
IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1252 | P a g e

A Task Scheduling Approach in Hadoop Environment

with Dynamic Load
Hemant Chilhate, Dr. Nishchol Mishra, Priyamwada Sharma

School of Information technology RGPV, Bhopal, India

Abstract - With the advent of digital technology and smart

devices, a large amount of digital data is being generated

every day. Advances in digital sensors and communication

technology have enormously added to this huge amount of

data, capturing valuable information for enterprises,

businesses. This Big data is hard to process using

conventional technologies and calls for massive parallel

processing. Technologies that are able to store and process

exabytes, terabytes, petabytes of data without tremendously

raising the data warehousing cost is a need of time. Ability to

derive insights from this massive data has the potential to
transform how live, think and work.Benefits from Big data

analysis range from healthcare domain to government to

finance to marketing and many more.

Keyword - Big Data

I. INTRODUCTION

Big data open source technologies have gained quite a bit of

traction due to the demonstrated ability to parallely process

large amounts of data. Both parallel processing and technique

of bringing computation to data has made it possible to

process large datasets at high speed. These key features and

ability to process vast data has been a great motivation to take

a look into the architecture of the industry leading big data

processing framework by Apache, Hadoop. Understand how

this big data storage and analysis is achieved and

experimenting with RDBMS vsHadoop environment has
proven to provide a great insight into much talked about

technology [2].

Hadoop has drawn the inspiration from Google's file system

(GFS). Hadoop was spun from in 2006 to become a sub-

project and was renamed to hadoop. Hadoop does not rely on

expensive, high efficiency hardware. Instead it leverages on

benefits from distributed parallel processing of huge amounts

of data across commodity, low-cost servers. This
infrastructure stores as well as processes the data, and can

easily scale to changing needs. Hadoop is hypothetical to have

boundless scale up capability and tentatively no data is too

large to handle by distributed architecture [8].Hadoop is

designed to run on commodity hardware and can scale up or

down without system interruption. It consists of three main

functions: storage, processing and resource management.

It is hard to omit hadoop while talking about big data. Hadoop

is the open source software platform managed by the apache

software foundation. It’s the most widely recognized platform

to efficiently and cost-effectively store and manage enormous

amount of data.

II. BIGDATA

The amount of data generated every day in the world is

exploding. The increasing volume of digital and social media

and internet of things, is fueling it even further. The rate of

data growth is astonishing and this data comes at a speed, with
variety (not necessarily structured) and contains wealth of

information that can be a key for gaining an edge in

competing businesses. Ability to analyze this enormous

amount of data is bringing a new era of productivity growth,

innovation and consumer surplus. “Big data is the term for a

collection of data sets so large and complex that it becomes

difficult to process it using traditional database management

tools or data processing applications. The challenges include

the areas of capture, duration, storage, search, sharing,

transfer, analysis, and visualization of this data”.

III. PROPOSED WORK

In this Work the dynamics involved in big data technologies

mainly Hadoop, distributed data storage and analysis

architecture of hadoop, setup and explore hadoop Cluster on

Amazon Elastic Cloud. As well, conduct performance

benchmarking on RDBMS and hadoop cluster.

3.1. Apache Spark

A. Apache Spark is a lightning debauchedcluster-

computingintended for fast computation. It was

constructed on topmost of hadoopmapreduce and it

spreads the mapreduce model to resourcefully use

additional types of computations thatcontains interactive

queries plus stream processing.

B. Industries or Trades are exhausting hadoop widely to

analyze their data groups. The motive is that hadoop

framework is centered on a modest programming model

(mapreduce) and it allows a computing resolution that is
accessible, flexible, fault-tolerant and price effective.

Here, the key concern is to uphold speed in processing

big datasets in terms of waiting time among queries and

waiting time to outing the program.

C. Spark was presented by apache software foundation for

rapid up the hadoop computational computing software

method.

D. As against a mutual belief, spark is not analtered version

of hadoop and is not, actually, reliant on hadoop as it has

its personal cluster management. Hadoop is impartial one

of the methods to implement spark.

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1253 | P a g e

E. The chief feature of spark is the situation in-memory

cluster computing which upsurges the processing speed of

a software

3.2. Evolution of Apache Spark

Spark is a sub-project of Hadoop, developed by MateiZaharia

at AMPLab, at UC Berkeley in 2009. BSD was opened in
2010. Apache released Apache software in 2013 became the

best apache project in 2014.

