
1

Byzantine Resilient Distributed Learning in
Multi-Robot Systems

Jiani Li, Waseem Abbas, Member, IEEE, Mudassir Shabbir, and Xenofon Koutsoukos, Fellow, IEEE

Abstract—Distributed machine learning algorithms are increas-
ingly used in multi-robot systems and are prone to Byzantine
attacks. In this paper, we consider a distributed implementa-
tion of the Stochastic Gradient Descent (SGD) algorithm in a
cooperative network, where networked agents optimize a global
loss function using SGD on the local data and aggregation of
the estimates of immediate neighbors. Byzantine agents can send
arbitrary estimates to their neighbors, which may disrupt the
convergence of normal agents to the optimum state. We show
that if every normal agent combines its neighbors’ estimates
(states) such that the aggregated state is in the convex hull
of its normal neighbors’ states, then the resilient convergence
is guaranteed. To assure this sufficient condition, we propose
a resilient aggregation rule based on the notion of centerpoint,
which is a generalization of the median in the higher-dimensional
Euclidean space. We evaluate our results using examples of
target pursuit and pattern recognition in multi-robot systems.
The evaluation results demonstrate that distributed learning with
average, coordinate-wise median, and geometric median-based
aggregation rules fail to converge to the optimum state, whereas
the centerpoint-based aggregation rule is resilient in the same
scenario.

Index Terms—Resilient distributed learning and optimization,
resilient aggregation, Byzantine attacks, centerpoint, multi-robot
systems

I. INTRODUCTION

There is a growing trend towards collaboratively training
machine learning models on distributed devices to deal with
the rapid increase of data as well as privacy and security
concerns. In this paper, we consider the problem of distributed
machine learning (DML) in a fully decentralized network [2]–
[4]. In such a network, agents interact with each other without a
centralized server and leverage the shared information to benefit
their learning performance. Such a decentralized framework
also addresses the single point of failure problem as well as
scalability issues and is naturally suited for applications in
multi-robot systems, including spectrum sensing in cognitive
networks [5], target localization and tracking [6], distributed
clustering [7], and biologically inspired designs for mobile
networks [8].

Although cooperation among agents helps improve the
overall learning performance [2], it is also susceptible to attacks
where non-cooperative or adversarial neighbors sharing wrong

J. Li and X. Koutsoukos are with the Department of Computer
Science at Vanderbilt University, Nashville, TN, USA ({jiani.li, xeno-
fon.koutsoukos}@vanderbilt.edu). W. Abbas is with the Department
of Systems Engineering, University of Texas at Dallas, TX, USA
(waseem.abbas@utdallas.edu). M. Shabbir is with the Department of Computer
Science at Vanderbilt University, Nashville, TN, USA, and the Department
of Computer Science, Information Technology University, Lahore, Pakistan
(mudassir.shabbir@vanderbilt.edu).

A subset of the results appeared in the preliminary form in [1].

Fig. 1: Aggregating 9 points including 2 Byzantine points
using different aggregation rules: all the aggregated results fall
outside of the convex hull (blue polygon) of the normal points.

information can disrupt the convergence of the algorithm.
Average-based information aggregation rules have been widely
used in DML [2], [3], [9]. However, a single misbehaving
agent can adversely impact the convergence of the average-
based aggregation rules [10], [11]. Many robust aggregation
rules have also been proposed to cope with outliers in
data or Byzantine adversaries, including the coordinate-wise
median [12]–[14], coordinate-wise trimmed mean [12], [15],
geometric median [16], [17], Krum and multi-Krum [10],
Bulyan, and multi-Bulyan [18], [19]. However, studies have
already reported successful attacks in Byzantine systems using
the rules mentioned above [20]–[22].

In this paper, we study the problem of the resilient con-
vergence of DML for multi-robot systems in the presence of
Byzantine adversaries. We show that in the aggregation step,
if every normal agent in the network combines its neighbors’
states such that the aggregated result is in the convex hull
of normal neighbors’ states, then the resilient convergence of
DML is guaranteed. We observe that most of the aggregation
rules used in the literature do not satisfy this condition, as
illustrated in Figure 1. The primary challenge here is that
an agent cannot distinguish between its normal or Byzantine
neighbors; hence, it cannot simply discard the information from
Byzantine neighbors to satisfy the above condition. To address
this challenge, we propose a resilient aggregation rule based
on the notion of safe region. For a normal agent k with nk
neighbors, of which any f can be Byzantine agents, a safe
region is the set of states that always lie in the convex hull
of agent k’s normal neighbors’ states. We show that a normal

2

agent can always find a state in the safe region by computing a
centerpoint of its neighbors’ states if f ≤ d nk

d+1e−1, where d is
the dimension of states. Thus, the centerpoint-based aggregation
guarantees the resilient convergence of DML in the Byzantine
system.
Our main contributions are:
• We analyze the sufficient condition to achieve Byzantine

resilient convergence in distributed learning algorithms. The
condition guarantees that the state obtained due to the
aggregation step lies inside the convex hull of the normal
agents’ states. When the sufficient condition is satisfied, we
show that normal agents converge to the global optimum state
with O(1/i) convergence rate using appropriate stepsizes,
where i denotes the time index.

• We propose a centerpoint-based aggregation rule and show
that it guarantees the resilient convergence of the distributed
learning algorithms whenever each normal agent k in the
network has f ≤ d nk

d+1e − 1 Byzantine neighbors.
• We evaluate our results using the examples of target pursuit

and pattern recognition in multi-robot systems. We compare
the proposed centerpoint-based aggregation rule with the
average, coordinate-wise median, and geometric median-
based rules. The simulation results show that our approach
is resilient to d nk

d+1e − 1 Byzantine neighbors, and the
cooperation improves the average learning performance over
the network than the non-cooperative case, while the other
approaches are not resilient in the same scenarios.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III formulates the resilient
distributed learning problem. Section IV analyzes the suffi-
cient condition to achieve resilient convergence in distributed
learning. Section V introduces the resilient aggregation rule
based on the centerpoint, which satisfies the sufficient condition
and further guarantees the resilient convergence in distributed
learning. Section VI gives an evaluation of the results. Finally,
Section VII provides a discussion of the proposed method and
concludes the paper.

II. RELATED WORK

Approximate Byzantine Consensus. The approximate Byzan-
tine consensus problem initiated in [23] is widely studied in the
robotics and control systems community and is very relevant
to resilient distributed learning and optimization. The main
objective is to ensure that all normal agents in a network
satisfy the safety and agreement conditions in the presence of
Byzantine agents [24], [25]. Safety condition requires normal
agents to update their states such that they are always inside the
convex hull of normal agents’ initial states. Agreement means
that eventually, all normal agents’ states are very close to each
other, that is, within an arbitrary ε > 0 distance from one
another. The Mean Subsequence Reduced (MSR) algorithms
[26]–[28] and the median-based algorithms [29]–[31] were
proposed for the approximate Byzantine consensus over scalar
states. The problem is more challenging when the state vectors
are in Rd where d ≥ 2. For higher-dimensional cases, the
MSR technique can be applied in each dimension separately.
However, this does not guarantee that the aggregated result
will be in the convex hull of normal states.

For vector consensus, Tverberg partition [25], [32], [33],
safe area [24], and centerpoint-based [34], [35] approaches
have been proposed. The resilient vector consensus has various
applications in multi-robot systems for fault-tolerant rendezvous
[36], formation control [37], flocking [38], secure localization
[39], [40], and target pursuit [1]. Some of these works rely
on coordinate-wise resilient scalar consensus, which does
not necessarily achieve resilient vector consensus. Note that
in the resilient consensus problem, the connectivity and
robustness of the underlying network play an important role
in the convergence of the iterative algorithms. In order to
achieve resilient consensus, the underlying network should
satisfy certain robustness conditions that in turn guarantee the
redundant information needed by agents to ensure consensus
in the presence of adversarial agents [27], [28]. Different from
the consensus problem, in distributed learning, agents learn to
converge to their target using the adaptation step in addition
to the aggregation of the neighbors’ states. We will show
in Section IV that the normal agents converge towards the
optimum state as long as the safety condition is satisfied
in the aggregation step of distributed learning, regardless of
the robustness of the underlying connectivity graph, which is
different from the case of resilient consensus. Note that in
distributed consensus, the robustness condition requires every
normal agent to have sufficient many normal neighbors in order
to gather enough information and diffuse its own information
across the entire network and ensure the convergence point
is resulted from the combination of the information from the
entire network [27].

