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Abstract
Retrotransposons are a subset of DNA sequences that con-
stitute a large part of the mammalian genome. They can 
translocate autonomously or non-autonomously, potential-
ly jeopardizing the heritable germline genome. Retrotrans-
posons coevolved with the host genome, and the germline 
is the prominent battlefield between retrotransposons and 
the host genome to maximize their mutual fitness. Host ge-
nomes have developed various mechanisms to suppress 
and control retrotransposons, including DNA methylation, 
histone modifications, and Piwi-interacting RNA (piRNA), for 
their own benefit. Thus, rapidly evolved retrotransposons of-
ten acquire positive functions, including gene regulation 
within the germline, conferring reproductive fitness in a spe-
cies over the course of evolution. The male germline serves 
as an ideal model to examine the regulation and evolution 
of retrotransposons, resulting in genomic co-evolution with 
the host genome. In this review, we summarize and discuss 
the regulatory mechanisms of retrotransposons, stage-by-
stage, during male germ cell development, with a particular 

focus on mice as an extensively studied mammalian model, 
highlighting suppression mechanisms and emerging func-
tions of retrotransposons in the male germline.

© 2022 S. Karger AG, Basel

Introduction

Transposable elements (TEs) are a class of DNA se-
quences that can “jump” into new positions in the ge-
nomes [Rebollo et al., 2012; Bourque et al., 2018]. These 
insertions can generate new genes or affect the expression 
of neighboring genes, thereby threatening genomic integ-
rity [Levin and Moran, 2011]. TEs comprise nearly half of 
the mouse and human genomes and can be subdivided 
into DNA transposons and retrotransposons (Fig.  1) 
[Lander et al., 2001; Mouse Genome Sequencing et al., 
2002]. DNA transposons work by a cut-and-paste mech-
anism: they are cut from one genomic location and past-
ed into another. During the process of genomic evolu-
tion, these DNA transposons have lost their functions in 
the mouse and human genomes [Pace and Feschotte, 
2007; Hickman and Dyda, 2016].

On the other hand, retrotransposons work by a copy-
and-paste mechanism, such that they are copied from one 
genomic location and pasted into another via reverse 
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transcription using an RNA intermediate (Fig. 1b). They 
are subdivided into LTR (long terminal repeat) and non-
LTR (non-long terminal repeat) retrotransposons 
(Fig. 1a). LTR retrotransposons such as endogenous ret-
roviruses (ERVs) are relics of viral infection or retrotrans-
position over evolution and account for approximately 
9% of mammalian genomes [Mandal and Kazazian, 
2008]. These classes of retrotransposons have lost inser-
tional capacity in humans. Unlike human ERVs, howev-
er, some mouse ERVs are capable of active retrotranspo-
sition and serve as intracellular mutagens. Of note, most 
ERVs have lost their retrotransposition potential due to 
mutational decay, but their partial sequences, such as solo 
LTRs, which lost viral coding sequences, modulate host 
genome functions as gene regulatory elements [Thomp-
son et al., 2016]. Non-LTR retrotransposons include 
LINEs (long interspersed nuclear elements) and SINEs 
(short interspersed nuclear elements). LINEs occupy 
about 20% of mammalian genomes; a subset of LINEs re-
tain retrotransposition activities both in humans and 
mice. SINEs are non-autonomous transposons and use 
LINE1 protein for mobilization [Kramerov and Vassetz-
ky, 2011; Raiz et al., 2012].

The germline is the most prominent battlefield be-
tween the host genome and retrotransposons, and the 
host genome and retrotransposons have coevolved as a 
result. Retrotransposons need to be expressed in the 
germline to propagate themselves, even as retrotranspo-
son activity needs to be precisely controlled, since they 
can pose a massive threat to genome integrity. At the 
same time, the host genome exploits retrotransposons as 
functional elements to acquire reproductive fitness. Dur-
ing co-evolution, the mammalian host genome developed 
various defense mechanisms to silence and control ret-
rotransposons for their own benefit [Zamudio and 
Bourc'his, 2010; Elbarbary et al., 2016]. In the male germ-
line, there are 3 key mechanisms controlling retrotrans-
poson activity: DNA methylation, histone modifications, 
and piRNA (PIWI-interacting RNAs) pathways [Bao and 
Yan, 2012; Di Giacomo et al., 2013; Crichton et al., 2014; 

Fu and Wang, 2014]. piRNAs are a small, noncoding 
RNA family with a length of ∼24–31 nucleotides and are 
critical for silencing TEs through transcriptional and 
post-transcriptional pathways and gene expression regu-
lation [Iwasaki et al., 2015; Ernst et al., 2017; Czech et al., 
2018; Ozata et al., 2019]. These mechanisms act in concert 
to regulate distinct developmental processes in the male 
germline.