3.3. Features of apache spark

These are some features of spark as follows:

 Speed

Spark supports to run a program in the Hadoop cluster

100 times faster and 10 times faster on the disk. This is

possible by downloading the number of read / write

operations. Deletes intermediate processing data.

 Supports multiple languages
Spark delivers built-in APIs in Java, Python, or Scala.

Thus, you can write program in different languages.

Spark comes with 80 top operators for interactive

surveys.

 Advanced Analytics

Sparks are not just 'Map' and 'Reduce'. It also supports

Streaming data, SQL queries, Machine learning (ML) and

Graph algorithms.

 Spark in mapreduce (SIMR)

Spark in mapreduce is employed to launch spark task in

count to standalone deployment. With SIMR, user can

start spark and can use shell without administrative
access.

3.4. Resilient Distributed Datasets

The variable distributed database (RDD) is the main

information structure of the spark. It is a widespread

collection of objects. Each dataset in RDD is divided into

logical sections that can be calculated in the different nodes.

RDDs can contain python, java, or scaled objects, including

custom classes.

An RDD is a collection of read-only shared records. RDDs

can be determined by data stored on a stable layer or other
RDDs. RDD is a fault-tolerant set of resistance to parallel

controls. There are two ways to generate an RDD - Parallel to

an existing set of disk software or by referring to a database in

an external storage system, such as. A distributed file system,

HDFS, HBase or any data source that provides a hiero input

format. Spark uses the RDD concept to achieve faster and

more efficient mapreduce operations.

3.5. Data Sharing

It shows the way of data shared between the datanodes and

namenode and the data sharing is as follows:

 Data Sharing is Slow in mapreduce
MapReduce is generally accepted for processing and

production with a parallel distributed algorithm on a large

database. This allows users to write parallel calculations

with high-end operators without having to worry about

workflow and fault tolerance. Unfortunately in the most

current context.

 Data sharing using spark RDD

Duplication, serialization and disk IO ensure slower data

exchange. Most Hadoop applications use more than 90%

of the time in HDFS read and write operations. In
exploring this problem, researchers have developed a

special frame called apache spark. The main idea in the

spark is Resilient Distributed Datasets (RDD), which

supports memory development calculations. That is, it

keeps the memory status as an object of the task and the

object is sharp between these things. Sharing memory

information is 10 to 100 times faster than network and

disk.

3.6. Iterative operations on mapreduce

Reuse interval results for multiple calculations in multistage

applications. The illustration below illustrates how the current
structure works and when routine operations are performed on

mapreduce. This significantly reduces the amount of data,

reducing the I / O and serialization of the disk, making the

system less responsive.

Fig.1 Iterative operation on mapreduce

3.7. Iterative operations on spark RDD
The design given below demonstrations the iterative

maneuvers on spark RDD. This will stock intermediate results

in a dispersed memory in its place of Stable storage (Disk)

and create the system faster.

Note − If the Distributed memory (RAM) is not adequate to

store intermediate results (State of the JOB), now it will store

those results on the disk.

Fig.2 Iterative operation on spark

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1254 | P a g e

3.8. Interactive operations on mapreduce

User runs ad-hoc enquiries on the similar subset of data.

Every query will do the disketteinput output on the constant

storage, which can dominates application execution time.

Fig.3 Interactive operations on mapreduce

3.9. Interactive operations on spark RDD

These design demonstrations interactive operations on spark

RDD. Uncertainty different queries are perform on the equal

set of data repetitively; this specific data can be kept in

memory for better execution times.

Fig.4 Interactive operations on spark

3.10. Difference between Spark and Hadoop

MapReduce

It shows how spark computation is differ from mapreduce and

this is as follows-

 Performance

Apache spark processes data in-memory while

hadoopmapreduce persists back to the disk after a map or

reduce action, so spark should outperform

hadoopmapreduce.

 Speed
Apache spark is a lightning-fast clustering computing

tool. Spark offers 100x faster memory and up to 10x

faster haseoop clusters. It is possible to reduce the number

of read / write times and to store the intermediate data in

the memory. Mapreduce reads and writes to disk and

slows the process speed.