Resilient Aggregation in DML. To achieve resilient con-
vergence in DML, one approach is to discard cooperation
with possible Byzantine neighbors using the idea of trimming,
similar to the MSR approach used in resilient scalar consensus.
In such an approach, it is assumed that a maximum of f
Byzantine agents can be present in the neighborhood of a
normal agent. Algorithms are then designed for a normal
agent to rank its neighbors based on some trust criteria
and a normal agent discards the values from its f least
trusted neighbors. Various metrics have been proposed in
the literature to evaluate a agent’s trustworthiness, including
metrics based on the product of the weight and the loss [11],
model parameters [15], gradients and their norms [41], [42],
and a combination of gradient and model parameters [43].
Moreover, various majority-based aggregation rules have been
proposed, similar to the median-based approach used in resilient
scalar consensus. Well-known majority-based aggregation rules
include the coordinate-wise median [12]–[14], coordinate-wise
trimmed mean [12], [15], geometric median [16], [17], Krum
and multi-Krum [10], Bulyan and multi-Bulyan [18], [19].
Instead of ranking and filtering out the suspicious messages,
these rules differ from the ranking methods in the way that they
do not need the ranking step and the aggregation result directly
precludes states far away from the cluster of the majority
of the states by the intrinsic properties of the aggregation
rules. However, studies have already reported all of the above-
mentioned methods are not resilient to attacks under certain
conditions [20]–[22].

3

Resilient DML via Computation Redundancy. One can also
use computation redundancy to achieve resilient convergence in
DML, which typically involves coding theory and algorithmic
redundancy [44]–[46]. An example of such a framework is
DRACO [44] in which the parameter server uses redundant
gradients received from agents to eliminate the effects of
adversarial updates. Another algorithm proposed recently is the
RSA [47] that introduces an `p-norm regularization term into
the objective function for the resilience purpose. It eliminates
the effect caused by the magnitudes of malicious messages
sent by the Byzantine agents, as a result, only the number of
Byzantine agents, but not the magnitude, influence the model
update, making the algorithm robust to large outliers.

III. PROBLEM FORMULATION

In this section, we describe the problem of distributed
learning in networks in an adversarial setting. First, we
introduce the following notation:

(·)> transpose of a matrix;
[n] {1, 2, . . . , n};
| · | cardinality of a set;
‖ · ‖ `2-norm of a vector;
Eξ[·] the expected value of a random variable ξ; if the

context is clear, E[·] is used.

A. Distributed Learning

Consider a connected network of n agents1 modeled by
an undirected graph G = (V, E), where V represents agents
and E represents interactions between agents. A bi-directional
edge (l, k) ∈ E means that agents k and l can exchange
information with each other. Since each agent also has its own
information, we have (k, k) ∈ E ,∀k ∈ V . The neighborhood
of k is the set Nk = {l ∈ V|(l, k) ∈ E}. Each agent k has
data

{
(xik, y

i
k)
}
i∈Sk

sampled randomly from the distribution
generated by the random variable ξk, where xik ∈ Rd, yik ∈ R,
and Sk is the sample set. We consider a convex prediction
function (model) ϕk(xik) = θ>k x

i
k, where θk ∈ Rd is the

model parameter (or state). We use `k(·) to denote a convex
loss function associated with the prediction function for agent
k, and fk(·) to denote the convex (expected) risk function
fk(θk) = E [`k(θk; ξk)].

The objective of the network of n agents is to estimate the
parameter vector θ∗ in a distributed and cooperative manner,
that minimizes a global cost function of the following form:

min
θ

{
J(θ) ,

1

n

n∑
k=1

fk(θ)

}
. (1)

Stochastic gradient descent (SGD) can be used to optimize
the global cost function (1) given the stochastic gradient of
J(θ). Since such a value is not available, we consider a
distributed solution for each agent, known as cooperative SGD,

1We use terms agent and robot interchangeably.

which takes the following two steps in synchronized rounds
of communication between agents [2]:

θ̂k,i = θk,i−1 − αk,i−1∇`k(θk,i−1; ξi−1
k), (SGD) (2)

θk,i = Aggr
({
θ̂l,i : l ∈ Nk

})
. (Aggregation) (3)

In cooperative SGD, at each iteration i, agent k minimizes the
individual risk using SGD given local data, followed by an
aggregation step that aggregates neighboring estimates. Here,
αk,i is the stepsize, ∇`k(θk,i−1; ξi−1

k) is the gradient using the
instantaneous realization ξi−1

k of the random variable ξk, Nk
is the neighborhood set of agent k, and Aggr(·) denotes an
aggregation function. An example of aggregation functions is
the convex combination of the neighbors’ states, i.e.,

Aggr
({
θ̂l,i : l ∈ Nk

})
,
∑
l∈Nk

alk(i)θ̂l,i,

where alk(i) denotes the weight assigned by agent k to l at
iteration i, and satisfies the following:

alk(i) ≥ 0,
∑
l∈Nk

alk(i) = 1, alk(i) = 0 if l 6∈ Nk. (4)

B. Byzantine Attacks and Resilient Distributed Learning

In distributed learning, the issue of resilience against
Byzantine agents has received much attention recently [12],
[16], [17], [48], [49]. Since Byzantine agents can send incorrect
information (state values) to their neighbors, the aggregation
step is susceptible to cyber-attacks. In particular, normal agents
communicating with Byzantine neighbors and updating their
states using the Byzantine messages in the aggregation step
may converge to a point desired by the attacker [11].

We assume two types of agents in the network, normal and
Byzantine. Normal agents are the ones that interact with their
neighbors synchronously and always update their estimates
according to the prescribed update rule. Byzantine agents
are the ones that can change their states arbitrarily and do
not follow the prescribed update rule. Moreover, a Byzantine
agent can transmit different values to its different neighbors.
Further, we assume that the identities of normal and Byzantine
agents are not changing. Since Byzantine agents that stop
sending messages can be easily identified in a synchronous
network, we assume Byzantine agents always send messages
during communication. For a normal agent k, all agents in its
neighborhood are indistinguishable, that is, k cannot identify
which of its neighbors are Byzantine. Further, we use the
following notation:

N set of normal agents;
F set of Byzantine agents (|N |+ |F| = n);
Nk set of neighbors of agent k;
N+
k set of normal neighbors of agent k;
N−k set of Byzantine neighbors of agent k, such that

|N+
k |+ |N

−
k | = |Nk|;

f upper bound on the number of Byzantine neighbors
of a normal agent, i.e., |N−k | ≤ f .

4

In the presence of Byzantine agents, the objective of the
normal agents should be rewritten as follows:

min
θ

{
F (θ) ,

1

|N |
∑
k∈N

fk(θ)

}
. (5)

We make the following assumption about the global objective
function in (5).

Assumption 1. (Strong convexity) The global objective func-
tion F is strongly convex in that there exists a constant c > 0
such that

F (y) ≥ F (x) +∇F (x)>(y − x) +
c

2
‖y − x‖2,∀x, y.

Hence, F has a unique minimizer, denoted as θ∗ with
F ∗ , F (θ∗). We also assume that all agents share the same
minimizer θ∗, which is a common scenario in distributed
learning problems where data of different agents arises from
the same distribution, distributed inference applications where
distributions depend on a common parameter vector to be
optimized, and single task networks where agents work to
attain a common objective such as tracking a target [2], [50]–
[53].

This paper aims to address the problem of resilient distributed
learning in the presence of Byzantine agents. The goal is to
ensure that all the normal agents in the network using the
cooperative SGD algorithm to optimize (5) achieve resilient
convergence, formally stated below.

Definition 1. (Resilient Convergence) The network is said to
achieve resilient convergence if

lim
i→∞

E
[
‖θk,i − θ∗‖2

]
= 0,∀k ∈ N , (6)

thereby ensuring that all normal agents converge to the globally
optimum state in expectation. Here, θ∗ is the minimizer of (5).

IV. RESILIENT DISTRIBUTED LEARNING

In this section, we propose a sufficient condition to guarantee
the resilient convergence of the cooperative SGD algorithms.
We also discuss the possible outcome when this condition is not
satisfied. Later in Section V, we propose an aggregation rule
that satisfies the sufficient condition, which further guarantees
the resilient convergence of the cooperative SGD.

A. A Sufficient Condition and Convergence Analysis

Sufficient condition. At each iteration i ∈ N and for every
normal agent k ∈ N , the outcome of the aggregation step
θk,i is a convex combination of the estimates of the normal
neighbors of k, i.e.,

θk,i =
∑
l∈N+

k

alk(i)θ̂l,i,∀i ∈ N, k ∈ N ,

s.t. alk(i) ≥ 0,∀l ∈ N+
k , and

∑
l∈N+

k

alk(i) = 1.
(7)

In other words, at each iteration i, a normal agent k aggregates
its neighbors’ estimates such that the output of the aggregation

θk,i is in the convex hull of normal neighbors’ state estimates
regardless of the estimates from Byzantine neighbors2.

