I&C FOR SAFETY OF NPP

by A. K. Chandra Exec. Dir. (C&I, Electrical, R&D-ES) NPCIL

> ISA(D)-POWAT-2012 New Delhi, January 13-14, 2012

• Role of I&C in Safety of NPP

• Safety Life Cycle of Digital I&C

Nuclear Power Plants

- Steady increase in energy requirement to maintain growth rate
- Need to address global warming issues
- Required to have a suitable technology mix
 - Nuclear power must play a significant role as part of the mix
- Impact of Fukushima

Lessons from Fukushima

- Inevitability of Nuclear Events
- Reliable Post Shutdown Cooling
- Essential Safety of Nuclear Power

(Source: IAEA Conference June 2011)

NPP Capacity in India

PHWR Program

 20 in operation, (capacity 4780 MWe)
 4 x 700 plants launched 6 under launch

LWR program (imported)
 – 40,000 MWe planned

• LWR program (indigenous)

NPP – Safety Aspects

Primary safety functions in NPP are

- Regulation of reactivity in core and Reactor shutdown
- Heat removal from fuel core (including decay heat)
- Containment of radioactivity

Safety-Critical Systems

- A system is safety-critical, if a failure of the system could lead to consequences that are determined to be unacceptable.
 - In general, this implies that the failure of the system may lead to injury or death of human beings.
 - Damage to property can also be a consideration

Safety-Critical Systems Design

- Safety-critical systems need to be designed such that they perform desired function reliably even in harsh environments, are testable and design is verifiable.
- Extent of reliability required is determined by the tolerable rate of failures
 - Higher the damage potential of an event, lower should be the probability of the same

Role of I&C in NPP

- I&C systems monitor and display vital parameters for status of various systems and processes in the plant and carry out automatic control and protection functions
- I&C Systems play key role for actuation and monitoring of safety functions

I&C for Safety

- Designs follow standard techniques including fault tolerance, guard against common cause failures, diversity, use of qualified components, etc.
- Protection systems now use hardwired technologies (earlier some used digital).
- All other systems now use digital I&C

Use of Digital I & C

- Digital I&C systems offer several advantages but also offer challenges to the development and review processes
 - The main challenge is in proving the correctness of software
- Since software failures result from systematic faults, only qualitative analysis can be employed.

Integrity of Digital I&C

Qualitative Issues

- Use of rigorous software development process
- Use of safe subsets of languages
- Use of good development practices (IEC 60880)
- Verification of implementation by tracing to requirements
- Exhaustive documentation

Assessment of Digital I&C

- Safety standards demand definition of an appropriate safety life cycle
- Process has checks and balances to assure safety requirements met
- Demonstration of safety requires evidence that process was followed

Safety Life Cycle Of Dig. I&C

- The safety life cycle consists of activities from defining the requirements through development and installation and commissioning to the operation of the system
- Includes concurrent Verification & Validation activities

Engineering Procedures

- define the work methods for implementing the Safety Life Cycle
- define the documents to be produced at various stages of life cycle (and the nature and structure of information content of the same)

Procedures for Digital I&C

- System Requirements
- Digital I&C Systems
- Pre Developed Systems
- Newly Developed Systems
- Concession Request
- Requirements Change Notice

Regulatory Perspective 1/2

- Nuclear Industry is a heavily regulated industry (in every country)
 - Regulatory permission is required at each stage of design, construction and operation

Regulatory Perspective 2/2

- Defines recommended Safety Life Cycle
- Defines Safety Case and lists Regulatory Requirements
- Describes the Regulatory Review Process

Recommended Safety Life Cycle

- Generation of System Requirements
- Project Planning
- QA and V&V Planning
- Step-wise refinement of design
- System Integration and Testing
- System Safety and Reliability Analysis

Documentary evidence to demonstrate

- Compliance to regulatory requirements
- Subjected to V&V
- System meets safety and reliability goals

Regulatory Review Process

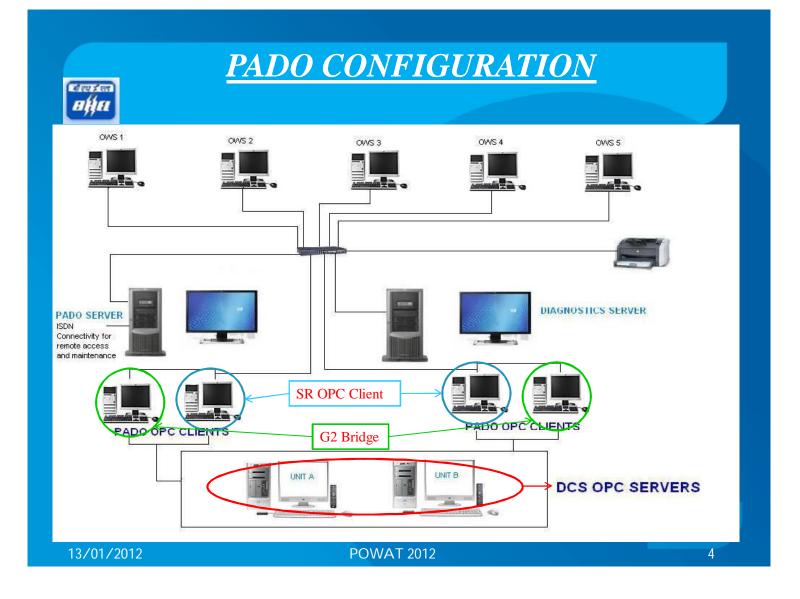
- Review of System Requirements, Plans
- Review / Audit of Design Outputs
- Review of System Validation
- Review of Analysis Reports

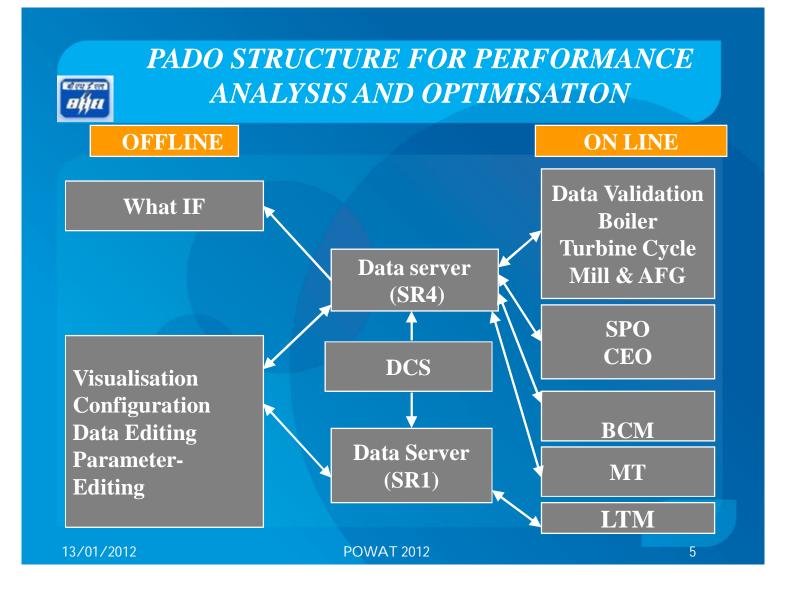
System Safety Analysis

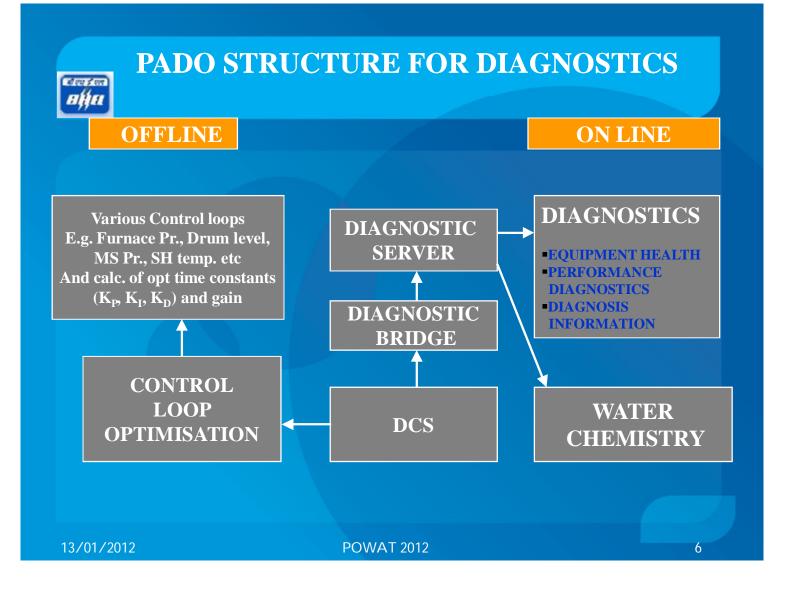
- Confirmation of Safety Function implementation
- Failure Analysis (to meet single failure requirements)
- Analysis for Common Cause Failure

WHAT IS PADO?

- PADO is a software based optimization and diagnostics system based on client-server architecture.
- It's a package rich in intensive information which aids plant operator to run the plant with most optimum efficiency, availability and maintainability.
- Massive Computation Engine for monitoring and analysis of Performance Parameters of Power Plant.


13/01/2012


POWAT 2012



Terminologies Used in Presentation

- Heat Rate: Ratio of fuel energy input and Gross power generated.
- TTD(Terminal Temp Diff): Logarithmic diff value of terminal temperatures.
- DCA(Drain Cooler Approach): Diff of drain temp and inlet temp of feed water.
- MLP (Multilayer Perception)
- SOM (Self Organising Map): Neural Network Techniques.
- SPO : Set Point Optimisation
- CEO : Combustion Emission Optimisation
- MTM : Metal Temperature Measurement
- BCM : Boiler Cleaning Module , LTM : Life Time Monitoring
 POWAT 2012
 POWAT 2012

THE BUILDING BLOCKS (BBs)

BB1: PERFORMANCE ANALYSIS & MONITORING MODULE
BB2: SYSTEM & PERFORMANCE OPTIMISATION
BB3: BPOS(BOILER PERFORMANCE OPTIMISATION SYSTEM)
BB4: BOILER STRESS CONDITION ANALYSER
BB5: SYSTEM & PERFORMANCE DIAGNOSIS MODULE
BB6: INTELLIGENT WATER & STEAM CHEM. MGT