Reasons for this stage-specific regulation may be due 
to the stage-specific requirement of TE functions. Recent 
studies have revealed various regulatory functions for 
TEs in the male germline. The geneticist who discovered 
TEs, Barbara McClintock, proposed over 70 years ago 
that TEs function as gene regulatory elements [Mc-
Clintock, 1950]. Studies in the last decade have indeed 
established that TEs can impact host genomes by regulat-
ing gene expression [Rebollo et al., 2012; Friedli and Tro-
no, 2015; Garcia-Perez et al., 2016; Thompson et al., 2016; 
Chuong et al., 2017]. Thus, precise, stage-specific con-
trols of TEs are integral in the germline, and TEs often 
have positive functions in the germline, conferring repro-
ductive fitness in each species over the course of evolu-
tion.

In this review, we summarize the latest research prog-
ress and discuss the regulation of retrotransposons dur-
ing male germ cell development. We particularly focus on 
progress made in recent years following previous excel-
lent reviews of TEs in the mammalian germline [Bao and 
Yan, 2012; Chuma and Nakano, 2013; Crichton et al., 
2014; Fu and Wang, 2014] and highlight suppression 
mechanisms and emerging functions of TEs stage-by-
stage in the male germline.

Two Major Representative Retrotransposons in the 
Male Germline

LTR Retrotransposons: IAP
Mouse LTR retrotransposons that include ERVs are di-

vided into 3 classes (Class I: ERV1s; Class II: ERVKs, IAP 

Fig. 1. Overview of transposable elements. a Categories of trans-
posable elements. Asterisks indicate the retrotransposons that are 
still active in the mouse germline. b Self-replicated mechanisms of 
transposable elements. DNA transposons move around the ge-
nome by a cut-and-paste mechanism. They are excised from one 
genomic location and pasted into another. Retrotransposons work 
by a copy-and-paste mechanism, which is copied from one ge-
nomic location and pasted into another through reverse transcrip-
tion using an RNA intermediate. c Schematic structure of mam-

malian retrotransposons. IAP is characterized by long terminal 
repeats and gag, pro, and pol protein-coding genes. IAP belongs to 
ERVK/LTR families and retains insertional capacity in mice. 
LINE1 can encode 2 ORFs: ORF1 encodes an RNA-binding pro-
tein, and ORF2 encodes 2 enzymes – endonuclease and reverse 
transcriptase, which promote the LINE1 retrotransposition. TIR, 
two inverted tandem repeat; ORF, open reading frame; UTR, un-
translated region; Gag, group-specific antigen; Pol, polymerase; 
LTR, long terminal repeat.
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[intracisternal A-particle], and Etn [Early Transposon]/
MusD elements; and Class III: ERVLs) (Fig. 1a); some Class 
II and III elements have retrotransposition functions. Sev-
eral Class II elements, such as IAP and Etn/MusD elements, 
contribute to insertional germline mutations [Pace and Fe-
schotte, 2007; Zhang et al., 2008; Goodier, 2016]. Further, 
Class III Murine ERVL (MERVL) elements, which are tran-
scriptionally active at the time of zygotic gene activation in 
2-cell stage embryos [Macfarlan et al., 2012], are potential-
ly mutagenic. However, insertional mutations of Class III 
ERVL elements are much less common than those of Class 
II elements [Gagnier et al., 2019].

IAP is a murine-specific ERV from a large group of 
Class II LTR retrotransposons (also known as ERVKs) 
(Fig. 1a). IAP retains insertional activities in mice and is 
responsible for most insertional mutations in mice [Gag-
nier et al., 2019]. This is in stark contrast with human 
ERVs, which have lost retrotransposition capacity over 
the course of evolution. IAP has a representative retrovi-
ral structure, which contains Gag, Pro, and Pol with 5′ 
and 3′ long terminal repeats (LTRs) (Fig. 1c) [Mietz et al., 
1987; Kuff and Lueders, 1988].