Next, we prove the resilient convergence when the sufficient
condition is satisfied (Theorem 1). To facilitate the analysis,
we list the following assumptions and lemma.

Assumption 2. (Lipschitz-continuous gradients) The global
objective function F is continuously differentiable and ∇F is
Lipschitz continuous with Lipschitz constant L > 0, i.e.,

‖∇F (x)−∇F (y)‖ ≤ L‖x− y‖,∀x, y.

Assumption 3. (First and second moment limits) The objective
function F and the sequence of θk,i for k ∈ N and i ∈
N, obtained by implementing the cooperative SGD algorithm
satisfy the following:

(i) F (θk,i) ≤ Finf for some scalar Finf .
(ii) There exist scalars µG ≥ µ > 0 such that,

∇F (θk,i)
>Eξik [∇`k(θk,i; ξ

i
k)] ≥ µ‖∇F (θk,i)‖2 and

‖Eξik [∇`k(θk,i; ξ
i
k)]‖ ≤ µg‖∇F (θk,i)‖,∀k ∈ N and i ∈ N.

(iii) There exist scalars Mk ≥ 0 and Vk ≥ 0 such that

Eξik [‖∇`k(θk,i; ξ
i
k)‖2]− ‖Eξik [∇`k(θk,i; ξ

i
k)]‖2

≤Mk + Vk‖∇F (θk,i)‖2,∀k ∈ N and i ∈ N.

Note that Assumption 3 is based on the preliminary assumption
that agents share the same minimizer θ∗.

Lemma 1. 3 Under Assumptions 1-3 and stepsize 0 < αk,i ≤
µ

LGk
, where Gk , Vk + µ2

g , for all k ∈ N , i ∈ N, the iterates
of SGD (step (2)) satisfy the following inequalities:

E[F (θ̂k,i+1)−F ∗] ≤ (1−αk,icµ)E[F (θk,i)−F ∗]+
1

2
α2
k,iLMk.

Denote ∆k,i , E [F (θk,i)− F (θ∗)] as the expected opti-
mality gap. Using the cooperative SGD algorithm satisfying
the sufficient condition, ∆k,i can be bounded as given in
Theorem 1, which guarantees its resilient convergence as given
in Proposition 1.

Theorem 1. If the sufficient condition (7) and Assumptions 1-3
are satisfied, and all normal agents implement the cooperative
SGD algorithm with the same diminishing stepsize sequence
αk,i = αi given by

αi =
β

γ + i
for some β >

1

cµ
and γ > 0 s.t. 0 < α1 ≤

µ

LḠk
,

(8)

where Ḡk , maxk∈N Gk, then for all i ∈ N, k ∈ N , the
expected optimality gap satisfies

∆k,i ≤
ν

γ + i
, (9)

where ν = max

{
β2L

2(βcµ− 1)
max
l∈N

Ml, (γ + 1)∆k,1

}
.

2The convex hull of a set of points S = {p1, p2, . . . , pn} in Rd is the
smallest convex set containing S. Any point p inside the convex hull of S has
the property that p =

∑n
k=1 λkpk , where 0 ≤ λk ≤ 1 and

∑n
k=1 λk = 1.

And no point outside of the convex hull has such representation.
3Proof is given in the Appendix.

5

Proof. Given (7) and the convexity of F , using Jensen’s
inequality, we have

F (θk,i) ≤
∑
l∈N+

k

alk(i)F (θ̂l,i). (10)

Given (8), αk,i = αi ≤ α1 ≤ µ
LḠk

≤ µ
LGk

, for all k ∈ N .
Thus, following Lemma 1, it holds that

∆k,i+1 ≤
∑
l∈Nk

alk(i)

[
(1− αicµ)∆l,i +

1

2
α2
iLMl

]
. (11)

The following proof is based on the convergence proof of
SGD (Theorem 4.7) in [54]. When i = 1, (9) holds given the
definition of ν. We now prove (9) by induction. Assume (9)
holds for some i ≥ 1, then it follows from (11) that

∆k,i+1 ≤
∑
l∈Nk

alk(i)

[
(1− βcµ

î
)
ν

î
+
β2LMl

2̂i2

]

=
∑
l∈Nk

alk(i)

[(
î− βcµ
î2

)
ν +

β2LMl

2̂i2

]

=
î− 1

î2
ν −

∑
l∈Nk

alk(i)

[
βcµ− 1

î2
ν − β2LMl

2̂i2

]
︸ ︷︷ ︸
nonnegative by the definition of ν

≤ ν

î+ 1
,

where î :, γ + i, and the last inequality follows since î2 ≥
(̂i+ 1)(̂i− 1), which completes our proof.

Remark 1. It immediately follows from Theorem 1 that normal
agents achieve O(1/i) convergence rate since E[F (θk,i) −
F (θ∗)] ≤ ν

γ+i with constants ν > 0 and γ > 0.

Proposition 1. If the sufficient condition (7) and Assumptions 1-
3 are satisfied, and all normal agents implement the cooperative
SGD with the same diminishing stepsize sequence defined in
(8), then the network achieves resilient convergence as defined
in Definition 1.

Proof. Given the expected optimality gap (9) obtained in
Theorem 1, and the fact that limi→∞

ν
γ+i = 0 with constants

ν > 0 and γ > 0, it follows that

lim
i→∞

E [F (θk,i)− F (θ∗)] = 0,∀k ∈ N .

Using the strong convexity of F , it yields that

lim
i→∞

E
[
‖θk,i − θ∗‖2

]
≤ c

2
lim
i→∞

E [F (θk,i)− F (θ∗)] = 0,

∀k ∈ N , which completes the proof.

The above discussion establishes that if the aggregation
result is a convex combination of the normal neighbors’ states,
then the resilient convergence is guaranteed. Now, we consider
a scenario in which the condition (7) is not satisfied and
θk,i in an aggregation step of a normal node k lies outside
the convex hull of θ̂j,i, where j ∈ N+

k . Then, it is possible
that after aggregation the distance from θk,i to θ∗ is larger
than the distance of any of the normal neighbors’ states to

θ∗. This means the aggregation step indeed makes the state
of the normal agent k deviate from θ∗. As the number of
iterations increases, the deviation from the target state might
also increase and normal agents might converge to a wrong
state. We further demonstrate this in Section VI, where the
aggregation rules, such as average, coordinate-wise median,
and geometric median, do not satisfy the sufficient condition,
and normal agents fail to achieve resilient convergence using
such rules.

B. Advantages of Cooperation

In the previous subsection, we proposed a sufficient condition
for achieving resilient distributed learning and analyzed its
convergence. However, a particular case where agents do not
cooperate with each other, i.e., the non-cooperative case, also
achieves this goal. However, the comparison between coopera-
tive and non-cooperative distributed learning and adaptation has
been studied in the literature, which reveals the advantages of
using cooperation in distributed learning, especially for lifelong
adaptation [2], [55], [56], [53, Chapter 12]. In the following,
we briefly review the results of such studies and discuss the
advantages by deploying the cooperative setting.

Note that we used a time-dependent diminishing stepsize
in the previous subsection for convergence analysis. However,
constant stepsizes are often used for lifelong learning and
adaption over time, in various applications such as distributed
sensing, biologically systems, and target localization, where
diminishing stepsizes fail to work. When using constant step-
sizes, for sufficiently small stepsizes, the network converges to
a point close to the optimum point but with a bounded distance.
The squared Euclidean distance between the convergence point
and the optimum point is referred to as the steady-state mean-
square-deviation (MSD), which can be used to measure the
learning performance [2].

It is studied in [56] that for sufficiently small stepsize,
cooperation improves the steady-state MSD in a distributed
learning network. We illustrate the case when the data is
related via a linear model, i.e., yik = θ>k,ix

i
k + vik where vik

is a noise term with E[vik
>
vik] = σ2

v,k. For sufficiently small
uniform constant stepsize α for each agent, the network learning
performance of non-cooperative SGD is defined as the averaged
steady-state MSD among agents and can be approximated by

MSDncop, net , lim
i→∞

1

N

N∑
k=1

E‖θ̃k,i‖2 ≈
αd

2
· (1

N

N∑
k=1

σ2
v,k),

(12)
where θ̃k,i , θ∗ − θk,i, and d is the dimension of the states.
And for cooperative SGD, the network steady-state MSD is
given by

MSDcoop,net ≈
αd

2
·

(∑
k∈N

p2
kσ

2
v,k

)
, (13)

where A = {alk, k = 1, 2, . . . , N} is the N × N left-
stochastic combination matrix at convergence and p =
{pk, k = 1, 2, . . . , N} denotes the right eigenvector of A

6

that is associated with the eigenvalue at one and satisfies
Ap = p, p>1 = 1, 0 < pk < 1.