 Difficulty

Spark, with RDD, has a high-level high-end operator, so

it's easy to program - Resilient Distributed Dataset In the

assignment, developers must register every transaction

code that is very difficult to work on

 Easy to Manage

Spark, Batch, Interactive and Machine Learning can form

a complete data analysis engine, learn and learn all

streaming in the same set. It is therefore not necessary to

control different components for each request. Sparks in a

set are sufficient to meet all requirements.

 Real time analysis

Real-time event flows; millions of events per second, for

example, data can be activated. Share or send Twitter data

or Facebook for example. The power of sparks, the ability

to operate live streams efficiently Mapreduce does not fail

when it comes to processing real-time data, because it is
intended to perform aggregation of volume scale data [28]

 Latency

Spark deliverssmall latency computing

Map Reduce is a great latency computing structure

 Interactive mode

Spark can development data interactively

MapReduce does not have cooperative mode

 Streaming

Spark can methodactual time data via spark streaming

With Mapreduce only process data in batch mode

 Ease of use
Spark is cooler to use, its concept (RDD) allows user to

process data exhaustinghigh-level operators. It delivers

rich APIs in Java, Python Scala.

Map Reduce is multifaceted; we prerequisite to handle

small level APIs to process data thatneeds lots of hand

coding.

 Failure recovery

Hadoop is obviously resilient to organism faults or

failures since data are written to disk after every

operation, but spark has similar built-in resiliency by

virtue of the fact that its data objects are stored in
something called resilient distributed datasets distributed

across the data cluster. "These data objects can be stored

in memory or on disks, and RDD provides full recovery

from faults or failures," Borne pointed out[28]

3.11. Proposed Methodology

The proposed method develops a task scheduling algorithm on

hetrogeneoushadoop clusters in dynamic workload to be

reliable and time efficient.The original task scheduling

algorithm of hadoop can meet the performance requirements

of hadoop clusters but fails to achieve the reliability in task

scheduling in hetrogeneoushadoop clusters. In the
hetrogeneoushadoop clusters with dynamic change of load at

run time the performance is increased by using monitoring

module but still the tasktracker cannot make the system

reliable. So in this work reliability and time efficiency is

considered as the main issue in the hetrogeneoushadoop

clusters with task scheduling in dynamic workload.

3.12. A Framework for Proposed Methodology

As discussed earlier the main objective is to make the system

reliable and reduce the overall execution time of system by

using the spark as a base platform for the purpose of execution
of program because spark is a highly reliable and time

efficient system based on Resilient distributed dataset (RDD).

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1255 | P a g e

Fig.4: Runtime environment of DWAA

According to preceding analysis, the existed scheduling

strategy of Hadoop cannot meet better performance. This

concept proposes a novel load balancing algorithm, i.e.

DWAA, for the heterogeneous Hadoop. The whole algorithm
is working on running clusters. Each tasktracker periodically

checks its load, which is based on collected parameters and

dynamically adjusts the maximum number of slots for tasks.

(MaxTaskCapacity), which replaces the approach of allocating

the fixed number of slots for tasks (FixedTaskCapacity). Our

strategy changes, each tasktracker measures its own workload

in the next heartbeat, and then makes a decision about whether

to allocate more tasks on same or not. In this we

proposealgorithm for the heterogeneous hadoop clusters. The

adaptability here is defined as the way of algorithm working,

which means in a running cluster, according to the

tasktrackers’ own resources and the dynamic change of their
load, they can make corresponding adjustment to achieve the

optimal state and realize self-regulation[29]

 Each tasktracker periodically weighs its load based on the

collected load parameters and dynamically adjusts the

maximum number ofslots for tasks, which is marked as

MaxTasksCapacity, which replaces the approach of allocating

the fixed number of slots for tasks (FixedTasksCapacity). Our
strategy changes the traditional one heartbeat, full allocation

strategy, making the tasktracker able to get part tasks in a

heartbeat period only, not providing all capacity to

accommodate more tasks,thus improving the dynamic

controllability of each node in the cluster. Each tasktracker

reassesses its own workload in the next heartbeat and then

makes a decision about whether to accommodate more tasks

or not[30].

3.13. Algorithm

DWAA: Dynamic workload adjustment algorithm

Input: Current tasktracker load information

Avgclusterload: Calculate the average clusters CPU and
memoryload information.

K :Be the total number of node in cluster. Cth, Lth: threshold

parameter.

