama will win the 2012 election with a central 95% in-
terval of [285, 332] electoral votes, a median of 303 electoral votes, and a mean
of 307.8 electoral votes.

Our results for the Romney-Optimistic scenario utilizing an uninforma-
tive prior gave Barrack Obama a central 95% interval of [270, 332] electoral
votes, a median of 303 electoral votes, a mean of 303.3 electoral votes, and an
overall 97.24% chance of winning.

Both of these results are nearly identical to the results obtained from the
models utilizing informative priors.
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7 Appendix (Convergence Examples)

7.1 California, Colorado, and Connecticut
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7.2 Florida, Georgia, and Hawaii
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7.3 Vermont, Virginia, and Washington
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