The aggregated result can be expressed by a weighted sum of
all the normal agents’ estimates, i.e., θk,i =

∑
l∈Nk

alk(i)θ̂k,i,
where 0 ≤ alk(i) ≤ 1 and

∑
l∈Nk

alk(i) = 1. Assume the
noise variance is uniform across all normal agents, i.e., σ2

v,k =
σ2
v , (k = 1, 2, . . . , N), then we observe that the steady-state

MSD performance of the cooperative SGD is better than the
non-cooperative SGD by (12) and (13) as

MSDcoop,net −MSDncop,net

=
αd

2
·

(∑
k∈N+

p2
kσ

2
v,k −

1

|N+|
∑
k∈N+

σ2
v,k

)

=
αd

2
·

(∑
k∈N+

p2
k − 1

)
· σ2

v ≤ 0,

where
∑
k∈N+

k
p2
k ≤ 1 given

∑
k∈Nk

pk = 1 and pk > 0.
Based on the above discussion, cooperation in general

leads to better learning performance measured by steady-
state MSD when constant stepsizes are used for lifelong
learning and adaptation, for instance, when the objective to
be optimized by the network is time-varying. This is further
demonstrated in the evaluation section. Moreover, cooperation
among agents, for instance, in a diffusion network, improves
the network performance by reducing the excess risk compared
to the non-cooperative setup [52], [53, Section 12.4]. However,
cooperation could be detrimental in the presence of Byzantine
agents. This paper presents a solution that discards Byzantine
agents’ effects in a cooperative setting, thus allowing to utilize
the benefits of cooperation.

V. RESILIENT AGGREGATION

The sufficient condition in Section IV requires that in the
aggregation step, a normal agent computes a point that lies in
the convex hull of points corresponding to normal neighbors’
states. Computing such a point is a challenging task as a normal
agent cannot distinguish between its normal and Byzantine
neighbors. Our goal in this section will be to propose an
efficient way to compute such a point in the aggregation step.
For this, we will utilize the notion of safe region as defined
below.

A. The Safe Region

Let S denote a set of nk points, and S′ be a subset of

S containing exactly (nk − f) points. There are
(

nk
nk − f

)
possibilities of S′ and one such possibility corresponds to the

set of normal points. Let S be the family of all
(

nk
nk − f

)
possibilities of S′. If one could somehow show that the
intersection of convex hulls of members of S is nonempty,
then every point in this intersection is guaranteed to lie inside
the convex hull of normal points. We call this intersection set
a safe region.

Definition 2. (Safe Region) For a set S of nk points in Rd, of
which any f points can be Byzantine, the safe region of S is

Safef (S) =
⋂

S′⊂S,|S′|=nk−f

Conv(S′),

where Conv(S′) denotes the convex hull of S′.

It is immediately implied from the above definition that
Safef (S), if it exists, is always in the convex hull of the
(nk − f) normal points, regardless of the selection of the f
Byzantine points, as illustrated by the example in Figure 2.
There are nk = 5 points and f = 1, which means there are five
possibilities to choose a point corresponding to a Byzantine
agent. The gray shaded area is the safe region Safe1(S). We
note that the safe region always lies in the convex hull of
four normal points regardless of the selection of the Byzantine
point, as illustrated in Figures 2(b)–2(f).

(a) (b) (c)

(d) (e) (f)

Fig. 2: Illustration of Safe1(S) (shaded region) for a set of five
points in (a). In (b)–(f), black nodes are normal, red nodes are
Byzantine, and the area spanned by thick lines is the convex
hull of the normal nodes.

The existence of the safe region depends on the number
of Byzantine agents (points) f . For example, if f > nk/2,
then a safe region may not exist even in dimension d = 1,
because two potential sets of normal points, (leftmost, and
rightmost intervals of nk − f points) are non-overlapping, and
the intersection will be empty. For dimension d = 2, if there
are nk/3 Byzantine points, then all possibilities for 2nk/3
normal points might not have a common point. In other words,
no matter which point we choose for aggregation, there is
always a chance that it lies outside the convex hull of normal
points in R2. Thus, the number of allowed Byzantine points
can not be more than n/3 in a plane. The condition of the
existence of a nonempty safe region has been studied in [24]
(Lemma 3.6, 3.10), which is given in the following.

Lemma 2. For a set S of nk points in Rd, of which any
f points could be Byzantine, if f < nk

d+1 , then Safef (S) is
necessarily nonempty; and if f ≥ nk

d+1 , then Safef (S) might
be empty.

Based on Lemma 2, the maximum number of Byzantine
agents the system is resilient to is f = d nk

d+1e − 1 and the
safe region is nonempty in this case. For computing a point
in the safe region when f = d nk

d+1e − 1, we use the notion of
centerpoint, which we explain next.

7

B. Centerpoint-based Resilient Vector Consensus

In the following, we define the notion of a centerpoint,
and show that every centerpoint lies inside Safef (S) for f =
d nk

d+1e − 1.

Definition 3. (Centerpoint) Given a set S of nk points in Rd
in general positions,4 where nk ≥ d+ 1, a centerpoint p is a
point, not necessarily from S, such that any closed half-space5

of Rd that contains p also contains at least d nk

d+1e points from
S.

Intuitively, a centerpoint lies in the "center region" of the
set of points, in the sense that there are enough points of S on
each side of a centerpoint. A centerpoint extends the notion of
median to higher dimensions, and is an active topic of study in
discrete geometry [34], [35], [57]–[59]. Note that centerpoint
is not unique, in fact, there can be infinitely many centerpoints.
The set of all centerpoints constitutes the convex safe region.
We have studied the connection between the centerpoint and the
safe region in [34], [35]. In particular, we have the following
result.

Lemma 3. Let S be a set of nk points in Rd, C(S) be the
corresponding centerpoint region (set of all centerpoints) and
f = d nk

d+1e − 1, then

Safef (S) ≡ C(S).

An immediate consequence of Lemma 2 and Lemma 3 is
that for a set S of nk points in Rd, of which any f = d nk

d+1e−1
points could be Byzantine, a centerpoint of S is always inside
the convex hull of the (nk − f) normal points, regardless of
the selection of the f Byzantine points.

Now that the existence of a point in the safe region for
optimal number of Byzantine neighbors is guaranteed, one
has to actually find such a point to aggregate to. It is easy to
compute a centerpoint in lower dimensions. In two dimensions,
the time complexity for computing a centerpoint is O(nk)
using a prune and search algorithm in [60]. The algorithm
iteratively removes a fraction of points from a given point set
while ensuring that the centerpoint of the remaining points is
also a centerpoint of the original point set. When the number
of points becomes smaller than a constant, the algorithm uses
a brute force method to compute a centerpoint [60]. In three
dimensions, we can use Chan’s algorithm in [61] to find a
centerpoint in O(n2

k) time. [61] basically provides a randomized
algorithm to some geometric linear program in O(n2

k) and uses
this framework to find a geometric Tukey median of a given
point set, which is guaranteed to be a centerpoint also. We
have given an overview of these methods in our previous
work [34], [35]. We note that d ≤ 3 is the case in many
practical applications in robotics. For higher dimensions, i.e.,
d > 3, the time bound to compute a centerpoint is O(nd−1

k)
[61], which is impractical for very large d. However, in such
cases, algorithms exist to compute an approximate centerpoint
[62]. These approximations degrade the optimal bound on

4A set of points in Rd is said to be in general positions if no hyperplane
of dimension d− 1 or less contains more than d points.

5Recall that closed half-space in Rd is a set of the form {x ∈ Rd : aT x ≥
b} for some a ∈ Rd \ {0}.

the number of Byzantine agents. For instance, given a set of
nk points, of which at most

(
nk

dr/r−1

)
are Byzantine and the

remaining are normal points, we can compute a point that is
in the convex hull of normal points in time O(nc log d

k (rd)d),
where r is any integer greater than 1, and c is some positive
constant. By increasing r, the quality of approximation, and
hence the bound on the number of Byzantine agents improves
and approaches n

d ; however, this also leads to an increase in
the time complexity. Moreover, the method proposed in [63]
generates approximate centerpoint in linear time complexity
for any dimension. However, this will reduce the upper bound
on Byzantine tolerance from d nk

d+1e − 1 to d nk

4(d+1)3 e − 1.

Proposition 2. If f ≤ d |Nk|
d+1 e−1, Assumptions 1-3 are satisfied,

and all normal agents implement the cooperative SGD with
the same diminishing stepsize sequence defined in (8) using
the centerpoint-based aggregation rule in the aggregation step,
i.e.,

Aggr
({
θ̂l,i : l ∈ Nk

})
, C

({
θ̂l,i : l ∈ Nk

})
,

then the network achieves resilient convergence as defined in
Definition 1.