13/01/2012

POWAT 2012

BB-1: PERF. ANALYSIS & MONITORING

PERFORMANCE EVALUATION

• HEAT RATE

बी एम ई सन

--Net HR, Gross HR, Turbine HR, Unit HR

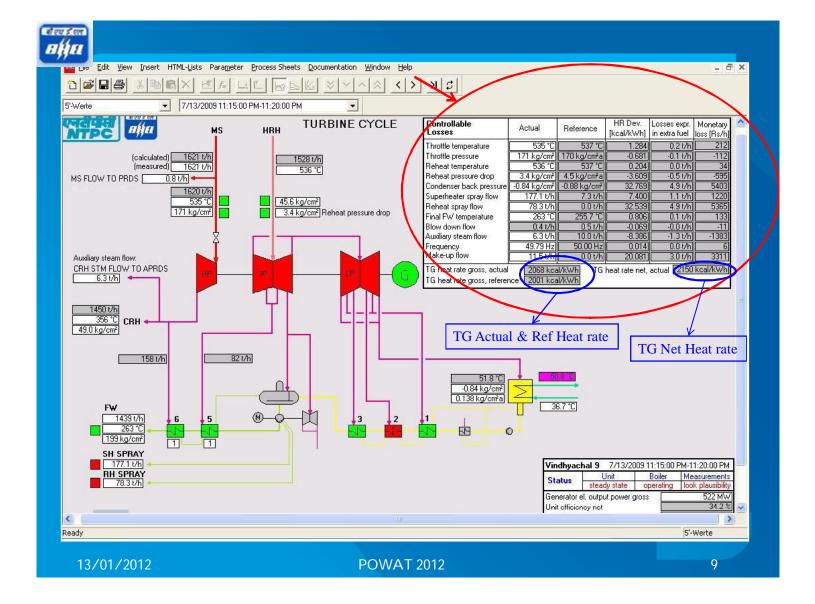
• EQUIPMENT EFFICIENCY CALCULATIONS

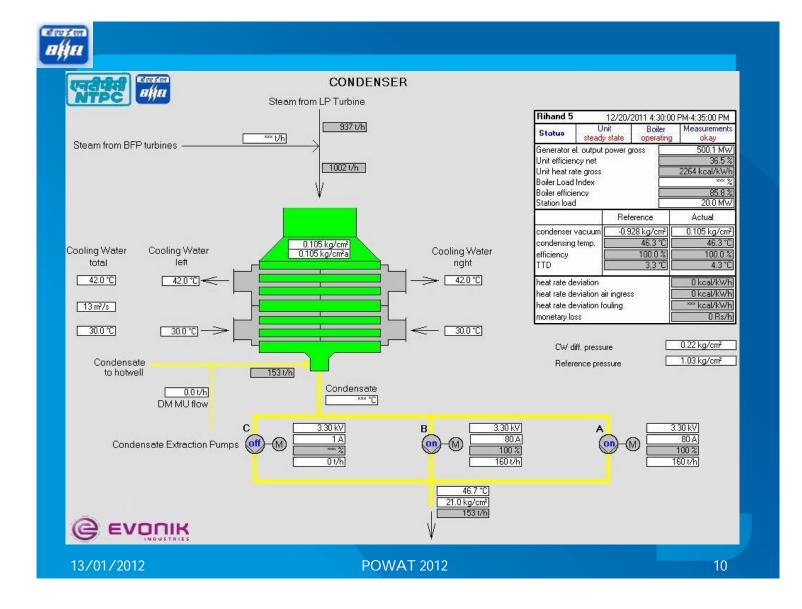
Controllable losses

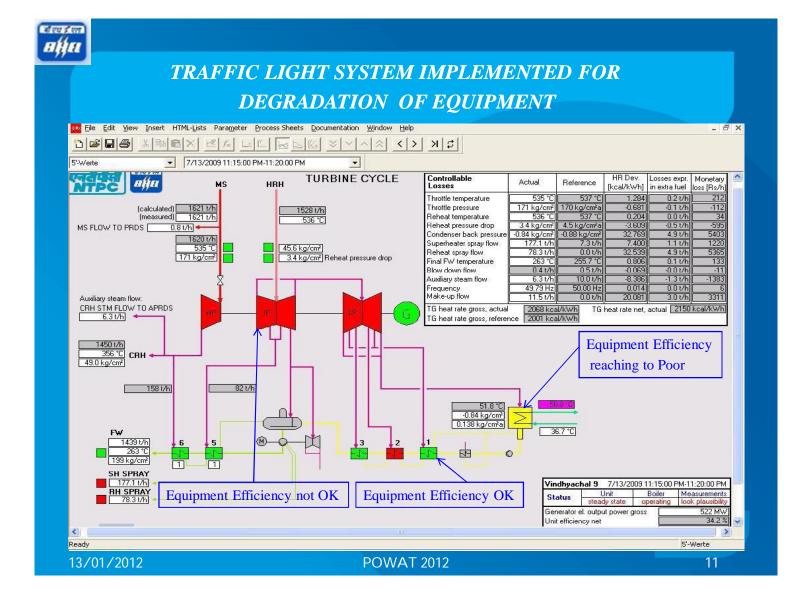
--Throttle Temp. & Pressure

--RH Temp & Pressure drop

--Condenser Back Pressure.


--SH & RH spray Flow


--Final FW Temp


--Blow Down, MU Flow, Frequency & Auxiliary Steam Flow

13/01/2012

POWAT 2012

BB-1: PERF. ANALYSIS & MONITORING

• WHAT IF ANALYSIS --MS TEMP

--CONDENSER BACK PRESSURE

--CW INLET TEMPERATURE

--COOLING WATER MASS FLOW

--EXCESS AIR

--MILL COMBINATION

--BURNER TILT

13/01/2012

POWAT 2012

Parameters		Act-Value	Sim Set-Value	Value Calc-Value	Rel. Diff.	Abs. Diff	Simulate	Simulation s	tatus 2	Reset	
	LOAD Load definition							Surgarating	-		
	• Pel Generator	500.0 MW	500.0 MW	500.0 MW	0.00%	0.01 MW	c	alculation time	4.00 s		
	C Pel Net	470.0 MW	470.0 MW	470.0 MW	0.00%	0.01 MW	#	iterations	212		
	C F coal	94.9 kg/s	94.9 kg/s	94.9 kg/s	0.00%	0.0 kg/s					
	Aux. power consumption	30.0 MW	30.0 MW	30.0 MW	0.00%	0.0 MW					
	T MS Mainsteam temperature										
		536.9 °C	536.9 °C	536.9 °C	0.00%	0.0 °C					
	P MS Mainsteam pressure										
	C Defined	174.2 bar	174.2 bar	174.2 bar	0.00%	0.0 bar					
	T HRH Hot reheat temperature										
		564.9 °C	564.9 °C	564.9 °C	0.00%	0.0 °C					
	T FW Feedwater temperature										
	Optimed	253.2 °C	260.0 °C	253.2 °C	0.00%	0.0 °C					
	C Calculated										
	HPH 5 (lev)	0 mm	0 mm	0 mm	0.00%	0 mm					
	F HPH 6 (lev)	0 mm	50 mm	0 mm	0.00%	0 mm					
	ELPH 1	0 mm	0 mm	0 mm	0.00%	0 mm					
	ELPH 2	0 mm	0 mm	0 mm	0.00%	0 mm					
	LPH 3	0 mm	0 mm	0 mm	0.00%	0 mm					
	RHSF Reheater sprayflow										
		0.0 kg/s	0.0 kg/s	0.0 kg/s	0.00%	0.0 kg/s					
	SHSF Superheater sprayflow										
		6.9 kg/s	6.9 kg/s	6.9 kg/s	0.00%	0.0 kg/s					
	P Cond Condenser pressure										

13/01/2012

POWAT 2012

बन्द्रन *8भूम* C EVONIK Offline What-If Module - PADO 500MW Results Act Value Sim Value Rel. Diff. Abs. Diff. Fluegas temp. aft. AH 125.1 °C 125.2 °C 0.07% 0.1 °C Boiler Boiler efficiency 85.44% 85.43% -0.01% -0.01% Drygas loss 1.10% 0.10% 0.00% 1.10% Loss D/T H₂O in Fuel 2.64% 2.64% 0.01% 0.00% Loss D/T H₂O from H₂ in Fuel 5.59% 5.59% 0.01% 0.00% Loss D/T H₂O in air 0.11% 0.11% 0.03% 0.00% **Boiler losses** Loss D/T UBC 0.00% 1.00% 1.00% 0.00% 6.00% Loss D/T radiation 0.15% 0.00% 0.00% 0 15% Act Value Other losses 0.67% 0.68% 0.11% 0.00% Sim Value Total losses 14.56% 14.57% 0.04% 0.01% 5.00% Heatrates -0.18% 2260 kcal/kWh Unit Gross 2264 kcal/kWh -4 kcal/kWh 4 00% Unit Net 2409 kcal/kWh 2404 kcal/kWh -0.18% -4 kcal/kWh Cycle Gross 1934 kcal/kWh 1931 kcal/kWh -0.19% -4 kcal/kWh 3.00% Cycle Net 2058 kcal/kWh 2054 kcal/kWh -0.19% -4 kcal/kWh Boiler heating surfaces Furnance 2.00% Fouling 267.1 % 267.1 % 0.00% 0.0 % Heat Absorption 416.5 MW 416.4 MW -0.03% -0.1 MW 1.00% Adiabatic combustion temp. 1736.1 °C 1736.3 °C 0.01% 0.2 °C Fluegas output temp. 1244.6 °C 1244.1 °C -0.05% -0.6 °C 361.3 °C 360.8 °C 361.4 °C 360.9 °C 0.1 °C 0.1 °C 0.00% Weater input temp. 0.02% LOSS D/T LOSS D/T LOSS D/T LOSS D/T LOSS D/T Other Drygas Water output temp 0.02% 1055 H2O in H2O from H2O in air UBC radiation losses SHPL Fuel H2 in Fuel 71.1 % 71.1 % 0.00% 0.0 % Fouling 92.5 MW 1.7 MW Heat Absorption 94.2 MW 1 81% Adiabatic combustion temp. 1075.9 °C 1069.6 °C -0.59% -6.3 °C Fluegas output temp. 957.1 °C 948.3 °C -0.92% -8.8 °C Water input temp. 463.5 °C 462.6 °C -0.18% -0.8 °C 540.0 °C 540.0 °C 0.01% 0.0 °C Water output temp. Preparation Parameter Results / Daten

13/01/2012

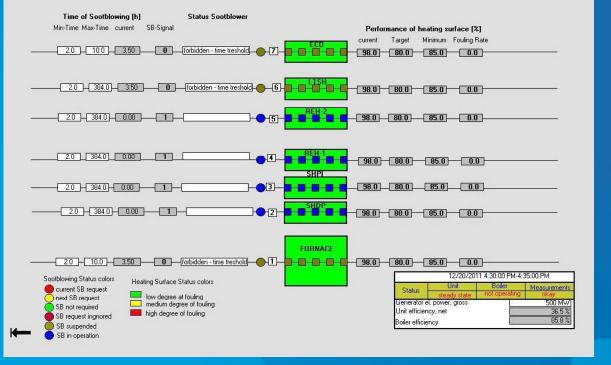
POWAT 2012

•BB 1: PERFORMANCE ANALYSIS & MONITORING MODULE

- •BB2:SYSTEM & PERFORMANCE OPTIMISATION
- •BB3:BPOS(BOILER PERFORMANCE OPTIMISATION SYSTEM)
- •BB4:BOILER STRESS CONDITION ANALYSER
- •BB5:SYSTEM & PERFORMANCE DIAGNOSIS MODULE
- •BB6: INTELLIGENT WATER & STEAM CHEM. MGT

13/01/2012

POWAT 2012



FEATURES: • OPTIMISATION OF BOILER SOOTBLOWING • SET POINT OPTIMISATION • MONITORS EMISSIONS OF SOx, NOx, CO etc. • NOx OPTIMISATION

13/01/2012

POWAT 2012

SOOT BLOWER OPTIMISATION

SET POINT OPTIMISATION

сата Пµ́и e Set point optimization Boiler Act value Opt value 3.15 %Vol 5.50 %Vol O2 at Eco outlet Burner tilt 0.0* 3.9* Turbine Cycle MS temperature 540.00 °C 540.33 °C MS pressure 173.19 bar 173.00 bar Reheat temperature 568.00 °C 568.30 °C Unit Heat Rate gross 2264 kcal/kWh 2266 kcal/kWh Avg Mill Height FbH1 34 m 35.500 m

Unit Critical Calculated Outputs

Superheater Spray	25.0 t/h
Reheater Spray	0.0 t/h
Furnace Exit Flue Gas Temp	1305 °C
APH-A Leackage	15.758 %
APH-B Leackage	15.758 %
Platten SH Max Metal Temp	573 °C
RH Max Metal Temp	641 °C
HPH-5 Drain O/L Flow	118 t/h
HPH-6 Drain O/L Flow	75 t/h

Mill Recommendations Status Maint. Current Optimized MILL K 1 0 0 MILL J 1 MILL H MILL G 1 MILL F 1 1 MILLE MILL D 1 0 MILL C 1 1

0

0

Load							
Current	Optimized						
0.00 kg/s	0.00 kg/s						
46.71 t/h	58.00 t/h						
46.71 t/h	58.00 t/h						
46.71 t/h	58.00 t/h						
46.71 t/h	58.00 t/h						
46.71 t/h	58.00 t/h						
46.71 t/h	0.00 t/h						
46.71 t/h	37.00 t/h						
0.00 t/h	0.00 t/h						
0.00 t/h	0.00 t/h						

Rihand 5 12/20/2011 4:30:00 PM-4:35:00 PM

Total consumption of pumps	6610.3 kW	6.610 MW
Total consumption of mills	2136.6 kW	2.137 MW
Total consumption of fans	4797.8 kW	4.798 MW
Total consumption of aux. consumers	13544.7 kW	13.545 MW
Station load	20006.0 kW	20.006 MW

0

0

Set point optimization here refers to the heat rate optimization with Nox and metal temperature as a constraint.

