

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

10 – Functions

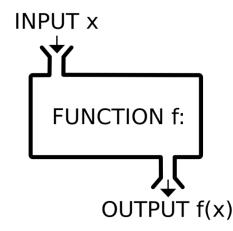
© 2020 Vanderbilt University (Waseem Abbas)

Chapter 4

Functions

In computer programming a **function** is a method that returns a single result.

Example: A function to compute the square of a number. Accepts a value, squares it and returns the square.



In discrete structures, a **function** *f* from L to M associates each element of L with exactly one element of M.

 $f: L \rightarrow M$

We call **L** the **domain**

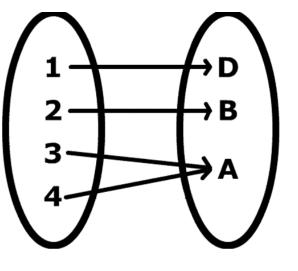
We call **M** the **codomain**

Translation:

- Everyone from the domain maps to someone in the codomain.
- No one from domain maps to more than one thing in the codomain.

Functions

Does the following mapping from set L to set M represent a valid function?



Yes.

- Everyone maps to someone.
- No one maps to more than one thing.

Functions: Floor and Ceiling

The floor and ceiling functions are of type ${\bf R} \to {\bf Z}$

floor(x) is the closest integer less than or equal to x. It is notated as $\lfloor x \rfloor$ or floor(x)

ceiling(x) is the closest integer greater than or equal to x. It is notated as $\begin{bmatrix} x \\ x \end{bmatrix}$ or ceiling(x)

Functions: Floor and Ceiling

Floor:

$$\lfloor 2.6 \rfloor = 2$$

 $\lfloor -2.1 \rfloor = -3$ (visualize the number line

Ceiling:

$$\lceil 2.6 \rceil = 3$$

 $\lceil -2.1 \rceil = -2$ (visualize the number line

Floor and Ceiling PropertiesProperty: $x + 1 = x + 1; x \in R$ Proof:

- 1. Assume $x \in \mathbb{R}$
- 2. There exists an integer n; $n < x \le n + 1$
- 3. So $n + 1 < x + 1 \le n + 2$
- 4. So $\lceil x + 1 \rceil = n + 2$
- 5. $\lceil x + 1 \rceil = n + 1 + 1$
- 6. Also $\lceil x \rceil = n + 1$
- 7. $\lceil x + 1 \rceil = \lceil x \rceil + 1$

8. QED

premise definition of **R**, **Z** adding 1 ceiling definition simplifying from line 2 from lines 5, 6 1 - 7

Floor and Ceiling Properties

Question: Is the ceil (x) = floor(x) + 1; $x \in \mathbb{Z}$?

Answer:

No, disprove by counterexample that the ceil (x) does not equal floor(x) + 1 for $x \in \mathbb{Z}$.

- 1. Let $x \in \mathbb{Z}$ be the number 5
- 2. ceil (5) = 5
- 3. floor(5) + 1 = 5+1 = 6
- 4. 5 is not equal to 6
- 5. ceil (x) does not equal floor(x) + 1

f(x) = y means

f associates $x \in L$ (domain) with $y \in M$ (co-domain).

We say: f of x is y or f maps x to y.

f and *g* are **equal** functions if f(x) = g(x) for all $x \in L$

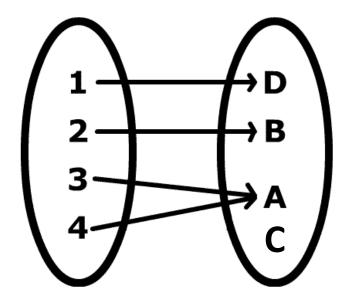
The **range(**f**)** is the set of values in the co-domain that are explicitly mapped from the domain.

The range is a subset of the codomain.

Question: The picture below shows a function $f : L \rightarrow M$. What is the domain, codomain and range?

Answer:

- **Domain:** L = $\{1, 2, 3, 4\}$
- **Codomain:** $M = \{D, B, A, C\}$
- **range(***f***):** {A, B, D}



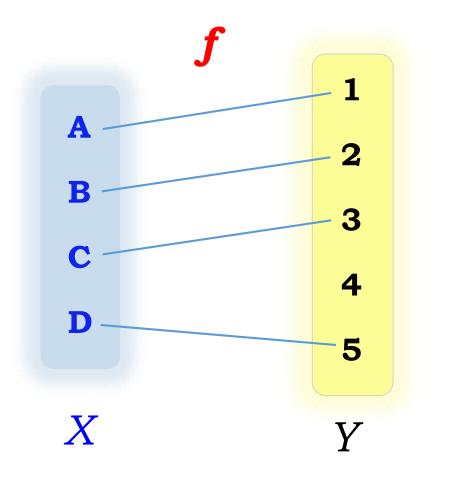
Evaluating a function at each element of a **subset X** of the domain, produces a set called the **image** of X

The **image** of X is denoted by: $f(X) = \{f(x) \mid x \in X\}$

The **pre-image** (i.e., inverse image) of a subset Y of the codomain is the set of all elements of the domain that map to the members of Y

The pre-image is denoted by : $f^{-1}(Y) = \{x \mid f(x) \in Y\}$.