Proof. Since f ≤ d |Nk|
d+1 e − 1, given Lemma 3 and Definition

2, it follows that

Aggr
({
θ̂l,i : l ∈ Nk

})
∈ Conv(

{
θ̂j,i : j ∈ N+

k

}
),

which satisfies the sufficient condition in (7). Then, the
resilient convergence is guaranteed given the results provided
in Proposition 1.

VI. EVALUATIONS

In this section, we evaluate the proposed centerpoint-based
aggregation rule for the cooperative SGD algorithm using target
pursuit and pattern recognition as case studies6. We compare
it with other commonly used aggregation rules including the
average (alk = 1

|Nk| for l ∈ Nk), coordinate-wise median
(CM), and geometric median (GM), as well as the non-
cooperative SGD (non-coop SGD). We define the coordinate-
wise median and geometric median below.
• Coordinate-wise median: Let med(·) be the one-dimensional

median, then the coordinate-wise median Median(·) of
vectors {xk ∈ Rd, k ∈ [n]} is defined to be xMed ,
Median{xk : k ∈ [n]} with the j-th coordinate to be
(xMed)j , med{xjk : k ∈ [n]} for each j ∈ [d].
• Geometric median: The geometric median GM(·) of vectors
{xk ∈ Rd, k ∈ [n]} is defined to be GM{xk : k ∈ [n]} ,
arg minx∈Rd

∑n
k=1 ‖x− xk‖.

We show in multiple cases that the cooperative SGD algo-
rithm using centerpoint-based aggregation always outperforms
the non-cooperative SGD in achieving a better average learning
performance over the network at convergence, with or without
the presence of Byzantine agents. However, the other rules
either fail to converge to θ∗ or exhibit a worse learning

6Simulation code can be found at https://github.com/JianiLi/resilient_
distributed_learning_centerpoint.

8

performance than the non-cooperative SGD, showing that
such cooperation could be harmful to the overall network’s
performance.

A. Target Pursuit

In this example, we consider a mobile adaptive network [8]
of n agents that move collectively in pursuit of a target located
at θ∗ ∈ Rd that can be either static or time-varying.

A.1. Background

Suppose the location of agent k at time i is denoted by
xk,i ∈ Rd. The distance dok(i) ∈ R between agent k and the
target at time i can be expressed as

dok(i) = uok,i
>(θ∗ − xk,i),

where uok,i ∈ Rd denotes the unit direction vector pointing
from xk,i to θ∗. Suppose agents have only noisy observations
{dk(i), uk,i} of the distance and the unit direction vector, i.e.,

dk(i) = dok(i) + ηdk(i), uk,i = uok,i + ηuk,i,

where ηuk,i ∈ Rd and ηdk(i) ∈ R denote noise terms. Let
ηk(i) = −ηuk,i

>(θ∗ − xk,i) + ηdk(i), d̂k(i) = dk(i) + u>k,ixk,i,
we have

d̂k(i) = u>k,iθ
∗ + ηk(i).

To optimize θ∗, consider

min
θ

{
F loc(θ) ,

1

|N |
∑
k∈N

E‖d̂k(i)− u>k,iθ‖2
}
. (14)

At each iteration i, agent k knows its location xk,i ∈ Rd and
velocity vk,i ∈ Rd, and it receives its neighbors’ location xl,i
for l ∈ Nk. It then updates velocity according to the following
update rule [8]:

vk,i+1 = λ · h(θk,i − xk,i) + βvgk,i, (15)

where θk,i is the estimate of the target location by k at time i,
vgk,i is the velocity of the center of mass of the network, λ, β
are non-negative parameters, and

h(θk,i − xk,i) =

{
θk,i − xk,i, if ‖θk,i − xk,i‖ ≤ s,
s · θk,i−xk,i

‖θk,i−xk,i‖ , otherwise,

for some positive scaling factor s used to bound the speed in
pursuing the target.

The first term in (15) relates to the objective of having
the network move towards the unknown target, and the other
term suggests that agents should adjust their velocities to
be consistent with the average displacement vector in the
neighborhood. Agents then update their location according
to

xk,i+1 = xk,i + ∆t · vk,i+1,

where ∆t represents the time step.
To obtain the velocity, agents need to know the estimate of

the target location θk,i optimized by (14), and the velocity of

(a) No attack (b) With 5 Byzantine agents

Fig. 3: Network connectivity (blue nodes: normal agents, red
nodes: Byzantine agents).

the center of mass vgk,i, which can be optimized by:

min
vg

{
F vel(v

g) ,
1

|N |
∑
k∈N

E‖vk,i − vg‖2
}
. (16)

A.2. Static Target

In our simulation, we consider a network of n = 20 agents
with d = 2. Figure 3 shows the initial deployment of agents
with and without Byzantine attacks and their connectivity
network. Agents are located in [0, 1] × [0, 1] region initially
and agents connected with links are neighbors. The average
neighborhood size is

∑n
k=1 |Nk|/n ≈ 13.9 and the underlying

connectivity topology does not change throughout the sim-
ulation. The regression vector uk,i has uniform covariance
matrix Ru,k = σ2

u,kI2, σ2
u,k ∈ [0, 1.0] where I2 is the

identity matrix of size 2. The noise variance of distance
σ2
d,k ∈ [1.0, 2.0],∀k ∈ N . The time-varying stepsizes for

updating location and velocity estimates are both αk,i = 2
i+10

for k ∈ N . Further, λ = 0.5, β = 0.1, s = 1 and ∆t = 0.2s.
The target location is denoted by θ∗ = (5, 5). In the case of
attack, we randomly select 5 agents as the Byzantine agents.
For any normal agent k ∈ N , it is guaranteed that the number
of its Byzantine neighbors is upper bounded by d |Nk|

3 e − 1.
Thus, the centerpoint-based aggregation should be resilient in
such a network.

We run the non-cooperative SGD and cooperative SGD
with average/CM/GM/centerpoint-based aggregation rules to
estimate the target location θk,i and the velocity vgk,i. In the
case of attack, Byzantine agents continuously send (0, 0) to all
normal agents as their current estimates of the target location
and velocity. Figure 4 shows the final deployment of agents
after 500 iterations, where the yellow star represents the target.

In the case of no attack, we find all the four aggregation
rules—average, CM, GM and centerpoint—converge to the
target as shown in Figure 4a. However, in the presence of
Byzantine agents, only the centerpoint-based cooperative SGD
converges to the target as shown in Figure 4b. Figure 5
illustrates the state estimates as a function of time, where
each line represents the estimates of a normal agent k. The
learning accuracy (mean and range) measured by ‖θk,i− θ∗‖2,
for k ∈ N is illustrated in Figure 6, where lines are the average
values, and shaded area is the range between the minimum
and the maximum values among the network. We observe that

9

(a) No attack

(b) With 5 Byzantine agents

Fig. 4: Mobile network’s final deployment for static target.
From left to right: noncooperative SGD, cooperative SGD with
average/CM/GM/centerpoint-based aggregation.

(a) No attack

(b) With 5 Byzantine agents

Fig. 5: Static target estimates θk,i (1st dimension). From
left to right: noncooperative SGD, cooperative SGD with
average/CM/GM/centerpoint-based aggregation .

cooperative SGD with all the four aggregation rules achieve
a better average learning accuracy at convergence (measured
by
∑
k∈N ‖θk,i − θ∗‖2/|N |) than the non-cooperative SGD

under no attack, whereas only the centerpoint-based aggregation
achieves a better average learning accuracy than the non-
cooperative SGD under attack.

A.3. Time-Varying Target

We next consider the case when the target is time-
varying. Using time-varying target can make robots fol-
low a desired trajectory, which can be used in swarm
robotics. The location of the time-varying target is given

(a) No attack (b) With 5 Byzantine agents

Fig. 6: Estimation accuracy ‖θk,i − θ∗‖2 for k ∈ N with
different aggregation rules for static target.

(a) No attack

(b) With 5 Byzantine agents

Fig. 7: Mobile network’s final deployment for time-varying
target. From left to right: noncooperative SGD, cooperative
SGD with average/CM/GM/centerpoint-based aggregation.

(a) No attack

(b) With 5 Byzantine agents

Fig. 8: Time-varying target estimates θk,i (1st dimension).
From left to right: noncooperative SGD, cooperative SGD with
average/CM/GM/centerpoint-based aggregation.

by (5 + cos(0.01i), 5 + sin(0.01i)). The noise variance of
distance σ2

d,k ∈ [2.0, 3.0],∀k ∈ N . And we use fixed stepsize
αk,i = 0.05, for k ∈ N , i ∈ N. The other setups and Byzantine
attacks are the same as in Section VI.A.2.