HR = f (rhs,egl,mst,rht,msp)

MILL B

MILLA

NN €rhs,egl,Nox

•BB1:PERFORMANCE ANALYSIS & MONITORING MODULE •BB2:SYSTEM & PERFORMANCE OPTIMISATION

•BB3:BPOS(BOILER PERFORMANCE OPTIMISATION SYSTEM)

•BB4:BOILER STRESS CONDITION ANALYSER

•BB5:SYSTEM & PERFORMANCE DIAGNOSIS MODULE

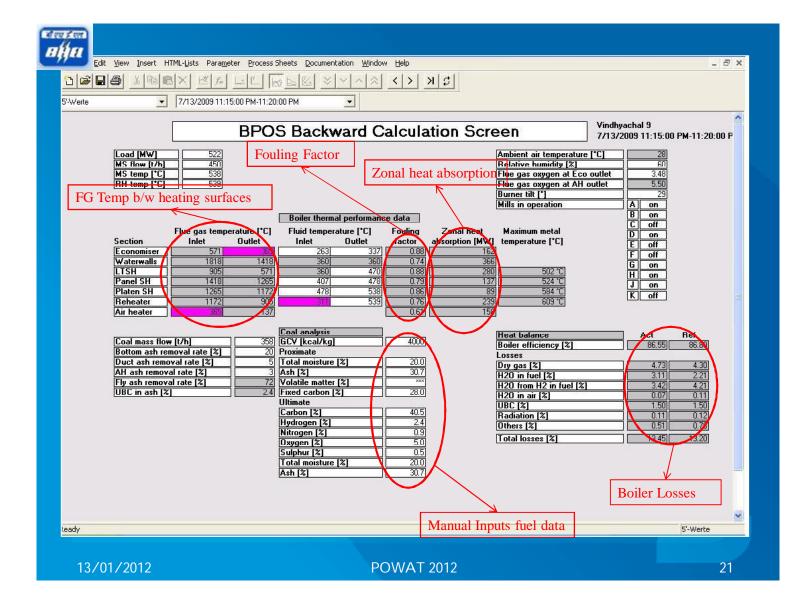
•BB6: INTELLIGENT WATER & STEAM CHEM. MGT

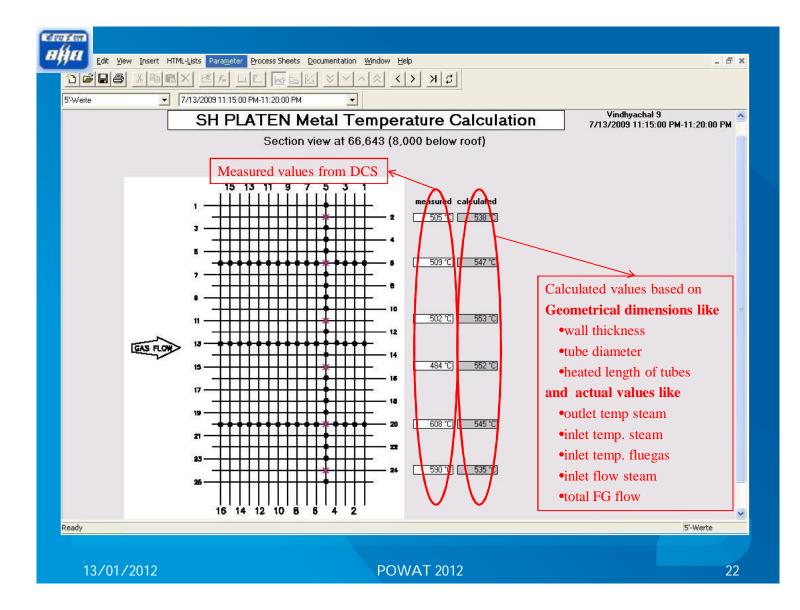
13/01/2012

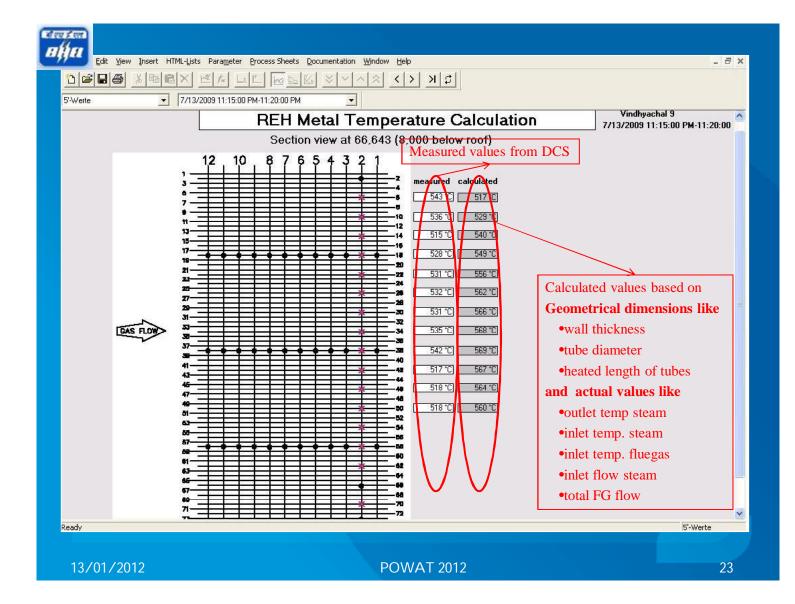
POWAT 2012

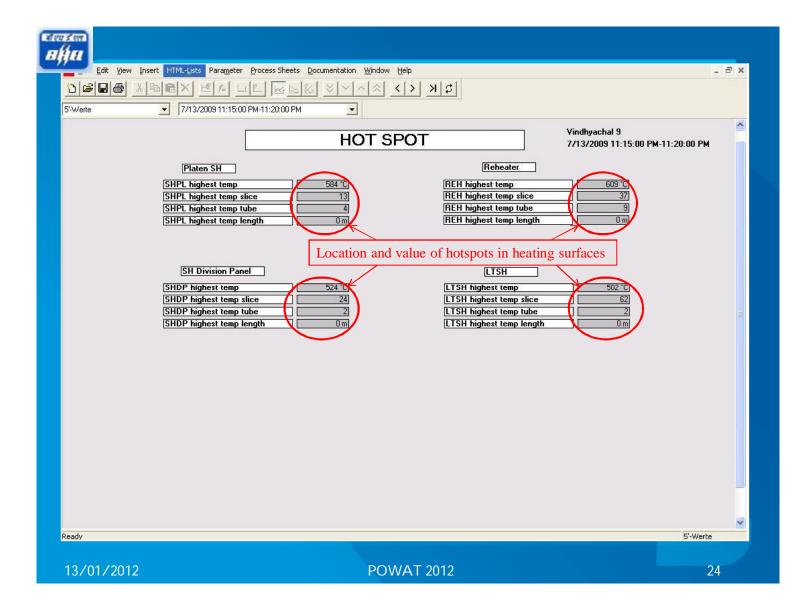
BB-3: BOILER PERFORMANCE OPTIMISATION (BPOS)

FEATURES:


BACKWARD CALCULATIONS
-ZONAL FG & FLUID TEMPERATURE
-HEAT BALANCE
-LOSSES (Dry gas, H2O in fuel, UBC, Radiation, H2O in air)
FORWARD CALCULATIONS
-COAL, AIR, SPRAY FLOWS
-BOILER EFFICIENCY
METAL TEMP. CALCULATION
METAL HOT SPOTS


13/01/2012


बी एम ई सन


ohn

POWAT 2012

- •BB1:PERFORMANCE ANALYSIS & MONITORING MODULE
- •BB2:SYSTEM & PERFORMANCE OPTIMISATION
- •BB3:BPOS(BOILER PERFORMANCE OPTIMISATION SYSTEM)
- •BB4:BOILER STRESS CONDITION ANALYSER
- •BB5:SYSTEM & PERFORMANCE DIAGNOSIS MODULE
- •BB6: INTELLIGENT WATER & STEAM CHEM. MGT

13/01/2012

POWAT 2012

- •BB1:PERFORMANCE ANALYSIS & MONITORING MODULE
- •BB2:SYSTEM & PERFORMANCE OPTIMISATION
- •BB3:BPOS(BOILER PERFORMANCE OPTIMISATION SYSTEM)
- •BB4:BOILER STRESS CONDITION ANALYSER
- •BB5:SYSTEM & PERFORMANCE DIAGNOSIS MODULE
- •BB6: INTELLIGENT WATER & STEAM CHEM. MGT

13/01/2012

POWAT 2012

BB-5: BOILER STRESS CONDITION ANALYSER

FEATURES:

•CALCULATION OF CREEP & FATIGUE

--DRUM

-- SH O/L HDR

-- RH O/L HDR

-- Y PIECE IN MS LINE

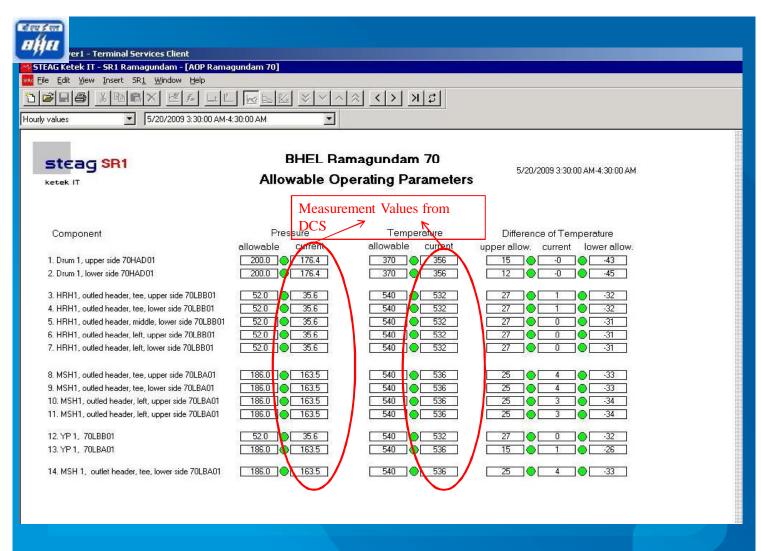
•*REMAINING LIFETIME INDICATION*

•LIST OF LARGE LOAD CHANGES

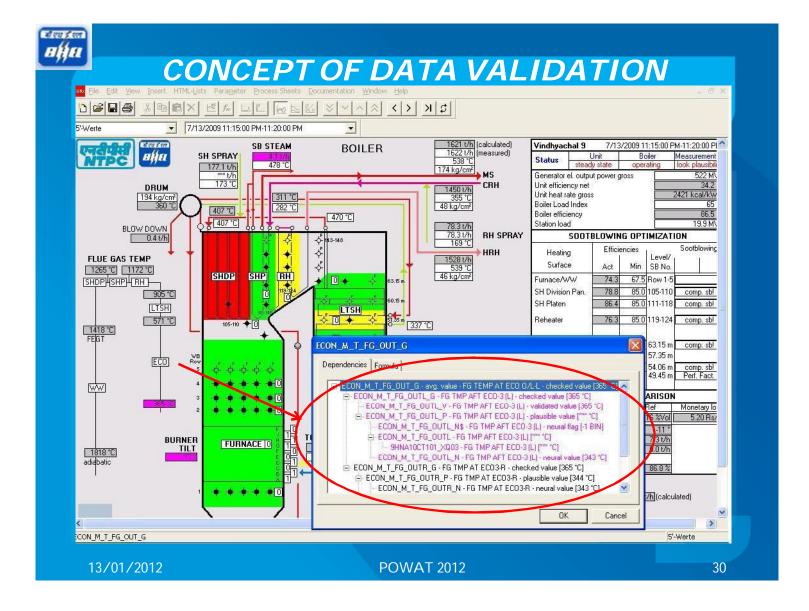
•ALLOWABLE OPERATING PARAMETERS

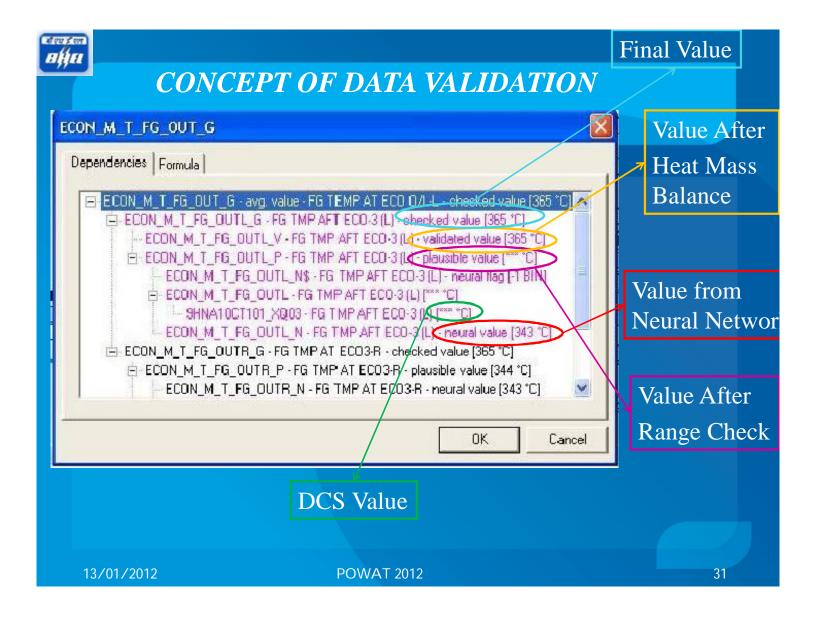
13/01/2012

बी एम ई शत


an the

POWAT 2012


CANCER SEEX MADE STATES										
Hourly values 🗾 4/29/2009 8:30:00 AM-9:30:00 AM 🗾										
5.80	OMPONENTS CONSIDER		C							
steag SR1	BHEL Ramag	undam 70	4/29/200	9 8:30:00 AM-9:30:00) AM					
ketek IT	Overview De	gradation								
	operating time [h]		life time cons	umption [%]						
Component	monitored down time	creep	iatique	total	increment (24h)					
	montored	стеер	langue		increment (24ii)					
1. Drum 1, upper side 70HAD01	[18899.3 h] 4380.8 h	2.720 %	0.151 %	2.871 %	0.000159%					
2. Drum 1, lower side 70HAD01	18899.3 h 4380.8 h	3.099 %	0.099 %	3.198 %	0.000181 %					
	10000.21	0.977 %		0.077 %	0.000005 %					
3. HRH1, outled header, tee, upper side 70LBB01 . HRH1, outled header, tee, lower side 70LBB01	18899.3 h 4922.4 h 18899.3 h 4922.4 h	1.055 %	0.000 %	0.977 %	0.000065%					
5. HRH1, outled header, tee, lower side 70LBB0 5. HRH1, outled header, middle, lower side 70LB801	18899.3 h 4922.4 h	3.319 %	0.000 %	3.319 %						
5. HRH1, outled header, initiale, lower side 70LBB0 5. HRH1, outled header, left, upper side 70LBB0	18899.3 h 4922.4 h	1.998 %	0.000 %	1.998 %						
7. HRH1, outled header, left, lower side 70LBB01	18899.3 h 4922.4 h	3.319 %	0.000 %	3.319 %	0.000219 %					
. MSH1, outled header, tee, upper side 70LBA01	18899.3 h 4381.1 h	1.356 %	1.202 %	2.557 %	0.000077%					
S MSH1, outled header, tee, lower side 70LBA01	18899.3 h 4381.1 h	4.245 %	1.202 %	5.447 %	0.000244 %					
10, MSH1, outled header, left, upper side 70LBA01	18899.3 h 4381.1 h	14.486 %	0.426 %	14.911 %	0.000836 %					
11.MSH1, outled header, left, upper side 70L8A01	18899.3 h 4381.1 h	14.486 %	0.426 %	14.911 %	0.000836 %					
12, YR 1, 70LBB01	[18899.3 h] 4807.7 h]	1.673 %	0.001 %	1.674 %	0.000111 %					
13. YPL, 70LBA01	18899.3 h 4381.1 h	1.397 %	2.620 %	4.017 %						
IS. IF , TOLDAUT	10033.3 n 4301/1 n	1.001 %	2.020 %	4.017 %	0.000001 %					