Recap: Functions and Terminology



Range
$$(f) = \{1, 2, 3, 5\}$$

Image of { C , D } =
$$f(\{ C , D \})$$

= $\{ 3 , 5 \}$

Pre-image of
$$\{4, 5\} = f^{-1}(\{4, 5\})$$

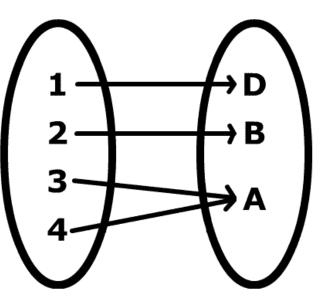
= $\{D\}$

Domain Codomain

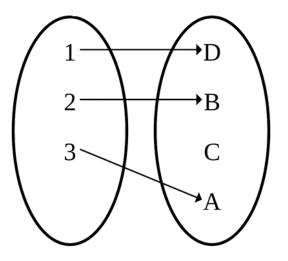
Functions that have special properties are useful in solving a variety of problems.

A function is injective or **one-to-one** if **distinct elements** in A map to **distinct elements** in B. In other words, no two items map to the same element.

Not an injection/one-to-one



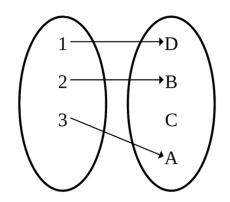
Injection/one-to-one



Injective Functions:

Let $f : A \rightarrow B$ be a function.

We say that f is **Injective (also called one-toone)**, if $x \neq y$ implies $f(x) \neq f(y)$ or, equivalently, f(x) = f(y) implies x = y



Question:

Let f be the function that assigns letter grades (A, B, C, D, F) at Vanderbilt to a group of 35 students in CS 2212. Is f injective?

Answer:

No. At least one grade will have to be duplicated because there are 35 students but not 35 letter grades.

Question:

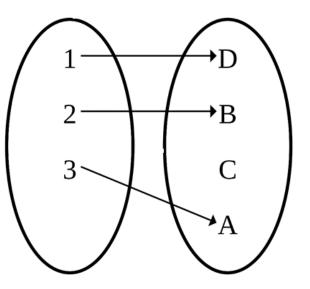
Let $f : \mathbb{Z} \to \mathbb{N}$ be defined by $f(x) = x^2$. Is f injective?

Answer:

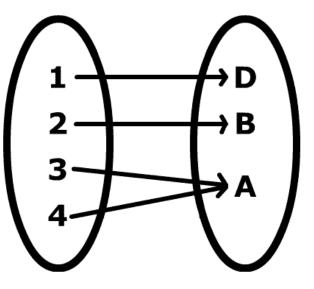
No.

For example f(2) = f(-2). So the mapping from $Z \rightarrow N$ is not unique for f. Therefore f is not injective.

A function is **surjective** or **onto** if every element in the codomain is mapped by **f**. This mapping does **not** have to be unique (but it can be).



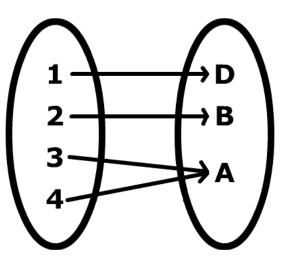
Surjective/onto



Surjective Functions:

Let $f : A \to B$ be a function.

We say that f is **Surjective (also called onto)**, if each $b \in B$ has the form b = f(a) for some $a \in A$.



Question:

There are 45000 people waiting in line for 35000 seats for football match.

Let f be the function that maps people to seats available at the match. Is f surjective?

Answer:

Yes. Since there are more people than seats, we know that all seats will be filled. Therefore f is surjective.

Question:

There are 10000 people waiting in line for 35000 seats for football match.

Let f be the function that maps people to seats available at the match. Is f surjective?

Answer:

No. Since there are more seats than people to fill the seats, some seats will be empty. Therefore f is not surjective.