Figure 7 shows the final deployment of agents after 1000
iterations, where the yellow dashed circle represents the time-
varying target trajectory and the yellow star represents the
current target. Figure 8 illustrates the state estimates as a
function of time. And the learning accuracy measured by ‖θk,i−
θ∗‖2 are illustrated in Figure 9. The simulation shows similar
results to the case of static target.

(a) No attack (b) With 5 Byzantine agents

Fig. 9: Estimation accuracy ‖θk,i − θ∗‖2 for k ∈ N with
different aggregation rules, for time-varying target.

10

(a) Initial Network (b) Final Network (CM)

(c) Final Network (GM) (d) Final Network (Centerpoint)

Fig. 10: Network under no attack on Robotarium.

A.4. Experiments on Robotarium
In addition to the numerical simulations, we carried out

similar experiments using real robots on Robotarium [64],
a multirobot testbed developed at the Georgia Institute of
Technology. The robots are 11 cm wide, 10 cm long, and
operate on a 3m x 2m area. We denote the bottom-left corner
of the arena to be the original point with coordinates (0, 0)
and the upper-right corner to be (3, 2).

We consider a network of 11 normal robots. Parameters are
selected to be s = 1,∆t = 1s. The target location is set to
be θ∗ = (2.4, 1.7). The regression vector uk,i has uniform
covariance matrix Ru,k = σ2

u,kI2, σ2
u,k ∈ [0.1, 0.5]. The noise

variance of distance σ2
d,k ∈ [0.5, 5.0]. Both σ2

d,k and σ2
u,k

decrease linearly as the distance to the target decreases. The
fixed stepsize is 0.2. In the case of attack, five more Byzantine
robots are introduced making the total number of robots to
be 16. We consider the network to be modeled by a complete
graph where every agent is the neighbor of every other agent.
Since the centerpoint-based aggregation rule is resilient up to
d 16

3 e − 1 = 5 Byzantine robots, we expect it to be resilient in
the experiment.

Figures 10 and 11 show the network deployments using
CM/GM/centerpoint-based cooperative SGD under no attack
and with attack, respectively. The Byzantine robots are indi-
cated by the red circle, and the target location is highlighted
by the blue star. Byzantine robots stay stationary throughout
the experiment and continuously send wrong estimates of the
target location (0, 0) and velocity vector (0, 0) to normal robots.
We adopt the collision avoidance mechanism implemented by
Robotarium in our experiment.

The results are similar to the simulation results. Without
attacks, robots with CM/GM/centerpoint-based aggregation
rules all converge to the target. However, in the presence
of Byzantine agents, only robots using the centerpoint-based
aggregation rule converge to the target.

B. Pattern Recognition

In the second case study, we consider the case when
robots perform a pattern recognition or detection task
using sensor readings. We consider a network of 10

(a) Initial Network (b) Final Network (CM)

(c) Final Network (GM) (d) Final Network (Centerpoint)

Fig. 11: Network with five Byzantine robots on Robotarium.

agents modeled by a complete graph where every agent
is the neighbor of every other agent. Agents collect two-
dimensional features (sensor readings) to perform binary
classification. The real data distribution is given in Fig-
ure 12a. The label-0 data has mean (1, 1) and covariance
((0.1468, 0.9233), (0.1863, 0.3456)) and label-1 data has mean
(−1,−1) and covariance ((0.4170, 0.7203), (0.0001, 0.3023)).
We assume outliers in the training data such that the labels
of the outliers are inverted – from 0 to 1 or from 1 to 0.
The data distribution with 10% − 30% outliers is illustrated
in Figures 12b–12d. We use logistic regression to classify the
data. The global cost function has the following form:

min
θ

{
F (θ) ,

1

|N |
∑
k∈N

−E
{
yik log

(
g
(
θ>xik

))
+

(
1− yik

)
log
(
1− g

(
θ>xik

)) }}
,

(17)

where g(z) = 1
1+e−z . The cooperative SGD algorithm in (2)

and (3) can be used to optimize the above cost function. The
time-varying stepsize is αk,i = 1

i+10 for k ∈ N .
We consider two scenarios. In the first scenario, every

normal agent receives data with uniform outlier rate 20%.
This simulates the case in which agents receive similar data
resulting in similar learning performance. We compute the test
loss of normal agents over 500 data samples from the real
data distribution without outliers by (17). In the case of attack,
we randomly pick 3 out of 10 normal agents as Byzantine
agents that continuously send (1,−1) as their estimates to the
other normal agents. The test loss for the non-cooperative SGD,
cooperation using average, CM, GM, and centerpoint is plotted
in Figure 13. Since we consider a complete graph, normal
agents receive the same messages in cooperation and therefore
their aggregation results are the same. As a result, normal agents
share the same test loss in the cooperative cases, which is also
the mean of their test losses. We find the centerpoint-based
aggregation outperforms the other cooperative aggregation rules
as well as the non-cooperative SGD. When there is an attack,
only the centerpoint-based aggregation converges with a better

11

(a) Real distribution (b) 10% Outliers

(c) 20% Outliers (d) 30% Outliers

Fig. 12: (a) Real data distribution, (b)-(d) data with outliers
received by normal agents.

(a) No attack (b) With 3 Byzantine agents

Fig. 13: Test loss on 500 test data samples from the real data
distribution without outliers (Normal agents receive training
data with uniform outlier rate 20%).

learning performance measured by the average test loss than
the non-cooperative SGD. Figure 14 illustrates the decision
boundary achieved by different aggregation rules under attack.

In the second scenario, every normal agent receives data from
the real data distribution with different outlier rate of 10%−
30%. This simulates the case in which agents receive different
data resulting in different learning performance. Figures 15
illustrates the learning results. We observe that the results are
similar to the previous example.

VII. DISCUSSION AND CONCLUSION

The major computational step in the the proposed approach
is the computation of a point in the safe region Safef (S). We
do so by computing a centerpoint of a set of points S in
dimension d. If we have a set of N points (i.e., |S| = N), then
a centerpoint can be computed in O(N) time in d = 2, and
O(N2) time in d = 3. Since in robotic applications, the position
vector is in two or three dimensions, the case of centerpoint
computation in d = 2, 3 is of particular interest. In general, the

(a) Average (b) CM

(c) GM (d) Centerpoint

Fig. 14: Decision boundary achieved by different aggregation
rules when 3 out of 10 agents are Byzantine.

(a) No attack (b) With 3 Byzantine agents

Fig. 15: Test loss on 500 test data samples from the real data
distribution without outliers. (Normal agents receive training
data with different outlier rates from 10% to 30%).

problem of checking whether a point is a centerpoint of a given
set of points or not is a co-NP-complete problem. In higher
dimensions (d ≥ 4), the complexity of finding a centerpoint is
unknown. However, there exist approximation algorithms and
randomized algorithms that compute approximate centerpoints.
We also note that a point in a safe region Safef (S) can also
be computed using other techniques, for instance, through
linear programming [65]. The linear program uses a total
of
(
n

n−f
)
(d + 1 + n − f) constraints in d +

(
n

n−f
)
(n − f)

variables, which cannot be solved in polynomial time for f =
d n
d+1e−1 with the number of variables and constraints that are

not polynomial in n. However, centerpoint-based computation
of a point in Safef (S) offers more advantages in terms of
computational complexity and characterization.

In this work, we studied the resilient aggregation rules
for distributed machine learning algorithms. We showed that
the commonly used coordinate-wise median and geometric
median-based aggregation methods do not guarantee resilient
convergence for distributed learning. We proposed a centerpoint-
based aggregation rule that generalizes the resilience property

12

of the median into higher dimensions. The centerpoint-based
aggregation rule guarantees that the distributed learning al-
gorithms converge to the optimum state if the number of
Byzantine agents in a normal agent’s neighborhood is less than
d nk

d+1e, where nk is the number of agents in the neighborhood,
and d is the dimension of the state vector of the agents. Finally,
we note that the framework and the corresponding methods
and analysis can be easily generalized to federated learning.
We aim to explore the trade-off between the computational
cost for resilient aggregation and the degradation in learning
performance for future work.

REFERENCES

[1] J. Li, W. Abbas, M. Shabbir, and X. Koutsoukos, “Resilient distributed
diffusion for multi-robot systems using centerpoint,” in Proceedings of
Robotics: Science and Systems, Corvalis, Oregon, USA, July 2020.

[2] A. H. Sayed, S. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion
strategies for adaptation and learning over networks: An examination
of distributed strategies and network behavior,” IEEE Signal Processing
Magazine, vol. 30, no. 3, pp. 155–171, 2013.

[3] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, 2014.

[4] A. Lalitha, O. C. Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” CoRR, vol. abs/1901.11173, 2019.

