

School of Engineering

Discrete Structures CS 2212 (Fall 2020)

10 – Functions

© 2020 Vanderbilt University (Waseem Abbas)

Chapter 4

Functions

In computer programming a **function** is a method that returns a single result.

Example: A function to compute the square of a number. Accepts a value, squares it and returns the square.

In discrete structures, a **function f** from L to M associates each element of L with exactly one element of M.

 $f: L \to M$

We call **L** the **domain**

We call **M** the **codomain**

Translation:

- Everyone from the domain maps to someone in the codomain.
- No one from domain maps to more than one thing in the codomain.

Functions

Does the following mapping from set L to set M represent a valid function?

Yes.

- Everyone maps to someone.
- No one maps to more than one thing.

Functions: Floor and Ceiling

The floor and ceiling functions are of type $\mathbf{R} \to \mathbf{Z}$

floor(x) is the closest integer less than or equal to x. It is notated as $\lfloor x \rfloor$ or floor(x)

ceiling(x) is the closest integer greater than or equal to x. It is notated as $\lceil x \rceil$ or ceiling(x)

Functions: Floor and Ceiling

Floor:

$$
|2.6| = 2
$$

$$
|-2.1| = -3
$$
 (visualize the number line)

Ceiling:

$$
\lceil 2.6 \rceil = 3
$$

$$
\lceil -2.1 \rceil = -2 \text{ (visualize the number line)}
$$

Floor and Ceiling Properties Property: $\begin{bmatrix} x+1 \end{bmatrix} = \begin{bmatrix} x \\ x \end{bmatrix} + 1; \quad x \in \mathbb{R}$ **Proof:**

- 1. Assume $x \in R$ premise
- 2. There exists an integer n; $n < x \le n + 1$ definition of **R**, **Z**
- 3. So $n + 1 < x + 1 \le n + 2$ adding 1
- 4. So $\lceil x + 1 \rceil = n + 2$ ceiling definition
- 5. $x + 1 = n + 1 + 1$ simplifying
- 6. Also $\lceil x \rceil = n + 1$ from line 2
- 7. $x + 1 = x + 1$ from lines 5, 6

8. QED 1 - 7

Floor and Ceiling Properties

Question: Is the ceil $(x) = \text{floor}(x) + 1$; $x \in \mathbb{Z}$?

Answer:

No, disprove by counterexample that the ceil (*x*) does not equal floor(x) + 1 for $x \in Z$.

- 1. Let $x \in \mathbb{Z}$ be the number 5
- 2. ceil $(5) = 5$
- 3. floor(5) + 1 = $5+1 = 6$
- 4. 5 is not equal to 6
- 5. ceil (x) does not equal floor $(x) + 1$

 $f(x) = y$ means

f associates $x \in L$ (domain) with $y \in M$ (co-domain).

We say: ƒ of *x* is *y* or ƒ maps *x* to *y*.

f and *g* are **equal** functions if $f(x) = g(x)$ for all $x \in L$

The **range(** *f* **)** is the set of values in the co-domain that are explicitly mapped from the domain.

The range is a subset of the codomain.

Question: The picture below shows a function $f: L \rightarrow M$. What is the domain, codomain and range?

Answer:

- **Domain:** $L = \{1, 2, 3, 4\}$
- **Codomain:** $M = \{D, B, A, C\}$
- **range(** f **):** $\{A, B, D\}$

Evaluating a function at each element of a **subset X** of the domain, produces a set called the **image** of X

The **image** of X is denoted by: $f(X) = {f(x) | x \in X}$

The **pre-image** (i.e., inverse image) of a subset Y of the codomain is the set of all elements of the domain that map to the members of Y

The pre-image is denoted by : $f^{-1}(Y) = \{x \mid f(x) \in Y\}$.

Recap: Functions and Terminology

Range
$$
(f) = \{ 1, 2, 3, 5 \}
$$

Image of { C , D } =
$$
f({C, D})
$$

= {3, 5}

Pre-image of {4, 5} =
$$
f^{-1}(\{4, 5\})
$$

= {D}

Domain Codomain

Functions that have special properties are useful in solving a variety of problems.

A function is injective or **one-to-one** if distinct elements in A map to distinct elements in B. In other words, no two items map to the same element.

Not an injection/one-to-one Injection/one-to-one

Injective Functions:

Let $f: A \rightarrow B$ be a function.

We say that *f* is **Injective (also called one-toone)**, if $x \neq y$ implies $f(x) \neq f(y)$ or, equivalently, $f(x) = f(y)$ implies $x = y$

Question:

Let **f** be the function that assigns letter grades (A, B, C, D, F) at Vanderbilt to a group of 35 students in CS 2212. Is *f* injective?

Answer:

No. At least one grade will have to be duplicated because there are 35 students but not 35 letter grades.