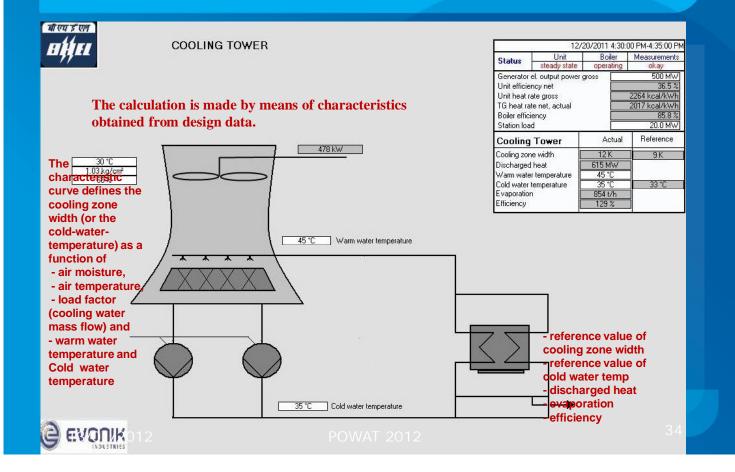

13/01/2012

POWAT 2012

POWAT 2012

SEAMLESS INTEGRATION OF PADO RESULTS AND RECOMMENDATIONS IN DCS HMI SCREENS

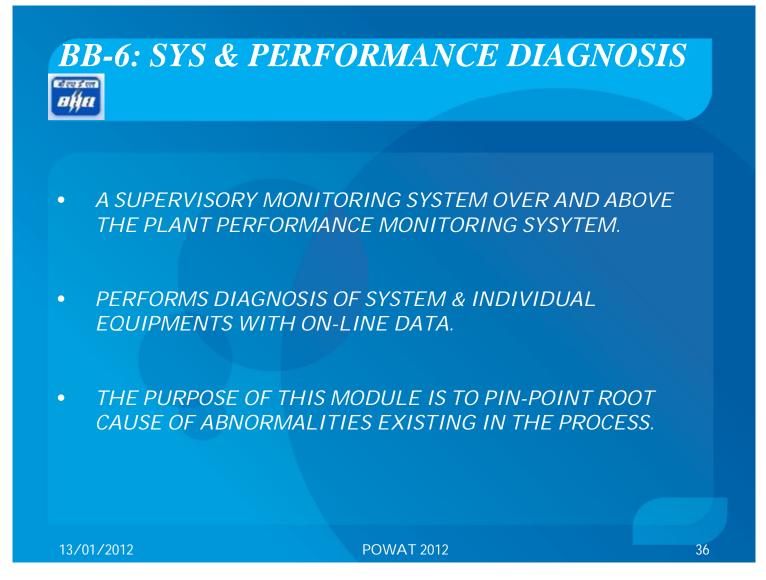
							SPO		:53:37 Sep1	
TIME 21.09.11/18:40:0	0		Uni	it Loa	ad 4	187.61 M	w	100	lain TG-B	Last er ELE
CONTROL LABLE LOSS HEAT RATE DEVIATION - AUX STEAM HEAT RATE DEVIATION - FW TEMP HEAT RATE DEVIATION - MS PRESS HEAT RATE DEVIATION - MS TEMP HEAT RATE DEVIATION - MAKEUP WATH HEAT RATE DEVIATION - RH SPRAY HEAT RATE DEVIATION - RH TEMP HEAT RATE DEVIATION - SH SPRAY HEAT RATE DEVIATION - COND PR BOILRE DRY GAS LOSS 02 AT ECONOMISER OUTLET	-1.31keal 0.26keal 1.30keal 0.26keal 2.16keal 0.20keal 2.16keal -1.24keal 4.94kCA 4.66% 2.82%vv	/kW BO /kW BO /kW FU /kW AI /kW CA /kW CA /kW TO /kW TO /kW TO /kW TO /kW TO /kW TO /kW TO	IT EFFI ILER EF RNACE E R HTR E LC HEAT TAL COA MTAL AIR NERATOR T EFFIC	XIT TE XIT FG ING VA L FLOW FLOW FLOW EFFIC IENCY	(NET) CY(%) MP TEMF LUE	344 866 1347 135 3850 285 1861 1537 98 88	.98% .50% .27°C .60°C 0.07kCA 5.87TPH 1.88TPH .65TPH .37% .66%	MS MS HR HR L/kg CF FV FV FV FV FV FV FV FV FV FV FV FV FV	TMP TMP 3. PR LTMP BLJ 2.LVL VFL 2.PR R.PR HDR HDR HDR HDR LVAC	Tradi Trind
REF TG HEAT RATE(GROSS) 2027.74kg TG HEAT RATE(GROSS) 2054.62kg TG HEAT RATE(ACTUAL) 2142.59kg	al/kWł		HEAT RA HEAT RA		ss		3keal/kW 7keal/kW	1	ance A k All /	lacSum tek Top
	SCEAR SCW CNC MD199-C	TDEFP-A TDEFP-B	DEAERATOR	HP HTR LP HTR	CRHMBH ST SHISTRAN	COAL OVY	OIL SUPLY TUR CAR	GERSEAL GREEPLATE	-	TO/DE
EUFB SAHA DAFABB MILLAE SADC FW	& DECM ERTC	CORD CA	659	GERNOL#	BHSTEAN	1999	191	CHIRACHI	DMM	BLA: CTS

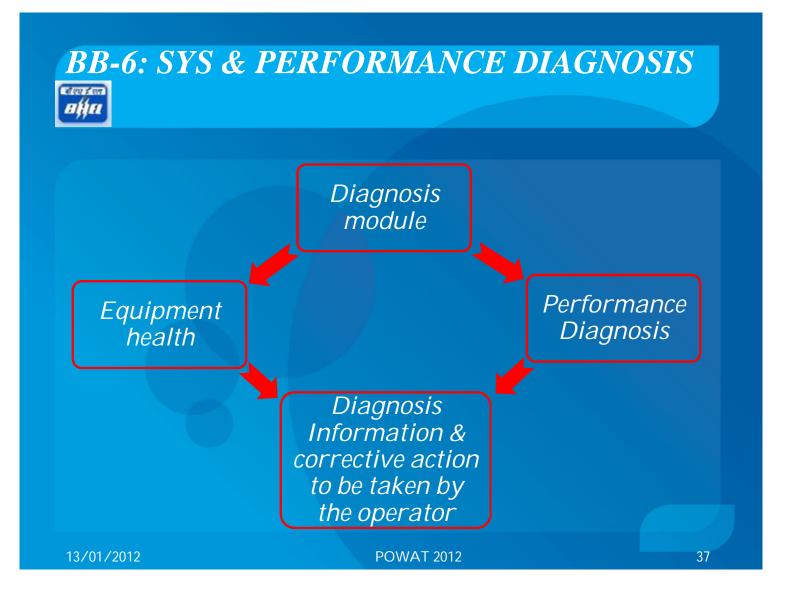

13/01/2012

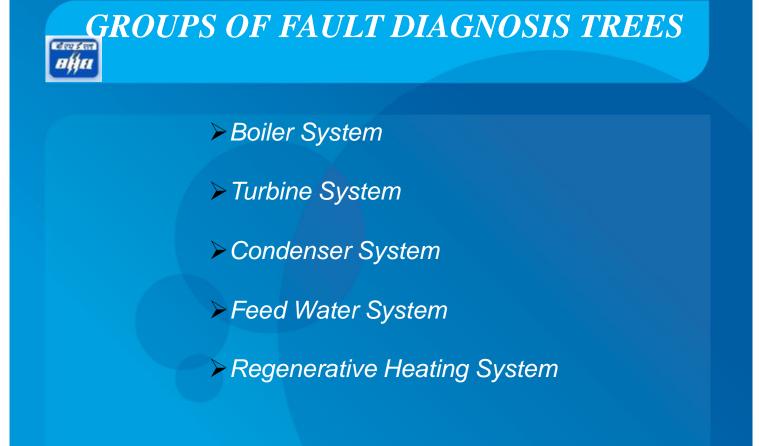
POWAT 2012

SEAMLESS INTEGRATION OF PADO RESULTS AND RECOMMENDATIONS IN DCS HMI SCREENS

											TON	_		54:25 0
TIME	21.09).11/1	.8:40	:00					Unit	Load	487	.61MW	21	Sep11
02 AT	ECONO	MISER C)/L	3.00%			REF T	G HEAT	RATE(GROSS)	2027.	74kCAL	kV M	ain Last
BURNE				7.00DE	G		TG HE	AT RAT	E(GROS	S)	2054.0	62kcal/k	WI 😘	TG 207 ELE Inti Truck
MSP	PRESSUR		16	58.71kg	em ²		TG HE	AT RAT	E(ACTU)	AL)	2142.	59keal/k	wł 🗾	nt Print
	EMPERA		54	5.14°C	50,3074 A		UNIT	UPAT D	ATE NE		Tataa			TMP 539
RHT	EMPERA	TURE	54	4.53 °C			UNLI	HEAT K	ATE NE	E.	2492.9	97keal/k	WE MS	PR 171.8
UNIT	HEAT R	ATE OP1	238	37.64kC	AL/kN		UNIT	HEAT R	ATE GR	DSS	2390.0	03keal/k		TMP 538
				I MELL	LIDERI	MISK				N.				LVL .14.5
	CURRENT	F STATUS	CURRE	ENT FLOW		OPTIME	SED STATUS	5 OP	TIMISED F	LOW			200	(FL 1544
MIL	LK	0.0	0.	.01 TPH		0.0	NO CHAI	NGE	0.00T	PH				R FL 1685
MIL	L J	0.0	0.	OO TPH		0.0	NO CHAI	VGE	0.00T	PH			DR	PR. 190.2
MTL	LH	1.0	39	45 TPH		1.0	NO CHAI	NGE	38.82T	РН			1000	R.P.R -10.7
	1 6	1.0	Concession of the	18TPH		1.0	NO CHAI		38.18T				1000	HDR 829.9
	LF	0.0	0.00	.07 TPH		0.0	NO CHAI	Contractor of the local division of the loca	0.00T	10,000 H				1188 1112 5.5
		Contractor of the local division of the loca		.13TPH					50.13T				and an	VAC -0.87
588 B	LE.	1.0	1.02	.00TPH		1.0	NO CHAI	and the second	0.00T				T	G Print
MIL	LD.	0.0		A STATE OF THE OWNER		0.0	NO CHAI	NGE	CONTRACTOR OF CONTRACTOR	Automatic State			Sile	nce Alm¥um
MIL	L C	1.0	101007-007	.43TPH	- 1	1.0	NO CHAI	VGE	53.43T	2858 : ()			-	All Ack Top
	L B	1.0	10000	.35 TPH		1.0	NO CHAI	NGE	53.35T	160000		-	-	TRND BAR
MIL	L A	1.0	53.	.59TPH		1.0	NO CHAI	NGE	54.29T	PH		PAD		Sector and
FO APT ALL	SEC AIR	EAIL1	PARA	MILL P-R	SLIDC FAN	BCW.	TDEPP-A	DEADLATOR	109 KTR	CRAMINALIST	COAL OV	OIL SUPLY	GIDESKAL	UNEY OVE
ID9A	PDFARE	PRIAD	PARE	OIL CHEL	CMC	MDBPP-C	TDEFP-B	HOTWELL	19300	SEISTEAN	TUREVAC	TUR CAE	CREAT PEL WITH	RCW-TOUGH
IDFE	SAHA	PAFARE	MILL A-E	SADC	PH & DRUM	SERIC	COND CV	137	08304008+	RHSTEAM	LPBP	TSI	CHRACH	DMMKACTS