[5] J. Plata-Chaves, N. Bogdanovic, and K. Berberidis, “Distributed diffusion-
based LMS for node-specific adaptive parameter estimation,” IEEE
Transactions on Signal Processing, vol. 63, pp. 3448–3460, 2015.

[6] R. Abdolee, S. Saur, B. Champagne, and A. H. Sayed, “Diffusion
LMS localization and tracking algorithm for wireless cellular networks,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing, 2013, pp. 4598–4602.

[7] X. Zhao and A. H. Sayed, “Clustering via diffusion adaptation over
networks,” in 3rd International Workshop on Cognitive Information
Processing (CIP), 2012, pp. 1–6.

[8] S. Tu and A. H. Sayed, “Mobile adaptive networks,” IEEE Journal of
Selected Topics in Signal Processing, vol. 5, no. 4, pp. 649–664, 2011.

[9] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artificial
Intelligence and Statistics, 20-22 April 2017, Fort Lauderdale, FL, USA,
2017, pp. 1273–1282.

[10] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine
learning with adversaries: Byzantine tolerant gradient descent,” in
NeurIPS, 2017, pp. 119–129.

[11] J. Li, W. Abbas, and X. Koutsoukos, “Resilient distributed diffusion
in networks with adversaries,” IEEE Trans. Signal Inf. Process. over
Networks, vol. 6, pp. 1–17, 2020.

[12] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Byzantine-robust
distributed learning: Towards optimal statistical rates,” in Proceedings
of the 35th International Conference on Machine Learning, 2018, pp.
5636–5645.

[13] X. Chen, T. Chen, H. Sun, Z. S. Wu, and M. Hong, “Distributed training
with heterogeneous data: Bridging median- and mean-based algorithms,”
CoRR, vol. abs/1906.01736, 2019.

[14] H. Yang, X. Zhang, M. Fang, and J. Liu, “Byzantine-resilient stochastic
gradient descent for distributed learning: A lipschitz-inspired coordinate-
wise median approach,” CoRR, vol. abs/1909.04532, 2019.

[15] Z. Yang and W. U. Bajwa, “Byrdie: Byzantine-resilient distributed
coordinate descent for decentralized learning,” IEEE Trans. Signal Inf.
Process. over Networks, vol. 5, no. 4, pp. 611–627, 2019.

[16] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in
adversarial settings: Byzantine gradient descent,” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 1, no. 2,
pp. 1–25, 2017.

[17] K. Pillutla, S. M. Kakade, and Z. Harchaoui, “Robust aggregation for
federated learning,” arXiv:1912.13445, 2019.

[18] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, “The hidden vulnerability
of distributed learning in byzantium,” in Proceedings of the 35th
International Conference on Machine Learning, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, 2018, pp. 3518–3527.

[19] E. El-Mhamdi and R. Guerraoui, “Fast and secure distributed learning
in high dimension,” CoRR, vol. abs/1905.04374, 2019.

[20] G. Baruch, M. Baruch, and Y. Goldberg, “A little is enough: Circumvent-
ing defenses for distributed learning,” in NeurIPS, 2019, pp. 8632–8642.

[21] C. Xie, O. Koyejo, and I. Gupta, “Fall of empires: Breaking byzantine-
tolerant SGD by inner product manipulation,” in Proceedings of the 35th
Conference on Uncertainty in Artificial Intelligence (UAI), 2019, p. 83.

[22] M. Fang, X. Cao, J. Jia, and N. Z. Gong, “Local model poisoning attacks
to Byzantine-robust federated learning,” arXiv:1911.11815, 2019.

[23] D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl,
“Reaching approximate agreement in the presence of faults,” J. ACM,
vol. 33, no. 3, pp. 499–516, 1986.

[24] H. Mendes and M. Herlihy, “Multidimensional approximate agreement
in Byzantine asynchronous systems,” in 45th Annual ACM Symposium
on Theory of Computing (STOC), 2013, pp. 391–400.

[25] N. H. Vaidya and V. K. Garg, “Byzantine vector consensus in complete
graphs,” in Proceedings of the 2013 ACM Symposium on Principles of
Distributed Computing (PODC). ACM, 2013, pp. 65–73.

[26] R. M. Kieckhafer and M. H. Azadmanesh, “Reaching approximate
agreement with mixed-mode faults,” IEEE Trans. Parallel Distrib. Syst.,
vol. 5, no. 1, pp. 53–63, 1994.

[27] H. LeBlanc, H. Zhang, X. D. Koutsoukos, and S. Sundaram, “Resilient
asymptotic consensus in robust networks,” IEEE Journal on Selected
Areas in Communications, vol. 31, no. 4, pp. 766–781, 2013.

[28] N. H. Vaidya, L. Tseng, and G. Liang, “Iterative approximate byzantine
consensus in arbitrary directed graphs,” in ACM Symposium on Principles
of Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July
16-18, 2012, 2012, pp. 365–374.

[29] H. Zhang and S. Sundaram, “A simple median-based resilient consensus
algorithm,” in 2012 50th Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Oct 2012, pp. 1734–1741.

[30] M. Franceschelli, A. Giua, and A. Pisano, “Finite-time consensus on
the median value with robustness properties,” IEEE Transactions on
Automatic Control, vol. 62, pp. 1652–1667, 2017.

[31] A. Pilloni, A. Pisano, M. Franceschelli, and E. Usai, “Robust distributed
consensus on the median value for networks of heterogeneously perturbed
agents,” in 2016 IEEE 55th Conference on Decision and Control, Dec
2016, pp. 6952–6957.

[32] N. H. Vaidya, “Iterative Byzantine vector consensus in incomplete graphs,”
in International Conference on Distributed Computing and Networking.
Springer, 2014, pp. 14–28.

[33] X. Wang, S. Mou, and S. Sundaram, “A resilient convex combination
for consensus-based distributed algorithms,” Numerical Algebra, Control
& Optimization, vol. 9, p. 269, 2019.

[34] M. Shabbir, J. Li, W. Abbas, and X. Koutsoukos, “Resilient vector
consensus in multi-agent networks using centerpoints,” in Proceedings
of the 2020 American Control Conference, July, 2020.

[35] W. Abbas, M. Shabbir, J. Li, and X. Koutsoukos, “Resilient distributed
vector consensus using centerpoint,” Automatica, vol. 136, p. 110046,
2022.

[36] H. Park and S. Hutchinson, “Fault-tolerant rendezvous of multirobot
systems,” IEEE Transactions on Robotics, vol. 33, pp. 565–582, 2017.

[37] L. Guerrero-Bonilla, A. Prorok, and V. Kumar, “Formations for resilient
robot teams,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
841–848, 2017.

[38] K. Saulnier, D. Saldana, A. Prorok, G. J. Pappas, and V. Kumar, “Resilient
flocking for mobile robot teams,” IEEE Robotics and Automation Letters,
vol. 2, no. 2, pp. 1039–1046, 2017.

[39] Z. Li, W. Trappe, Y. Zhang, and B. Nath, “Robust statistical methods
for securing wireless localization in sensor networks,” in Proceedings
of the Fourth International Symposium on Information Processing in
Sensor Networks, IPSN 2005, April 25-27, 2005, UCLA, Los Angeles,
California, USA, 2005, pp. 91–98.

[40] Y. Zeng, J. Cao, J. Hong, S. Zhang, and L. Xie, “Secure localization
and location verification in wireless sensor networks: a survey,” J.
Supercomput., vol. 64, no. 3, pp. 685–701, 2013.

[41] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient
descent with suspicion-based fault-tolerance,” in Proceedings of the 36th
International Conference on Machine Learning, 2019, pp. 6893–6901.

[42] N. Gupta and N. H. Vaidya, “Byzantine fault tolerant distributed linear
regression,” CoRR, vol. abs/1903.08752, 2019.

[43] L. Su and N. H. Vaidya, “Byzantine-resilient multi-agent optimization,”
IEEE Transactions on Automatic Control, 2020.

[44] L. Chen, H. Wang, Z. B. Charles, and D. S. Papailiopoulos, “DRACO:
byzantine-resilient distributed training via redundant gradients,” in
Proceedings of the 35th International Conference on Machine Learning,
2018, pp. 902–911.

13

[45] S. Rajput, H. Wang, Z. Charles, and D. Papailiopoulos, “DETOX:
A redundancy-based framework for faster and more robust gradient
aggregation,” in NeurIPS, 2019, pp. 10 320–10 330.

[46] D. Data, L. Song, and S. N. Diggavi, “Data encoding methods for
byzantine-resilient distributed optimization,” in IEEE International
Symposium on Information Theory (ISIT), 2019, pp. 2719–2723.

[47] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-
robust stochastic aggregation methods for distributed learning from het-
erogeneous datasets,” in 33rd AAAI Conference on Artificial Intelligence,
2019, pp. 1544–1551.