Question:

Let $f: \mathbf{Z} \to \mathbf{N}$ be defined by $f(x) = x^2$. Is f injective?

Answer:

No.

For example $f(2) = f(-2)$. So the mapping from $Z \rightarrow$ N is not unique for f. Therefore *f* is not injective.

A function is **surjective** or **onto** if every element in the codomain is mapped by *f*. This mapping does **not** have to be unique (but it can be).

Surjective Functions:

Let $f: A \rightarrow B$ be a function.

We say that f is **Surjective (also called onto)**, if each $b \in B$ has the form $b = f(a)$ for some $a \in A$.

Question:

There are 45000 people waiting in line for 35000 seats for football match.

Let *f* be the function that maps people to seats available at the match. Is *f* surjective?

Answer:

Yes. Since there are more people than seats, we know that all seats will be filled. Therefore *f* is surjective.

Question:

There are 10000 people waiting in line for 35000 seats for football match.

Let *f* be the function that maps people to seats available at the match. Is *f* surjective?

Answer:

No. Since there are more seats than people to fill the seats, some seats will be empty. Therefore *f* is not surjective.

Question:

 $f: \mathbf{Z} \to \mathbf{N}$ defined by $f(x) = x^2$. Is f surjective?

Answer:

No. *f* is not surjective. There is no mapping for element 3 in N from *f* since 3 is not a square.

For each property below, define a **function** that satisfies the property. You can choose the domain and codomain for each function from the following two sets:

> **A** = **{a, b, c, d}** $\mathbf{B} = \{ \mathbf{x}, \mathbf{y} \}$

and you can choose to map $B \to A$ or $A \to B$.

Injective but not surjective

How about $f: B \rightarrow A$ defined as $f(x) = a;$ $f(y) = b$

For each property below, define a **function** that satisfies the property. You can choose the domain and codomain for each function from the following two sets:

> **A** = **{a, b, c, d}** $\mathbf{B} = \{ \mathbf{x}, \mathbf{y} \}$

and you can choose to map $B \to A$ or $A \to B$.

Surjective but not injective

For each property below, define a **function** that satisfies the property. You can choose the domain and codomain for each function from the following two sets:

> $A = \{a, b, c, d\}$ $\mathbf{B} = \{ \mathbf{x}, \mathbf{y} \}$

and you can choose to map $B \to A$ or $A \to B$.

Surjective but not injective

How about $f: A \rightarrow B$ defined as $f(a) = f(b) = x;$ $f(c) = f(d) = y;$

For each property below, define a **function** that satisfies the property. You can choose the domain and codomain for each function from the following two sets:

> **A = {a, b, c, d}** $B = \{x, y\}$

and you can choose to map $B \to A$ or $A \to B$.

Neither surjective nor injective

How about $f: B \rightarrow A$ defined as $f(x) = f(y) = a;$

Bijective Functions

A function is bijective if there is a perfect "one-toone" correspondence between the members of the domain and codomain.

Not bijective

(Injective but not surjective)

(Surjective but not injective)

Bijective Functions

Bijective Functions:

```
Let f: A \rightarrow B be a function.
```
We say that *f* is **Bijective (also called one-to one and onto)**, if *f* is both injective and surjective at the same time.

Recap: Functions

Injective $(|X| \leq |Y|)$

Bijective $(|X| \leq |Y|)$

Surjective $(|X| \geq |Y|)$

How to Show a Function is Injective?

Key Point: Let $x \in A$ and $f(x)$ is an image of *x*. $y \in A$ and $f(y)$ is an image of *y*. For injectivity of *f* , all we need to show is: If $f(x) = f(y)$, then $x = y$.

How to Show a Function is Injective?

How to Show a Function is Surjective?

Then proceed as follows:

- Consider $x =$ some expression in terms of y (express *x* in terms of *y*)
- Show that $x \in A$.
- Then show that $f(x) = y$.

How to Show a Function is Injective?

We need to show that ∃*x* in the domain such that *f*(*x*) *= y.*

Another Example: Surjective Function

Goal: We need to show that for every $y \in X$ (in the codomain) there exists an *x* (in the domain), such that $f(x) = y$.

Let $y \in X$ (co-domain, i.e. *y* is a non-negative real number)

Another Example: Surjective Function

We need an *x* (element in the domain) to start with. How to get that *x* ?

From $y = f(x)$, obtain an expression for *x*.

Step 1: $y = f(x) = x^2$. From here, we get $x = \pm \sqrt{y}$. So, we pick $x = \sqrt{y}$

Now show that x (that we have obtained) is indeed in the domain

Step 2: If *y* is a non-negative real number, then $x = \sqrt{y}$ is also a non-negative real number. Hence *x* is in the domain

Now finally show that for *x* (that we have obtained): *f*(*x*) *= y*

Step 3: $f(x) = f(\sqrt{y}) = (\sqrt{y})^2 = y$.