Question:

 $f : \mathbb{Z} \to \mathbb{N}$ defined by $f(x) = x^2$. Is f surjective?

Answer:

No. f is not surjective. There is no mapping for element 3 in N from f since 3 is not a square.

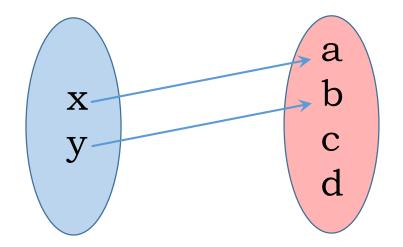
For each property below, define a **function** that satisfies the property. You can choose the domain and codomain for each function from the following two sets:

 $A = \{a, b, c, d\}$ $B = \{x, y\}$

and you can choose to map $B \rightarrow A$ or $A \rightarrow B$.

Injective but not surjective

How about $f: B \rightarrow A$ defined as f(x) = a;f(y) = b



For each property below, define a **function** that satisfies the property. You can choose the domain and codomain for each function from the following two sets:

 $A = \{a, b, c, d\}$ $B = \{x, y\}$

and you can choose to map $B \rightarrow A$ or $A \rightarrow B$.

Surjective but not injective

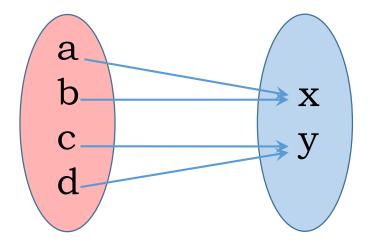
For each property below, define a **function** that satisfies the property. You can choose the domain and codomain for each function from the following two sets:

 $A = \{a, b, c, d\}$ $B = \{x, y\}$

and you can choose to map $B \rightarrow A$ or $A \rightarrow B$.

Surjective but not injective

How about $f: A \rightarrow B$ defined as f(a) = f(b) = x; f(c) = f(d) = y;



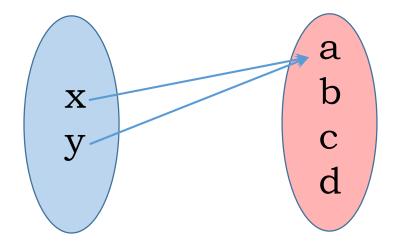
For each property below, define a **function** that satisfies the property. You can choose the domain and codomain for each function from the following two sets:

A = {a, b, c, d} B = {x, y}

and you can choose to map $B \rightarrow A$ or $A \rightarrow B$.

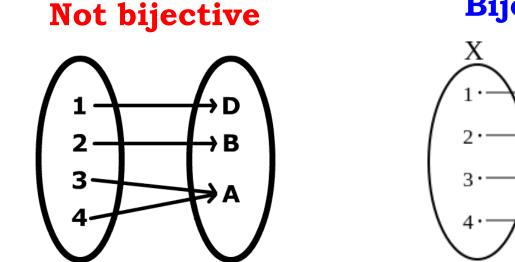
Neither surjective nor injective

How about $f: B \to A$ defined as f(x) = f(y) = a;

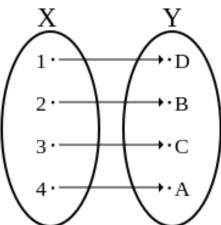


Bijective Functions

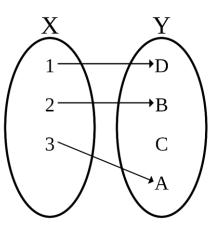
A function is bijective if there is a perfect "one-toone" correspondence between the members of the domain and codomain.



Bijective



Not bijective



(Injective but not surjective)

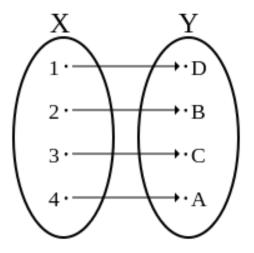
(Surjective but not injective)