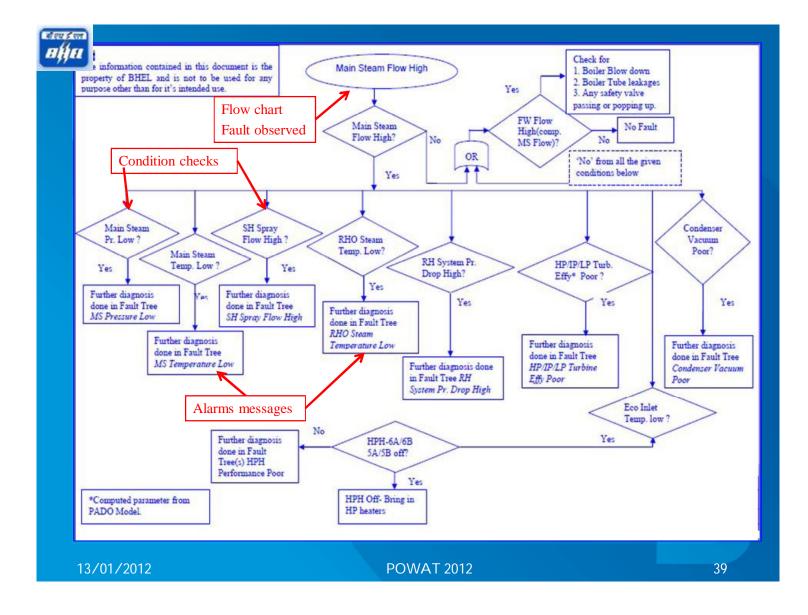

COOLING TOWER CALCULATIONS

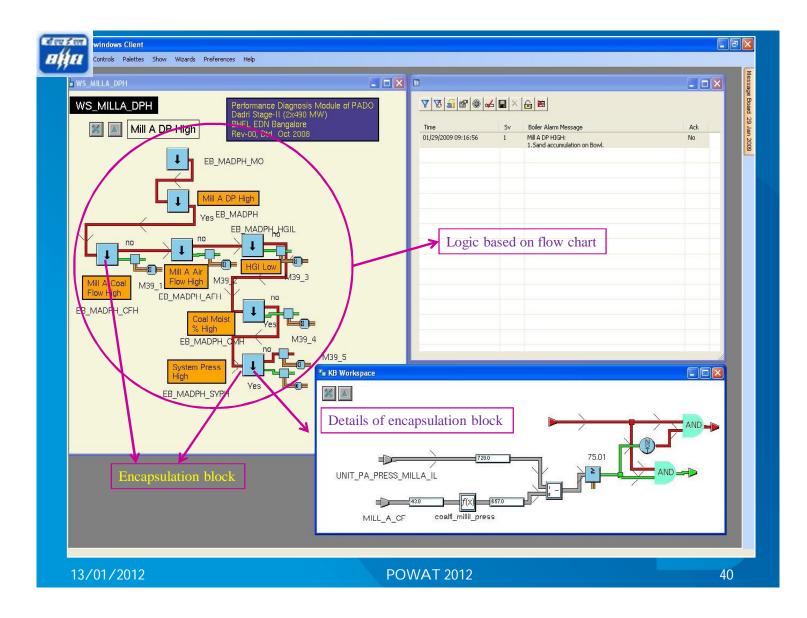


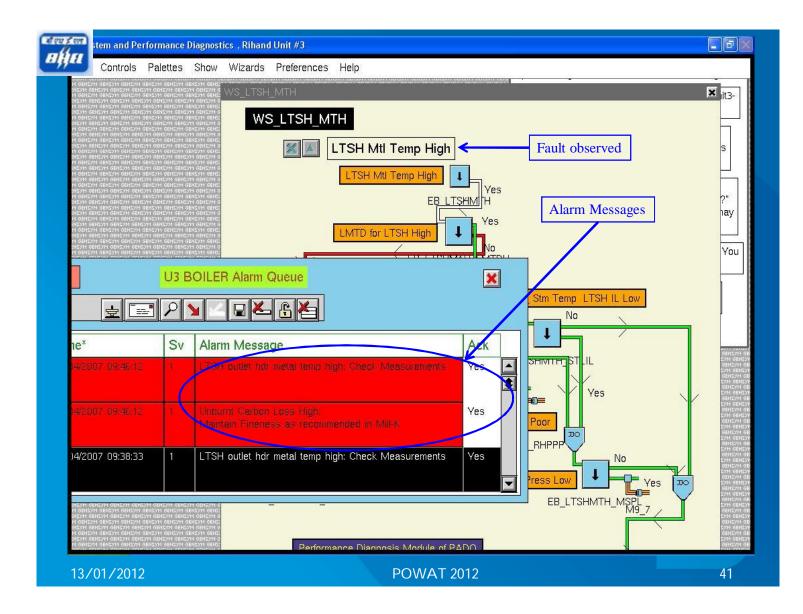


- •BB1:PERFORMANCE ANALYSIS & MONITORING MODULE
- •BB2:SYSTEM & PERFORMANCE OPTIMISATION
- •BB3:BPOS(BOILER PERFORMANCE OPTIMISATION SYSTEM)
- •BB4: CONTROL LOOP OPTIMISATION
- •BB5:BOILER STRESS CONDITION ANALYSER
- •BB6:SYSTEM & PERFORMANCE DIAGNOSIS MODULE
- •BB7: INTELLIGENT WATER & STEAM CHEM. MGT

POWAT 2012





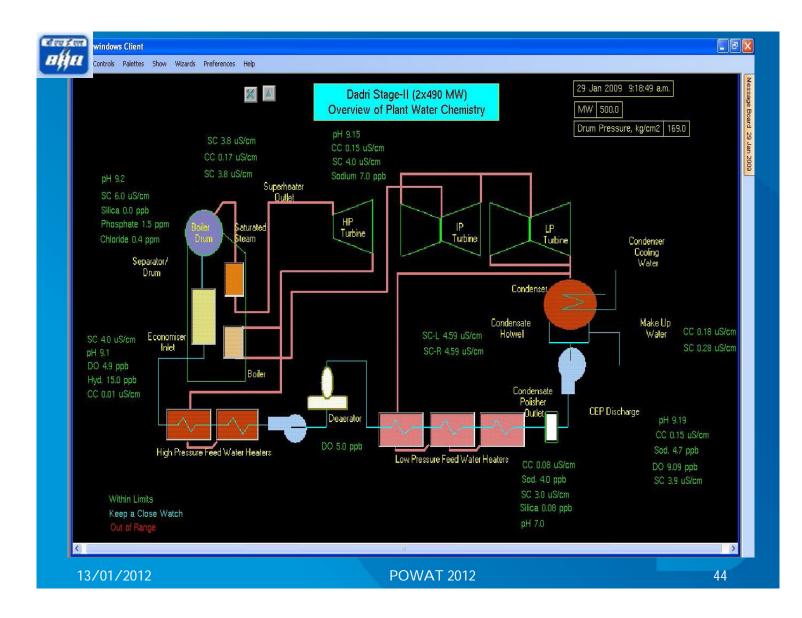


13/01/2012

POWAT 2012

- •BB1:PERFORMANCE ANALYSIS & MONITORING MODULE
- •BB2:SYSTEM & PERFORMANCE OPTIMISATION
- •BB3:BPOS(BOILER PERFORMANCE OPTIMISATION SYSTEM)
- •BB4: CONTROL LOOP OPTIMISATION
- •BB5 BOILER STRESS CONDITION ANALYSER
- •BB6:SYSTEM & PERFORMANCE DIAGNOSIS MODULE
- •BB7: INTELLIGENT WATER & STEAM CHEM. MGT

13/01/2012


POWAT 2012

BB-7:INTELLIGENT WATER & STEAM

Water & Steam Cycle

- Optimized consumption of dosing chemicals
- Reduction in degradation of turbine components
- Reduction of boiler tube scale formation
- Trending of parameters

POWAT 2012

ale se	Parameters for Alarm queue	Ê
- Alle		
	1. Boiler Water – pH 9.1-9.4	
	2. Boiler Water - Specific Conductivity < 20.0 micro-siemens/cm	
	3. Boiler Water - Silica < 100 ppb	
	4. Boiler Water - Phosphate 1000-2000 ppb	
	5. Boiler Water - Chloride < 0.5 ppm	
	 Deaerator Outlet – Dissolved Oxygen < 7 ppb 	
	7. Feed Water – Hydrazine 10-20 ppb	
	8. Feed Water – pH 9.0-9.2	
	9. Feed Water – Specific Conductivity 3-5 micro-siemens/cm	
	10. Feed Water - Cation Conductivity <0.2 micro-siemens/cm	
	11. Feed Water – Dissolved oxygen <=5 ppb	=
	12. Main Steam - Specific Conductivity < 5 micro-siemens/cm	-
	13. Main Steam - Cation Conductivity < 0.2 micro-siemens/cm	
	14. Main Steam – pH 9.0-9.2	
	15. Main Steam – Sodium < 10.0 ppb	
	16. Condensate Polisher Outlet - Sodium < 5 ppb	
	17. Condensate Polisher Outlet - Silica < 5 ppb	
	18. Condensate Polisher Outlet - Sp. Conductivity < 5 micro-siemens/cm	
	19. Condensate Polisher Outlet – pH 6.8-9.2	
	20. Condensate Polisher Outlet -Cation Conductivity <0.1 micro-siemens/cm	
	21. Hotwell Condensate Left- Sp. Conductivity 3-5 micro-siemens/cm	
	22. Hotwell Condensate Right- Sp. Conductivity 3-5 micro-siemens/cm	
	23. CEP Discharge - Cation Conductivity < 0.2 micro-siemens/cm	
	24. CEP Discharge – Sodium < 5 ppb	
	25. CEP Discharge – Dissolved Oxygen < 20 ppb	
	26. CEP Discharge – pH 9.0-9.2	
	27. CEP Discharge - Sp. Conductivity < 5 micro-siemens/cm	
	28. Saturated Steam - Sp. Conductivity 3-5 micro-siemens/cm	-
	13/01/2012 POWAT 2012 4	5

च्च्यद्रन्त मध्रम्

PADO FUNCTIONS IN PLANT DEPARTMENTS

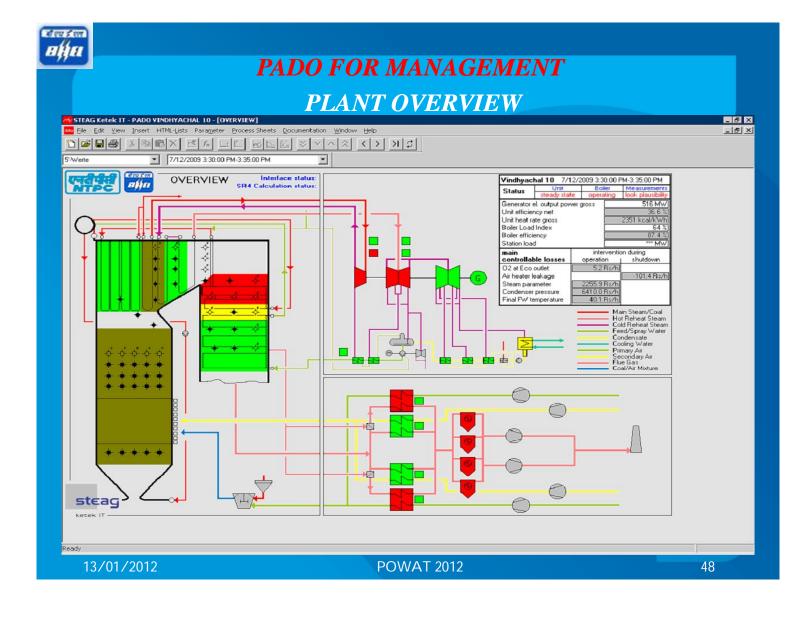
MANAGEMENT:

• Overview of efficiencies of the plant

EFFICIENCY GROUP:

Monitoring efficiencies of important plan components

OPERATION GROUP:


- Following the indication for sootblowing
- Following the set point optimization

MAINTENANCE MECHANICAL AND C&I GROUPS:

• Monitoring of Measurements (Data Reconciliation)

13/01/2012

POWAT 2012

PADO FOR MANAGEMENT REPORTS

	DAILY REPORT												
	Daily Efficiency Report for Vindhyachal Unit 9												
	Date:	7/12/2009											
	Description	Unit	Availibility (Hr)	No of samples	Average	Min	Max						
1	UNIT ACTIVE POWER (AVG) - checked value	GJ/s	24.00	288	516.01	501.81	523.22						
2	unit efficiency, net (calc.)	g/kg	21.08	253	33.82	33.21	34.54						
3	unit heat rate, gross (calc.)	kcaľkWh	21.08	253	2440.78	2392.55	2481.11						
4	boiler efficiency British standard (calc.)	%	21.08	253	83.04	79.73	86.74						
5	dry gas loss (calc.)	%	21.08	253	7.76	4.54	10.68						
6	loss due to moisture in fuel (calc.)	%	21.08	253	3.28	3.11	3.42						
7	loss due to moisture in air (calc.)	%	21.08	253	0.13	0.07	0.17						
8	loss due to unburnt carbon (calc.)	%	21.08	253	1.50	1.50	1.50						
9	radiation loss (ABMA curve) (calc.)	%	21.08	253	0.11	0.11	0.11						
10	other losses (sensible heat of ash etc.) (calc.)	%	21.08	253	0.57	0.50	0.63						
11	total losses (calc.)	%	21.08	253	16.96	13.26	20.27						
12	gross heat rate, actual (calc.)	kcaľkWh	21.08	253	1998.50	1922.78	2087.91						
13	gross heat rate, actual (calc.)	kcaľkWh	21.08	253	2079.47	1995.00	2179.55						
14	gross heat rate, reference (calc.)	kcaľkWh	17.92	215	1952.24	1885.83	2009.49						