MaxTaskCapacity: total capacity of cluster to run task in

parallel.

Output : AskForNewLoad, MaxTaskA, MaxTaskB

1. for(i=0; i<n; i++){
 /* Every cluster contains the n number of nodes, and

collect the set of information,depositthem in a corresponding

load array. */

2. perCpu[i] = getCpuPercentageUsage;

/* Get CPU percentage utilization of each node */

3. perMem[i] = getMemPercentageUsage;

/*Get memory percentage utilization of each node*/

4.}

5. for(j=0; j<n j++){

7. AvgperCpu = perCpu[j];

8. AvgperMem = perMem[j];

9. }
10 CpuInfo = AvgperCpu/K;

 /*K is the number of node in cluster*/

11. MemInfo = AvgperMem/K;

12. if(CpuInfo<Cth&&MemInfo<Mth){

13. if (CpuInfoA>CpuInfoB)

14. {

/*Compare the CPU load between the clusters */

15. MaxTaskB = MaxTaskB + no_of_task;

/*Assign the next tasks (no_of_task) on cluster B*/

16.}

17. else if (CpuInfoA<CpuInfoB){
18. MaxTaskA = MaxTaskA + no_of_task

19. }

20. else{

21. if (MemInfoA>MemInfoB){

/*Comparethe Memory load between the clusters */

22. MaxTaskB = MaxTaskB + no_of_task

23. }

24. else if(MemInfoA<MemInfoB){

25. MaxTaskA = MaxTaskA + no_of_task

26. }

27. else {

28. if (MaxTaskCapacityA>MaxTaskCapacityB){
/*Compare the Maximum task running capacity of clusters */

29. MaxTaskA = MaxTaskA + no_of_task;

30. }

31. else {

MaxTaskB = MaxTaskB + no_of_task;

}

32. else

{

33. MaxTaskA = MaxTaskA – 1;

34. MaxTaskB = MaxTaskB - 1
}

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1256 | P a g e

IV. EXPERIMENT RESULTS

Provided experiment results are based on the comparison

between execution times taken by ATSDWA algorithm and

proposed approach DWAA withSPARK. Figure 5 shows the

comparative analysis of both the algorithms on

10MB,100MB,200MBdata set in multinodecluster,From the
graph it is clear that ATSDWAwithSPARK is performing

better in single node cluster and 2 node cluster.

Fig.5 Graphical comparison of mapreducevs spark

Table 1 Comparative Analysis

Proposed Method Previous Method

4.495 7.945

40.45 70.84

81.25 142.52

V. CONCLUSION

This Paper discussed about Task scheduling algorithm on

heterogeneoushadoop cluster with MapReduce programming

model by Hadoop.Proposed a new Task scheduling algorithm

on heterogeneoushadoop cluster with spark analysis to

provide better time than task scheduling with

mapreduce.DWAA with Spark is highly efficient and reliable

for heterogeneous hadoopclusters. Experiment results validate

that ATSDWA significantly benefits both tasktrackers and
jobtracker. On the taskertracker’s side, task execution time is

reduced, node performance is more stable, task failure rate is

decreased, and both hunger and saturation are avoided at the

same time.On the jobtracker’s side, the failure of jobtracker

due to overloading can be avoided. In fact, ATSDWA with

Spark is applicable to both homogeneous and heterogeneous

clusters and can improve the overall task throughput rate of

cluster without bringing extra load to tasktrackers.

VI. REFERENCES
[1]. E. Dumbill.What is Big Data? An Introduction to the Big

Data, 2012. http:// strata.oreilly.com/2012/01/what-is-

big-data.html, accessed April 2017.
[2]. H. Hu, Y. Wen, T.-S. Chua, and X. Li, ‘‘Towards scalable

systems for big data analytics: A technology tutorial,’’
IEEE Access, vol. 2, pp. 652–687, 2014.

[3]. A. Rabkin and R. H. Katz, "How Hadoop Clusters Break,"
IEEE Software, vol. 30, pp. 88-94, 2013.

[4]. SaeedShahrivari, “Beyond Batch Processing: Towards
Real-Time and Streaming Big Data”, Computers, Vol. 3,

pp. 117.129, 2014.
[5]. Apache Hadoop.What Is Apache Hadoop?, 2014.

http://hadoop.apache.org/, accessed April 2017.
[6]. Wikipedia Apache Hadoop, 2014

http://en.wikipedia.org/wiki/Apache_Hadoop, accessed
April 2017.