Bijective Functions

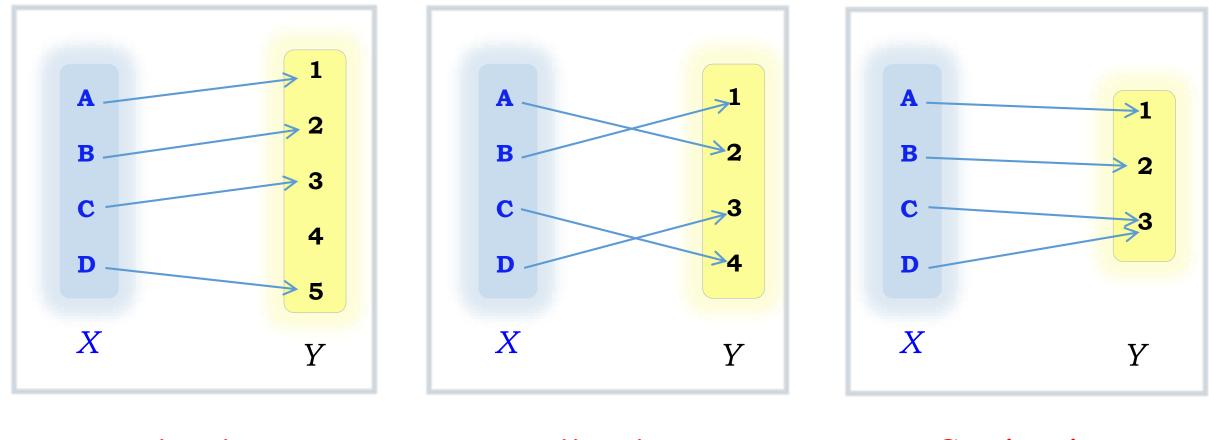
Bijective Functions:

Let $f : A \rightarrow B$ be a function.

We say that *f* is **Bijective (also called one-to one and onto)**, if *f* is **both injective and surjective** at the same time.



Recap: Functions



Injective $(|X| \leq |Y|)$

Bijective $(|X| \leq |Y|)$

Surjective $(|X| \ge |Y|)$

How to Show a Function is Injective?

To prove:	$f: A \rightarrow B$ is injective	
-----------	-----------------------------------	--

Key Point:Let $x \in A$ and f(x) is an image of x.
 $y \in A$ and f(y) is an image of y.For injectivity of f, all we need to show is:Iff(x) = f(y), then x = y.

How to Show a Function is Injective?

Let	X: set of non-zero real numbers	
Show that:	$f: X \to X$ is injective,	
where,	f(x) = 1/x.	
Let	<i>x</i> , <i>y</i> ∈ X.	
Then,	f(x) = 1/x and $f(y) = 1/y$.	
(We need to show that $f(x) = f(y)$ implies $x = y$.)		
f(x) = f(y) implies that $1/x = 1/y$,		
which further implies that $x = y$.		
Hence, <i>f</i> is injective.		

How to Show a Function is Surjective?

To prove:	$f: A \rightarrow B$ is surjective
Key Point:	Fix any $y \in B$
We need to show:	there must exist some $x \in A$ whose image is y ,
(i.e., there exists $x \in A$ such that $f(x) = y$.)	

Then proceed as follows:

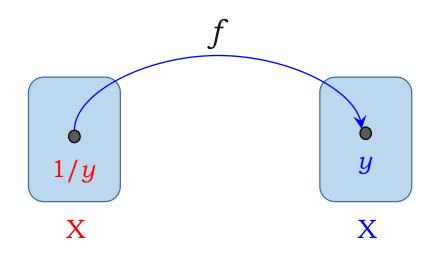
- Consider x = some expression in terms of y (express x in terms of y)
- Show that $x \in A$.
- Then show that f(x) = y.

How to Show a Function is Injective?

Let	X: set of non-zero real numbers
Show that:	$f: X \to X$ is surjective,
where,	f(x) = 1/x.
Let	$y \in X$ (co-domain).

We need to show that $\exists x$ in the domain such that f(x) = y.

1.	Let $x = 1/y$	(express <i>x</i> in terms of <i>y</i>)
2.	$y \in X$ means that $(x = 1 / y) \in X$	(show that <i>x</i> is in the domain).
3.	f(x) = f(1/y) = y	(show that $f(x) = y$)



Another Example: Surjective Function

Let	X: set of non-negative real numbers
Show that:	$f: \mathbf{X} \to \mathbf{X}$ is surjective,
where,	$f(x) = x^2.$

Goal: We need to show that for every $y \in X$ (in the codomain) there exists an x (in the domain), such that f(x) = y.

Let $y \in X$ (co-domain, i.e. y is a non-negative real number)

Another Example: Surjective Function

We need an x (element in the domain) to start with. How to get that x?

From y = f(x), obtain an expression for *x*.

<u>Step 1:</u> $y = f(x) = x^2$. From here, we get $x = \pm \sqrt{y}$. So, we pick $x = \sqrt{y}$

Now show that x (that we have obtained) is indeed in the domain

Step 2: If *y* is a non-negative real number, then $x = \sqrt{y}$ is also a non-negative real number. Hence *x* is in the domain

Now finally show that for x (that we have obtained): f(x) = y

Step 3: $f(x) = f(\sqrt{y}) = (\sqrt{y})^2 = y$.