[48] Z. Yang, A. Gang, and W. U. Bajwa, “Adversary-resilient distributed and
decentralized statistical inference and machine learning: An overview
of recent advances under the byzantine threat model,” IEEE Signal
Processing Magazine, vol. 37, no. 3, pp. 146–159, 2020.

[49] E.-M. El-Mhamdi, R. Guerraoui, A. Guirguis, and S. Rouault, “SGD:
Decentralized Byzantine resilience,” arXiv:1905.03853, 2019 .

[50] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal
distributed online prediction using mini-batches,” J. Mach. Learn. Res.,
vol. 13, pp. 165–202, 2012.

[51] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, no. 4,
pp. 56–69, 2006.

[52] Z. J. Towfic, J. Chen, and A. H. Sayed, “Excess-risk of distributed
stochastic learners,” IEEE Transactions on Information Theory, vol. 62,
no. 10, pp. 5753–5785, 2016.

[53] A. H. Sayed, “Adaptation, learning, and optimization over networks,”
Foundations and Trends in Machine Learning, vol. 7, no. 4–5, pp. 311–
801, 2014.

[54] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311,
2018.

[55] X. Zhao and A. H. Sayed, “Performance limits for distributed estimation
over LMS adaptive networks,” IEEE Trans. Signal Process., vol. 60,
no. 10, pp. 5107–5124, 2012.

[56] S. Tu and A. H. Sayed, “Diffusion strategies outperform consensus
strategies for distributed estimation over adaptive networks,” IEEE Trans.
Signal Process., vol. 60, no. 12, pp. 6217–6234, 2012.

[57] J. Matoušek, Lectures on Discrete Geometry. Springer, 2002.
[58] J. De Loera, X. Goaoc, F. Meunier, and N. Mustafa, “The discrete

yet ubiquitous theorems of Carathéodory, Helly, Sperner, Tucker, and
Tverberg,” Bulletin of the American Mathematical Society, vol. 56, no. 3,
pp. 415–511, 2019.

[59] N. H. Mustafa, S. Ray, and M. Shabbir, “k-centerpoints conjectures for
pointsets in Rd,” International Journal of Computational Geometry &
Applications, vol. 25, no. 03, pp. 163–185, 2015.

[60] S. Jadhav and A. Mukhopadhyay, “Computing a centerpoint of a finite
planar set of points in linear time,” Discrete & Computational Geometry,
vol. 12, no. 3, pp. 291–312, 1994.

[61] T. M. Chan, “An optimal randomized algorithm for maximum tukey
depth,” in Proceedings of the 15th annual ACM-SIAM Symposium on
Discrete Slgorithms (SODA). SIAM, 2004, pp. 430–436.

[62] G. L. Miller and D. R. Sheehy, “Approximate centerpoints with proofs,”
Computational Geometry, vol. 43, no. 8, pp. 647–654, 2010.

[63] W. Mulzer and D. Werner, “Approximating Tverberg points in linear
time for any fixed dimension,” Discret. Comput. Geom., vol. 50, no. 2,
pp. 520–535, 2013.

[64] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. D. Ames, E. Feron, and
M. Egerstedt, “The Robotarium: A remotely accessible swarm robotics
research testbed,” in IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 1699–1706.

[65] H. Mendes, M. Herlihy, N. H. Vaidya, and V. K. Garg, “Multidimensional
agreement in Byzantine systems,” Distributed Comput., vol. 28, no. 6,
pp. 423–441, 2015.

Jiani Li is currently working as a Research Scientist
at Meta. She received her Ph.D. degree from the
Electrical Engineering and Computer Science Depart-
ment, Vanderbilt University, Nashville, TN, USA in
2021. Her research focuses on resilient multi-agent
distributed systems and resilient design of cyber-
physical systems with machine learning components.

Waseem Abbas is an Assistant Professor in the
System Engineering Department at the University
of Texas at Dallas, TX, USA. Previously, he was
a Research Assistant Professor at the Vanderbilt
University, Nashville, TN, USA. He received Ph.D.
(2013) and M.Sc. (2010) degrees, both in Electrical
and Computer Engineering, from Georgia Institute of
Technology, Atlanta, GA, and was a Fulbright scholar
from 2009 till 2013. His research interests are in the
areas of control of networked systems, resilience and
robustness in networks, distributed optimization, and

graph-theoretic methods in complex networks.

Mudassir Shabbir is an Associate Professor in the
Department of Computer Science at the Information
Technology University, Lahore, Pakistan and a Re-
search Assistant Professor at Vanderbilt University,
Nashville TN. He received his Ph.D. from Division
of Computer Science, Rutgers University, NJ USA
in 2014. Previously, Mudassir has worked at Lahore
University of Management Sciences, Pakistan, Los
Alamos National Labs, NM, Bloomberg L.P. New
York, NY and at Rutgers University. He was Rutgers
Honors Fellow for 2011-12. His main area of research

is Algorithmic and Discrete Geometry, and has developed new methods for
the characterization and computation of succinct representations of large data
sets with applications in non-parametric statistical analysis. He also works in
Graph Machine Learning and Resilient Network Systems.

Xenofon Koutsoukos is a Professor and the Chair
of the Department of Computer Science and a Senior
Research Scientist with the Institute for Software
Integrated Systems (ISIS), Vanderbilt University,
Nashville, TN, USA. He was a Member of Research
Staff at the Xerox Palo Alto Research Center (PARC)
(2000–2002). His research work is in the area of
cyber-physical systems with emphasis on learning-
enabled systems, formal methods, distributed algo-
rithms, security and resilience, diagnosis and fault
tolerance, and adaptive resource management. He

has published more than 300 journal and conference papers and he is co-
inventor of four US patents. Prof. Koutsoukos was the recipient of the NSF
Career Award in 2004, the Excellence in Teaching Award in 2009 from the
Vanderbilt University School of Engineering, and the 2011 NASA Aeronautics
Research Mission Directorate (ARMD) Associate Administrator (AA) Award
in Technology and Innovation. He was named a Fellow of the IEEE for his
contributions to the design of resilient cyber-physical systems.

14

APPENDIX A
PROOF OF LEMMA 1

Proof. Our proof is based on the convergence proof of SGD
(Theorem 4.6) in [54].

Since F has an L-Lipschitz continuous gradient, it holds
that

F
(
θ̂k,i+1

)
− F (θk,i) ≤ ∇F (θk,i)

>(θ̂k,i+1 − θk,i)

+
1

2
L‖θ̂k,i+1 − θk,i‖2.

Given the SGD step (2), we have

F
(
θ̂k,i+1

)
− F (θk,i) ≤ −αk,i∇F (θk,i)

>∇`k(θk,i; ξ
i
k)

+
1

2
α2
k,iL‖∇`k(θk,i; ξ

i
k)‖2.

(18)
Take the expected value of the above equation with respect to
the random variable ξik. Since θ̂k,i+1 depends on ξik, whereas
θk,i does not, we obtain

Eξik
[
F
(
θ̂k,i+1

)]
− F (θk,i)

≤− αk,i∇F (θk,i)
>Eξik [∇`k(θk,i; ξ

i
k)] +

1

2
α2
k,iLEξik [‖∇`k(θk,i; ξ

i
k)‖2].

Given Assumption 3, it follows that

Eξik
[
F
(
θ̂k,i+1

)]
− F (θk,i)

≤− µαk,i‖∇F (θk,i)‖2 +
1

2
α2
k,iLEξik [‖∇`k(θk,i; ξ

i
k)‖2]

≤− µαk,i‖∇F (θk,i)‖2 +
1

2
α2
k,iL

(
Mk + (Vk + µ2

g)‖∇F (θk,i)‖2
)

=−
(
µ− 1

2
αk,iLGk

)
αk,i‖∇F (θk,i)‖2 +

1

2
α2
k,iLMk,

(19)
where Gk , Vk + µ2

g .
Given that F is strongly convex, there exists 0 < c ≤ L

such that

‖∇F (θ)‖2 ≥ 2c (F (θ)− F ∗) for all θ.

Also, since αk,i ≤ µ
LGk

, it holds that αk,iLGk ≤ µ. Following
(19), We have

Eξik
[
F
(
θ̂k,i+1

)]
− F (θk,i)

≤− 1

2
αk,iµ‖∇F (θk,i)‖2 +

1

2
α2
k,iLMk

≤− αk,icµ (F (θk,i)− F ∗) +
1

2
α2
k,iLMk

Subtracting F ∗ from both sides of (19) and taking total
expectations over the joint distribution ξk,i for all k ∈ N ,
i ∈ N, we have

E[F (θ̂k,i+1)−F ∗] ≤ (1−αk,icµ)E[F (θk,i)−F ∗]+
1

2
α2
k,iLMk,

which completes the proof.