[7]. Apache Hadoop. MapReduce Tutorial, 2013.
https://hadoop.apache.org/docs/ r1.2.1/

mapred_tutorial.html, accessed April 2017.
[8]. Apache Hadoop. HDFS Architecture Guide, 2013.

http://hadoop.apache.org/ docs/ r1.2.1/hdfs_design.html,
accessed April 2017.

[9]. Rodrigo Agerri,etal.,“Big data for Natural Language
Processing: A streaming approach“ in Knowledge-Based
SystemsVolume 79, May 2015, Pages 36–42.

[10]. YanfeiGuo, JiaRao, Dazhao Cheng, Changjun Jiang,
Cheng-ZhongXu and XiaoboZhou, “StoreApp: A Shared

Storage Appliance for Efficient and Scalable Virtualized
Hadoop Clusters”, 9 pages, Hong Kong, China, April 2015.

[11]. S.Johnston.Seminar on Collaboration as a Service Cloud
Computing, 2012. http://www.psirc.sg/events/seminar-on-
collaboration-as-a-service-cloud-computing, accessed May
2017.

[12]. XiaolongXu, Lingling Cao and Xinheng Wang., IEEE
“Adaptive Task scheduling Strategy based on Dynamic

workload adjustment for hetrogeneoushadoop clusters”
cluster comput, vol.46, no. 19,pp. 162-219,June 2016.

[13]. Xiao Qin, Hong Jiang and ZongrefnHan,“A dynamic and
reliability driven scheduling algorithm for parallel real time
jobs executing on hetrogeneous cluster” J. Parallel
Distrib.Computer . vol. 65, no. 8, pp. 885-900, Aug. 2012

[14]. Mark Yong, NitinGaregrat and ShiwaliMohan,“Towards a
resource aware scheduler in Hadoop”in Proc. ICWS, pp.

102–109,2010
[15]. Zhuo Tang, Junqing Zhou, Kenli Li, Ruixuan Li “A

MapReduce task scheduling algorithm for deadline
constraints,” Cluster Comput., vol. 16, no. 4, pp.651–662,
Dec. 2013.

[16]. Xiaomin Zhu, Chuan He, Kenli Li and Xiao Qin“Adaptive
energy-efficient scheduling for real-time tasks on DVS-
enabled heterogeneous clusters,”J.Parallel

Distrib.Comput.,vol.72, no. 6, pp.751–763, Jun.2012
[17]. SanthanamSrinivasanand Niraj K. Jha”safety and

Reliability Driven Task Allocation in Distributed System”
IEEE Trans. Parallel and Distributed System, 10(3), 2010,
238-251.

[18]. K. Kc, K. Anyanwu,”Scheduling Hadoop Jobs to Meet
Deadlines,” IEEE Second International Conference on

0

20

40

60

80

100

120

140

160

10

MB

100

MB

200

MB

E
x
e
c
u

ti
o
n

 T
im

e
 (

S
e
c
o
n

d
)

Process Size

Execution Time

ATSDWA-

with

mapreduce

DWAA-

with Spark

http://en.wikipedia.org/wiki/
https://hadoop.apache.org/
http://hadoop.apache.org/
http://www.psirc.sg/events/

IJRECE VOL. 6 ISSUE 2 APR.-JUNE 2018 ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 1257 | P a g e

Cloud Computing Technology and Science, 2010, pp.388-
392, doi: 10.1109/CloudCom.2010.97.

[19]. Jiang Xie et al., "Improving mapreduce performance
through data placement in
hetrogeneoushadoopclusters",IEEE in 2010,pp.1-9

[20]. J. Ekanayake, S. Pallickara, and G. Fox, “MapReduce for
data intensive scientific analyses,” In Proceedings of the
2008 IEEE Fourth International Conference on eEcience,
2008, pp.277 284,doi: 10.1109/eScience.2008.59.

[21]. G. Mackey, S. Sehrish, J. Bent, J. Lopez, S. Habib, and J.
wang, “Introducing map-reduce to high end computing,” In
Proceedings of the 2008 3rd patascale data storage
whokshop, 2008, pp.1-6, doi:

10.1109/PDSW.2008.4811889.