13/01/2012

POWAT 2012

डल्डल मध्रम		
PADO I	FOR EFFICIENCY (GROUP
B	OILER EFFICIENC	Y
STEAG Ketek IT - PADD VINDHYACHAL 10 - [BPD5]	s Sheets Documentation Window Help	
5-Werte 7/12/2009 3:30:00 PM-3:35		
Load [MW] 516 MS flow [t/h] 443 MS temp [*C] 540 RH temp [*C] 539 Flue gas temperature [*C Section Inlet Outlet Economiser 526 34 Waterwalls 1812 133 LTSH 819 52 Panel SH 1334 116 Platen SH 11159 107	R Boiler thermal performance data Boiler thermal performance data Built temperature [*C] Fouling Zonal heat M Inlet Outlet Factor absorption [MW] to 2 260 323 0.88 138 138 4 359 359 0.88 418 359 232 1403 477 0.91 1401 88 168 100 88 168 100	Vindhyachal 10 7/12/2009 3: 30:00 PM-3: 35:00 PM mbient air temperature [*C] 28 elative humidity [%] 60 ue gas oxygen at Eco outlet 3:50 ue gas oxygen at AH outlet 4.78 urner tilt [*] 111 ills in operation A on B on C on Maximum metal D on emperature [*C] E off F on G off 462 *C H on 565 *C J off 605 *C K off
Air heater 342 12 Coal mass flow [t/h] 34 Bottom ash removal rate [%] 2 Duct ash removal rate [%] 4 AH ash removal rate [%] 34	0.73 145 Coal analysis Hit GCV [kcal/kg] 4000 Proximate Lo Total moisture [2] 20.0 Ash [2] 30.7 Volatile matter [2] **** Fixed carbon [2] 28.0 Ultimate Ultimate Carbon [2] 40.5 Hydrogen [2] 0.9	act Ref oiler efficiency [2] 87.36 86.81 sses 87.36 86.81 ry gas [2] 4.00 4.28 20 in fuel [2] 3.08 2.21 20 in siz [2] 0.06 0.11 BC [2] 1.50 1.50 adiation [2] 0.11 0.12 thers [2] 0.50 0.76 otal losses [2] 12.64 13.19
13/01/2012	POWAT 2012	50

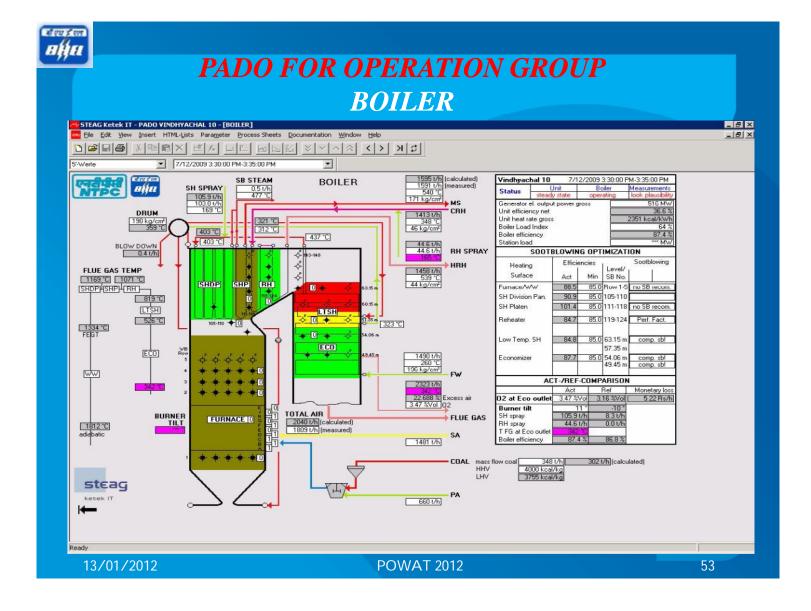
ब्बल्बइल् मध्रम्

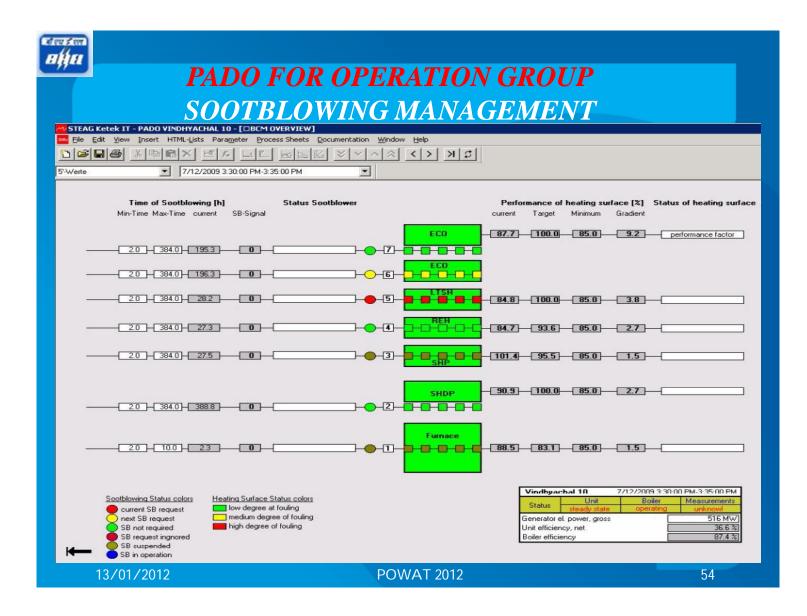
PADO FOR EFFICIENCY GROUP CONTROLLABLE LOSSES

Controllable Losses	Actual	Reference	HR Dev. [kcal/kWh]	Losses expr. in extra fuel	Monetary loss [Rs/h]
Throttle temperature	536 °C	537 °C	0.121	0.0 t/h	19
Throttle pressure	168 kg/cm²	170 kg/cm²a	3.152	0.5 t/h	508
Reheat temperature	536 °C	537 °C	-0.370	-0.1 t/h	-60
Reheat pressure drop	3.5 kg/cm ²	4.5 kg/cm²a	-3.462	-0.5 t/h	-558
Condenser back pressure	-0.86 kg/cm²	-0.89 kg/cm²	39.789	5.8 t/h	6410
Superheater spray flow	105.9 t/h	8.3 t/h	4.700	0.7 t/h	757
Reheat spray flow	44.6 t/h	0.0 t/h	14.003	2.1 t/h	2256
Final FW temperature	260 °C	255.1 °C	0.249	0.0 t/h	40
Blow down flow	0.4 t/h	0.5 t/h	-0.047	-0.0 t/h	-8
Auxiliary steam flow	12.0 t/h	10.0 t/h]	3.816	0.6 t/h	615
Frequency	49.70 Hz	50.00 Hz	0.021	0.0 t/h	8
Make-up flow	12.8 t/h	0.0 t/h	27.854	4.1 t/h	4487
TG heat rate gross, actual TG heat rate gross, referer	2026 kca nce 1966 kca	and so in the local section of	heat rate net,	actual ***	kcal/kWh

13/01/2012

POWAT 2012


PADO FOR EFFICIENCY GROUP REPORTS


	DAILY REPORT						
	Daily Efficien	cy Report fo	or Vindhya	chal Unit 9			
	Date:	7/12/2009					
	Description	Unit	Availibility (Hr)	No of samples	Average	Min	Max
1	UNIT ACTIVE POWER (AVG) - checked value	GJ/s	24.00	288	516.01	501.81	523.22
2	unit efficiency, net (calc.)	g/kg	21.08	253	33.82	33.21	34.54
3	unit heat rate, gross (calc.)	kcal∕kWh	21.08	253	2440.78	2392.55	2481.11
-	boiler efficiency British standard (calc.)	%	21.08	253	83.04	79.73	86.74
5	dry gas loss (calc.)	%	21.08	253	7.76	4.54	10.68
6	loss due to moisture in fuel (calc.)	%	21.08	253	3.28	3.11	3.42
7	loss due to moisture in air (calc.)	%	21.08	253	0.13	0.07	0.17
8	loss due to unburnt carbon (calc.)	%	21.08	253	1.50	1.50	1.50
9	radiation loss (ABMA curve) (calc.)	%	21.08	253	0.11	0.11	0.11
10	other losses (sensible heat of ash etc.) (calc.)	%	21.08	253	0.57	0.50	0.63
11	total losses (calc.)	%	21.08	253	16.96	13.26	20.27
12	grossheat rate, actual (calc.)	kcaVkWh	21.08	253	1998.50	1922.78	2087.91
13	grossheat rate, actual (calc.)	kcaľkWh	21.08	253	2079.47	1995.00	2179.55
14	gross heat rate, reference (calc.)	kcaľkWh	17.92	215	1952.24	1885.83	2009.49

13/01/2012

BHU

POWAT 2012

बल्प इल्ल मिस्स			
PADO F	'OR OPERAT	ION GROUI	P
MET	TAL TEMPER	RATURES	
STEAG Ketek IT - PADO VINDHYACHAL 10 - [HOTSPOT]			
Elle Ecit View Insert HTML-Lists Parameter Process: ○ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Solution Window Help	 t	
5'-Werte			
5-Werte 7/12/2009 3:30:00 PM-3:35:00	JPM		
			Vindhvachal 10
	HOT SPO	T	7/12/2009 3:30:00 PM-3:35:00 PM
Platen SH		Reheater	
SHPL highest temp	585 °C	REH highest temp	605 °C
SHPL highest temp slice SHPL highest temp tube		REH highest temp slice REH highest temp tube	37
SHPL highest temp length		REH highest temp length	0 m
SH Division Panel SHDP highest temp	525 °Cl	LTSH LTSH highest temp	462 °C
SHDP highest temp slice	24	LTSH highest temp slice	62
SHDP highest temp tube SHDP highest temp length	2 0 m	LTSH highest temp tube LTSH highest temp length	2 0 m
10 /01 /0010		010	
13/01/2012	POWAT 2	012	56

1 eu 2 en		
	FOR OPERATION GROU	D
SET.	POINT OPTIMIZATION	
STEAG Ketek IT - PADO VINDHYACHAL 10 - [Set]		
Eile Ecit View Insert HTML-Lists Parameter Process Sh	neets <u>D</u> ocumentation <u>W</u> indow <u>H</u> elp	
1685 X BEX KALLK		
5'Werte 7/12/2009 3:30:00 PM-3:35:00 F		
		Vindhyachal 10 7/12/2009 3:30:00 PM-3:35:00 PM
		771272009 3:30:00 PM-3:35:00 PM
	Set point optimization	
	act value opt value	
	Boiler	
	02 at Eco outlet 3.47 % 3.00 %Vol Burner tilt 11 ° 11 °	
	Turbine Cycle	
	MS temperature 539.53 °C 545.00 °C	
	MS pressure <u>170.62 kg/crr²</u> <u>170.00 kg/crr²</u> Reheat temperature <u>538.85 °C</u> <u>545.00 °C</u>	
	Condenser back pressure 0.86 kg/cr² 0.89 kg/cm²	
	Windbox Furn. pressure 79.87 mmWC 89.74 mmWC PA HDR Pressure 839.16 mmWC 800.05 mmWC	
	Unit Heat Rate gross 2351 kcal/kWh 2312 kcal/kWh	
13/01/2012	POWAT 2012	57

BYER PADO FOR OPERATION AND EFFICIENCY GROUP HEAT RATE POTENTIAL

बी एय हे एल

ब्बल्वइल्ल मध्

PADO FOR OPERATION/EFFICIENCY GROUP

WHAT-IF

Eile Edit View Insert Forma	t <u>T</u> ools	Data	a <u>W</u> ind	low Help SRx	WhatIP?							
ጅ 🖬 🔒 🍯 🖪 🖤 🛛	¥ 🗈	B .	🧭 ド) + CH + 🦉	b, Σ fn ĝ↓	🔬 🛍 🛷 75% 👻	📿 🗸 🖌 Arial	▼ 10 ▼ B	1旦 原意画図	\$ 俳	= 🛄 🗸 🖄	- 🕰
B66 <u>-</u> =		_										
C	D	E	F	G	н		J	K		м	N	0
Offline What-If C	alcul	ation	She	et V1.4 01.0	7.09	DATE		Evonik Energy Services	Offline What-If C 01	alculat 1.07.09		: V1.4
NAME	UNIT	LIM		VALUE	CASE STUDY	07/7/2009 16:05		GROUP	NAME	UNIT	VALUE	CAS STU
AUXILIARY POVER	MW	0	0	0.0	0.0	UNIT_M_PEL_SELF		WHATIF	STATUS		0	0
MS TEMPERATURE	°C	482	589	535.8	540.0	HP1_M_T_MS			GENERATOR POVER	MW	508.80	508.
MS PRESSURE	kg/cm ⁴	151	184	167.7	167.7	HP1_M_P_MS		COAL	COAL MASS FLOV	t/h	278.37	277.
BH TEMPERATURE	10	484		537.3	537.3	IP1_M_T_BH		STEAM OUTPUT	MS FLOV	t/h	1584.4	1578
FV INPUT TEMPERATURE	°C	230	281	255		WSC0_R_T_FW		CONDITIONS	MS TEMPERATURE	°C	535.8	540
HP HEATER 5 STATUS	-	0	1	1.0	1.0	HPH5_I_STA			BH TEMPERATURE	°C	537.3	537.
HP HEATER 6 STATUS	•	0		1.0		HPH6_LSTA		SPRAYS	RH SPRAY FLOW	t/h	68.70	68.1
RH SPRAY FLOV	e/h	0		68.70		BOIL_M_FM_SF_RH			SH SPRAY FLOW	t/h	98.04	38.0
OH OPPRAY FLOW	1.75.	0		99.04		DOIL_M_FM_OF_OU	_		AIR MASS FLOV	476	1726.2	1720
CV FLOV	m%h		47542	43220		COND_M_FV_CV		AIR & FLUE GAS	FG MASS FLOV	t/h	1937.5	1933
CONDENSER BACK PRESSUR				0.129		COND_M_P_2		CONDITIONS	FEGT	.с	1555.1	1553
CV INLET TEMPARATURE	°C	20		31.71		COND_M_T_CV_INP			FG TEMP. AFT ECO	.C	382.59	381.3
AMBIENT AIR TEMPERATURI		15		26.57		PAFA_M_T_AR_INP			FG TEMP. AFT AH	°C	159.09	158.0
AMBIENT BELATIVE HUMIDIT		10		60		BOIL_P_PSI	_	HEAT BALANCE	BOILER EFFICIENCY	2	87.92	87.9
02 AFT ECO	2	2		3.28		BOIL_M_02V_FG_AVG			DRY GAS	*	5.06	5.0
02 AFT PAHA	*	2		5.8		PAHA_M_02W_FG_OUT	2		H2O IN FUEL	*	2.46	2.4
UBC IN 2 GCY	2	0.1		0.71		BOIL_P_CUC_UC_LOSS	?		H20 FROM H2 IN FUEL	*	3.10	3.0
AH ASH REMOVAL RATE	2	1	50	3.00		BOIL_P_CAA		LOSSES	H2O IN AIR UBC	*	0.07	0.0
BOTTOM ASH REMOVAL BAT DUCT ASH REMUVAL BATE	E 8	1		20.00		BOIL_P_CBA			BADIATION	*	0.11	0.7
FLY ASH REMOVAL RATE	2	0		72.00		BOIL_P_COA BOIL_C_CFA			OTHERS	2	0.57	0.5
GCY	_	2500		4399		BOIL P HHV CO	-		TOTAL LOSSES	2	12.08	12.0
ASH	2	0.1		37.00		BOIL P CA		-	UNIT HEAT BATE GROSS	kcal/kWh	2421.6	2417
TOTAL MOISTURE	2	0.1		17.00		BOIL P CVA	2		UNIT HEAT BATE NET	kcal/kWh	2548.1	2541
CARBON	2	0,1		37.60		BOIL_P_CC	2	HEAT RATES	TG HEAT BATE GROSS	kcal/kWh	2056.2	205
HYDROGEN	2	0.1	99	2.38		BOIL P CH	?		TG HEAT BATE NET	kcal/kWh	2163.7	2158
NITROGEN	2	0.1	99	0.92		BOIL P CN	?		HEATING SURFACE EFF.	*	61.28	61,2
OXYGEN	2	0.1	99	5.00		BOIL_P_CO	?		HEAT ABSORPTION	MW	439.29	441.
SULPHUR	*	0.01	99	0.10		BOILPCS	?	FURNACE	FLUE GAS TEMP. INLET	°C	2132.90	2148.
BURNER TILT	GRAD			-3.61		BOIL_M_BT		I OPINACE	FLUE GAS TEMP.OUTLET	.c	1555.03	1553.
MILL A IN OPERATION	-0	U	1	1		MLLA_LSTA			FLUID TEMP. INLET	U	353.43	353.3
MILL B IN OPERATION	7.0	0	1	1		MLLB_L_STA			FLUID TEMP. OUTLET	C	359.43	359.
MILL C IN OPERATION	•	0	1	1		MLLC_LSTA			HEATING SURFACE EFF.	*	71.12	71.1
MILL D IN OPERATION	•	0	1	1		MLLD_LSTA			HEAT ABSORPTION	MW	144.92	145.
MILL E IN OPERATION	•	0	1	1		MLLE_LSTA		PANEL SH	FLUE GAS TEMP. INLET	°C	1555.03	1553.
MILL F IN OPERATION MILL G IN OPERATION		0	1			MLLF_LSTA			FLUE GAS TEMP.OUTLET		1351.68 392.97	1350
MILL G IN OPERATION		0	1	1		MLLG_LSTA MLLH_LSTA			FLUID TEMP. INLET FLUID TEMP. OUTLET	-C	470.80	469.
MILL J IN OPERATION		0				MLLJ I STA			HEATING SURFACE EFF.	2	65.46	463.
MILL 5 IN OPERATION		0		0		MLLS_1_STA MLLK I STA			HEAT ABSORPTION	A MW	96.90	104.3
BLOYDOWN FLOW	t/h	1		63.27		BOIL C FM BD			FLUE GAS TEMP. INLET	C	1351.68	1350
GENERATOR H2 PRESSURE	kg/cm			3.46		GENU M_P_H2	-	PLATEN SH	FLUE GAS TEMP. INLET	C	1225.45	1212.
FREQUENCY	Ha	47.5		49.35		GEN0 M FQ	kaina Kannlinia		FLUID TEMP. INLET	°C	470.80	469.
AIB HEATER LEAKAGE	t/h	50		341.33		AH00 C FM LEAK			FLUID TEMP. OUTLET	°C	541.17	545.
HP EFFICIENCY	2	76.3		84.74		HP1 C EFF			HEATING SURFACE EFF.	*	65.24	65.2
Screen Additional			elle3 /	,						-		and the second division of

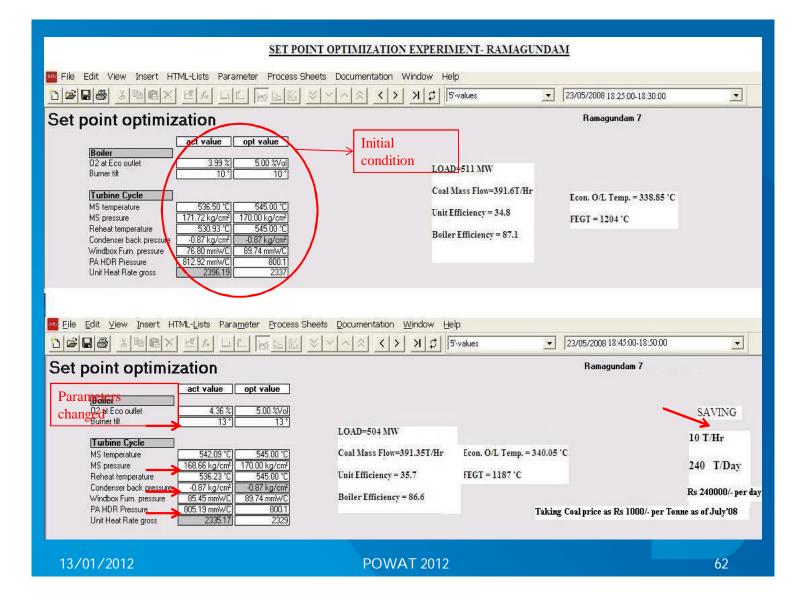
13/01/2012

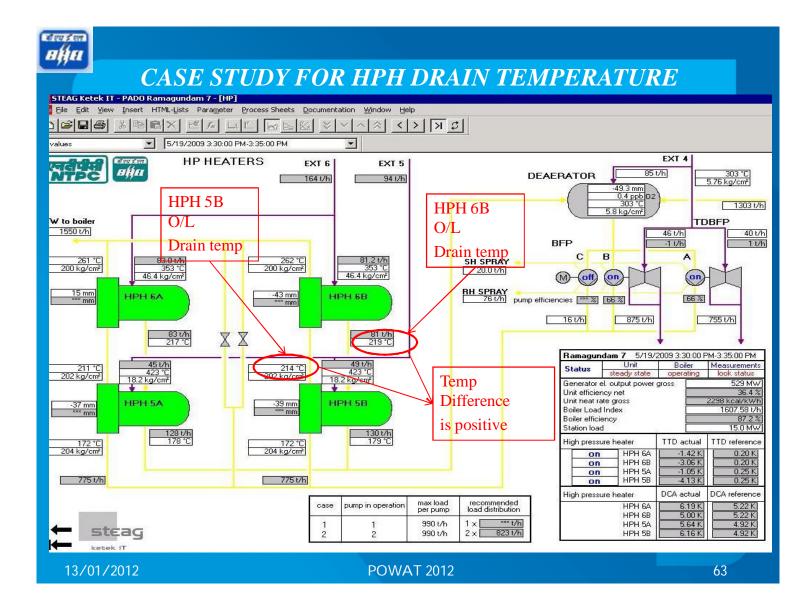
POWAT 2012

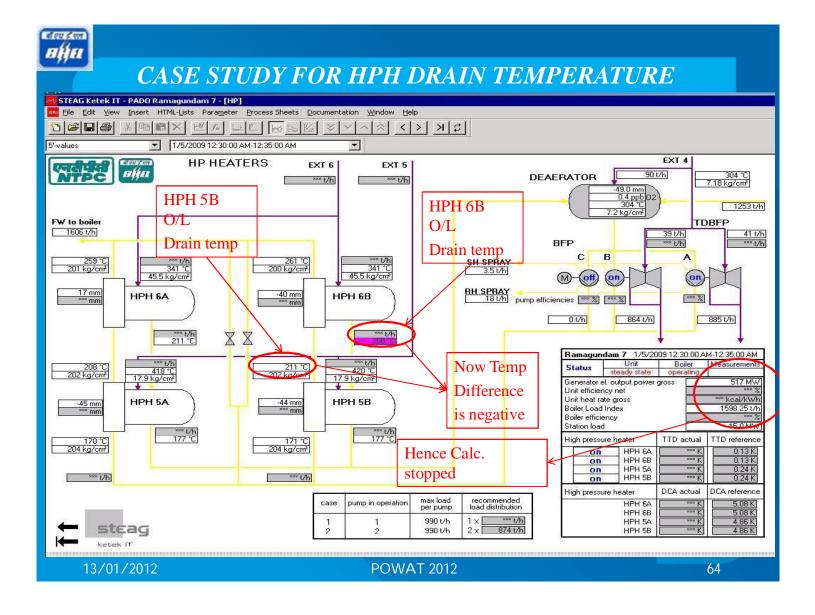
59

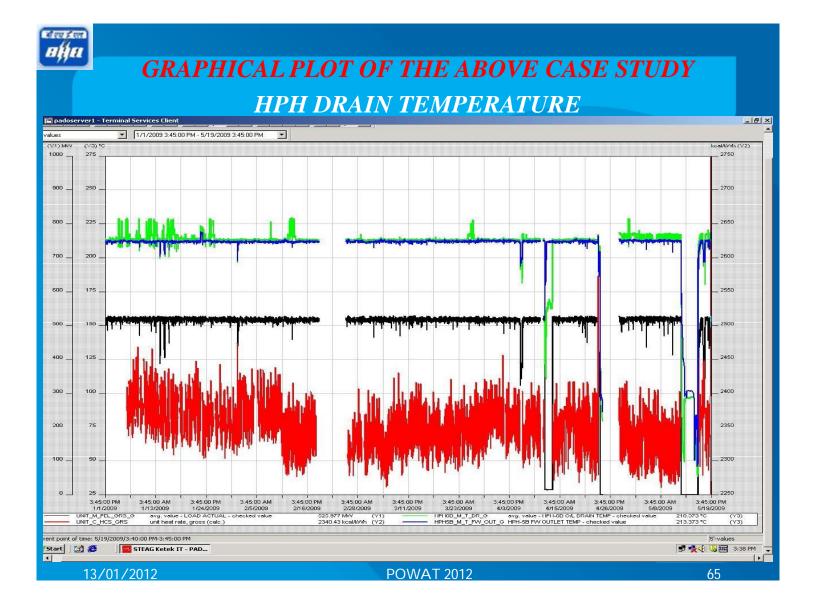
etersen BHU

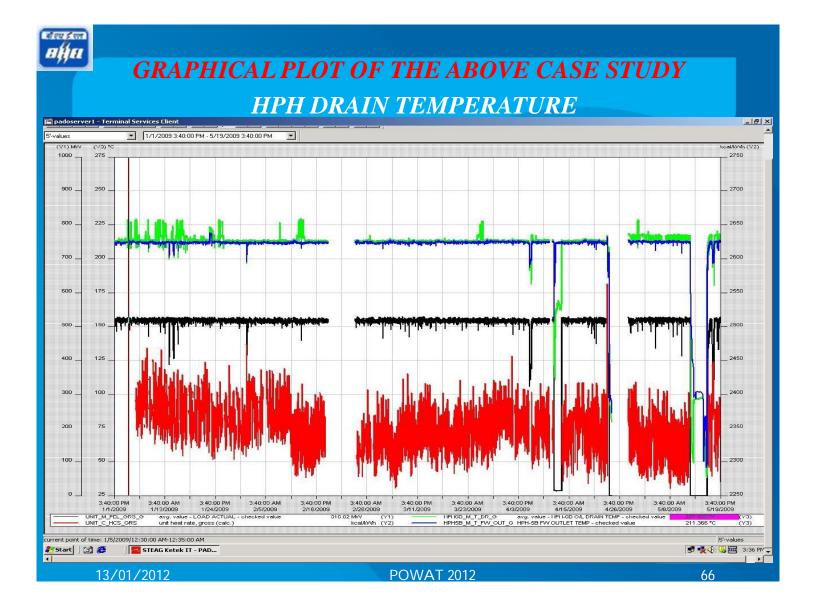
PADO OPERATION/EFFICIENCY GROUPS

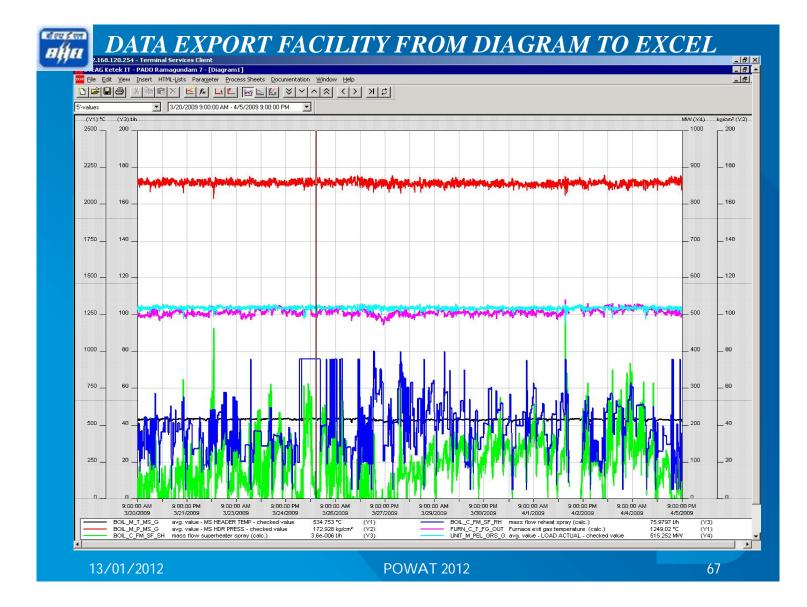

WHAT-IF


▼ =						
JK	L sector	M	N	0	P	0
	Offline What-If Calcu	ulation	Sheet V1.4	01.07.09		
GROUP	NAME	UNIT	CURRENT VALUE	CASE STUDY	SR4-NAME	
WHATIF	STATUS	1 2	0	0	what_if_status	1
	GENERATOR POWER	M/V	508.80	508.73	UNIT_M_PEL_GRS	1
COAL	COAL MASS FLOW	t/h	278.37	277.84	BOIL_M_FM_CO	
	MS FLOW	t/h	1584.4	1578.9	BOIL M FM MS	1
STEAM OUTPUT CONDITIONS	MS TEMPERATURE	*C	535.8	540.0	HP1_M_T_MS	
	RH TEMPERATURE	*C	537.3	537.3	IP1_M_T_RH	
	RH SPRAY FLOW	t/h	68.70	68.70	BOIL M FM SF RH	
SPRAYS	SH SPRAY FLOW	t/h	98.04	98.04	BOIL M FM SF SH	
	AIR MASS FLOW	t/h	1726.2	1722.9	BOIL M FM AR TOT	
	FG MASS FLOW	t/h	1937.5	1933.8	BOIL_C_FM_FG	
AIR & FLUE GAS CONDITION		*C	1555.1	1553.8	FURN_C_T_FG_OUT	1
	FG TEMP. AFT ECO	*C	382.59	381.37	ECON_M_T_FG_OUT	
	FG TEMP. AFT AH	*C	159.09	158.61	AH00_C_T_FG_OUT	
HEAT BALANCE	BOILER EFFICIENCY	%	87.92	87.94	BOIL C EFF BS	-
TIERT BRENTOE	DRY GAS	%	5.06	5.05	BOIL C DG LOSS	1
	H20 IN FUEL	%	2.46	2.46	BOIL C CWA FU LOSS	
	H20 FROM H2 IN FUEL	%	3.10	3.09	BOIL_C_CH_FU_LOSS	
	H20 FROM H2 IN FUEL	%	0.07	0.07	BOIL_C_CWA_AR_LOSS	
LOSSES	UBC	%	0.71	0.71	BOIL C CUC UC LOSS	
	RADIATION	%	0.11	0.11	BOIL C RAD LOSS	
	OTHERS	%	0.57	0.57	BOIL_C_OTH_LOSS	
	TOTAL LOSSES	96	12.08	12.06	BOIL_C_TOT_LOSS	
	UNIT HEAT RATE GROSS	kcal/k/vh	2421.6	2417.1	UNIT_C_HCS_GRS	1
	UNIT HEAT RATE OROSS	kcal/kVvh	2548.1	2541.2	UNIT_C_HCS_NET	
HEAT RATES	TG HEAT RATE GROSS	kcal/k/\/h		2053.1	WSCI_C_HCS_GRS	
	TG HEAT RATE NET	kcalAWh	2163.7	2158.8	WSCO C HCS NET	
	HEATING SURFACE EFF.	%	61.28	61.28	FURN C PFF	1
	HEAT ABSORPTION	MW	439.29	441.71	FURN C Q	
	FLUE GAS TEMP. INLET	°C	2132.90	2148.89	FURN C T FG ADB	
FURNACE	FLUE GAS TEMP.OUTLET	*C	1555.09	1553.76	FURN_C_T_FG_OUT	
	FLUID TEMP. INLET	•C	359.43	359.38	FURN_C_T_INP	
	FLUID TEMP. OUTLET	°C	359.43	359.37	FURN_C_T_OUT	
	HEATING SURFACE EFF.	%	71.12	71.12	SHDP_C_PFF	1
en / Additional Values / Tabelle3 /	ILATING SURFACE EFF.	70	(1.14	1.12	OHDI LOLETT	1




CASE STUDIES


SET POINT OPTIMIZATIONHPH DRAIN TEMPERATURE



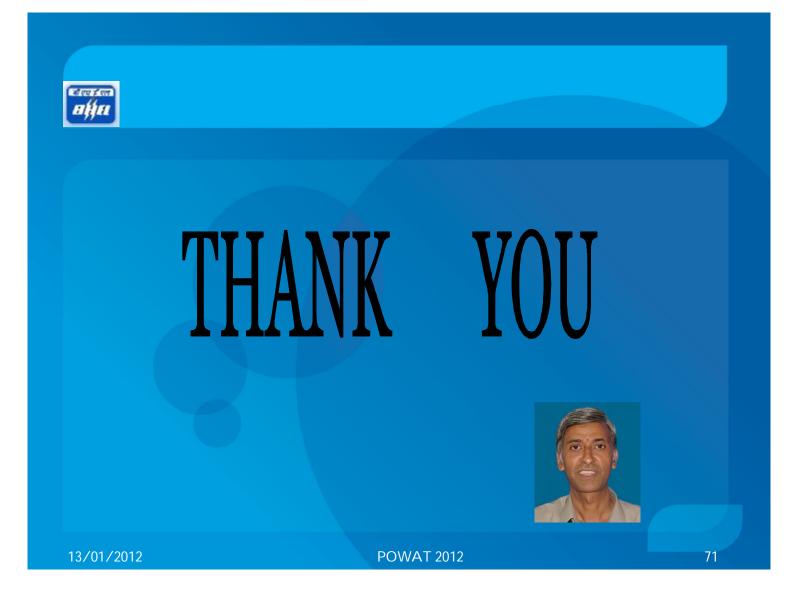
Micro	soft Excel - Book1		ITACIL			AM TO EX	
	Edit View Insert Format						
ነ 😅			🏯 Σ 🖈 🛃 🕌 🛍 🥵	150% 👻 🏆 🖕 🛛 Arial	• 10 • B <i>I</i> <u>U</u> ≣	₣≣ ≣ ฿ %, ‰.	8 (≇ (≇ ⊞ • 🕭 • 🛆 • .
D1:	3 <u>-</u> = 14.2 A	92977 B	С	D	E	F	G
1 1	A Time				and the second	FURN C T FG OUT	
-	3/26/2009 11:15	541.540031	171.737078	0.000007	28.599163	1273.947654	518.03872
	3/26/2009 11:20	545.98328	171.983408	14.593378	28.667549	1291.655681	519,19058
	3/26/2009 11:25	540.215661	173.014665	18.065099	28.714936	1284.209713	520.89364
	3/26/2009 11:30	543.734656	171.100809	13.445369	28.636903	1284.592661	517.20550
	3/26/2009 11:35	543.652048	171.692085	10.465426	28.579191	1285.32054	517.84095
	3/26/2009 11:40	543.637352	172.198211	16.781962	28.657268	1293.927173	520.41020
-	3/26/2009 11:45	543.458054	171.790413	6.902958	28.571646	1295.323332	518,40133
36	3/26/2009 11:50	545.432136	170.787374	13.881216	28.367076	1294.29108	517.20735
	3/26/2009 11:55	542.210936	172.072001	29.415827	28.465363	1301.950066	520.41568
Contraction of the	3/26/2009 12:00	543.428051	172.136387	22.663056	28,488451	1297.320822	519,48176
-	3/26/2009 12:05	543,820996	171.94005	14.386503	28,508104	1293.857271	518.86827
	3/26/2009 12:10	546.031558	169.946318	14.292977	75.979686	1281.920383	515.38706
	3/26/2009 12:15	543.843851	172.08316	42.419206	28.466487	1307.149516	520.67938
1	3/26/2009 12:20	537.797214	173.363604	29.57972	28.637625	1304.251298	521.43936
-	3/26/2009 12:25	540.625729	171.048897	20.411498	28.418703	1294.324915	516,71108
-	3/26/2009 12:30	546.85449	170.896506	29.488038	28.388178	1299,958023	518.85729
34	3/26/2009 12:35	539.683249	173.461177	37.347786	75.979686	1304.983835	521.42472
	3/26/2009 12:40	541.013951	172.384748	23,732828	75.979686	1291.463019	519,12465
0 3	3/26/2009 12:45	545.835608	171.812482	2.87457	75.979686	1288.153614	519.07155
2 C	3/26/2009 12:50	543.354289	170.989558	27.356533	75.979686	1289.126828	517.4069
	3/26/2009 12:55	546.39116	170.61587	9.356384	75.979686	1288.777811	516.3796
_	3/26/2009 13:00	544.219192	172,440259	25.316578	75.979686	1299.327807	521.0181
	3/26/2009 13:05	542,755681	173.27977	18.567395	75.979686	1290.047452	520,76729
	3/26/2009 13:10	544.493187	172.19304	24,155994	75.979686	1288.449522	519.24368
	3/26/2009 13:15	544.932787	173.547018	29.705701	75.979686	1299.378103	522.34948
	3/26/2009 13:20	543.106319	173.126972	24.012039	75.979686	1291.551745	519.65939
1. A.	3/26/2009 13:25	545.078117	169.684793	29.373211	75.979686	1285.837594	511.74471
9 :	3/26/2009 13:30	546.120826	171.826217	51.500223	75.979686	1308.454941	522.17370
0 :	3/26/2009 13:35	538.498208	171.268256	36.252325	75.979686	1283.515171	519.52937
	3/26/2009 13:40	545.437092	167.62292	24.947616	75.979686	1270.044194	509.92446
	3/26/2009 13:45	547.196403	169.363753	33.490689	75.979686	1285.719919	515.30101
ALCOLOGY /	3/26/2009 13:50	539 0231	171 920639	38 807205	75 979686	1287 141034	521.00719

PADO PROJECTS IMPLEMENTATION BY BHEL

UNIT RATING	NO OF SETS	CUSTOMERS
490/500	46	NTPC, KPCL, MAHAGHENCO, GEB, CSEB
525	4	TATA POWER, HNPL
600	5	TNEB, MPEB, APGENCO
195/250	9	NTPC
660, 700 (Super critical)	3	NTPC, KPCL
01/2012	P	OWAT 2012 6

PADO REMOTE CONNECTIVITY TO **VARIOUS SITES**

The Remote Connectivity to sites is through the ISDN line. The PADO Server at the site can be accessed from EDN, Bangalore. Following sites are now remotely connected to EDN, Bangalore:


- SIMHADRI TALCHER
- RAMAGUNDAM > SIPAT
- ➢ RIHAND
- VINDHYACHAL > DADRI
- > BELLARY

 - KORBA

13/01/2012

बी एम है द

POWAT 2012