IAP shows stage-specific expression in the germline. 
In 1996, Dupressoir and Heidmann [1996] generated IAP 
LTR-driven LacZ reporter mice to test the transcription-
al activities of IAP. They found that IAP’s transcriptional 
activity is limited to prospermatogonia and undifferenti-
ated spermatogonia. Long after this experiment, the ad-
vent of next-generation sequencing improved detection 
of retrotransposon activities, revealing the dynamic na-
ture of repeat expression in spermatogenesis. A recent 
RNA-seq analysis revealed that the LTR of various ERVs 
drives noncoding RNAs in late meiotic spermatocytes 
[Davis et al., 2017]. Another study demonstrated that ex-
pression of TEs, including ERVs and their subtype IAPs, 
are dynamically altered when germ cells enter meiosis 
during spermatogenesis [Sakashita et al., 2020], suggest-
ing that ERV activities are precisely controlled develop-
mental processes in spermatogenesis.

Non-LTR Retrotransposons: LINE1
LINEs are a critical member of non-LTR retrotranspo-

son families and make up about 17% and 19% of human 
and mouse genomes [Mandal and Kazazian, 2008]. LINEs 
are classified as LINE1, LINE2, or LINE3, with LINE1 
constituting most of this group (Fig. 1a) [Mandal and Ka-
zazian, 2008; Schumann et al., 2010]. Importantly, a sub-
set of LINEs have retrotransposition activities; the Ta 
(transcribed, subset a) subfamily of L1Hs (L1 human-
specific) remains active in humans, and the L1MdA (fea-

tured by A monomer), L1MdTf (featured by Tf mono-
mer), and L1MdGf (featured by Gf monomer) copies of 
L1Md (Mus domesticus) families are still active in mice 
[Myers et al., 2002; Beck et al., 2011; Hancks and Kaza-
zian, 2012; Sookdeo et al., 2013].

In mice, LINE1 encodes 2 open reading frames (ORFs): 
ORF1 and ORF2 (Fig. 1c) [Mathias et al., 1991; Martin 
and Bushman, 2001; Rangwala et al., 2009]. ORF1 en-
codes an RNA-binding protein that constitutes a complex 
with LINE1 RNA [Martin and Branciforte, 1993; Moran 
et al., 1996; Khazina and Weichenrieder, 2009; Rangwala 
et al., 2009]. ORF2 has 2 enzymatic activities: endonucle-
ase and reverse transcriptase, which can excise genomic 
DNA and catalyze the reverse transcription of LINE1 
RNA [Mathias et al., 1991; Feng et al., 1996; Moran et al., 
1996]. A recent study demonstrated that LINE1 ORF1 
protein starts to express from E13.5 and becomes homog-
enous in E15.5; importantly, LINE1 expression is associ-
ated with successful differentiation of prospermatogonia 
[Nguyen et al., 2020]. Consistent with this study, LINE1 
ORF1 proteins were detected from E15.5 [Branciforte 
and Martin, 1994; Trelogan and Martin, 1995], and a por-
tion of LINE1 loci show accessible chromatin in E17.5 
[Yamanaka et al., 2019], which suggests positive func-
tions of LINE1 in the developmental process. LINE1 ex-
pression in embryonic stages is also critical in the female 
germline, as LINE1 functions during perinatal oocyte at-
trition in normal oogenesis [Tharp et al., 2020]. In males, 
LINE1 expression decreases after birth and reaches a high 
level again in leptotene/zygotene spermatocytes [Branci-
forte and Martin, 1994; Trelogan and Martin, 1995]. Cu-
riously, expression of LINE1 ORF1 takes place sporadi-
cally in a subset of spermatocytes in adult testis [Soper et 
al., 2008]. Further, a recent study demonstrated that 
LINE1 expression is dynamically changed when germ 
cells enter meiosis [Sakashita et al., 2020]. However, the 
biological significance of sporadically expressed LINE1 is 
enigmatic. Although LINE1 is expressed in the male 
germline, the retrotransposition of LINE1 predominant-
ly exists in preimplantation embryos [Kano et al., 2009; 
Sookdeo et al., 2013]. Of note, LINE1 functions in gene 
regulation in early embryonic development [Jachowicz et 
al., 2017; Percharde et al., 2018].

Retrotransposon Silencing in Primordial Germ Cells

Epigenetic Reprogramming
In mice, primordial germ cells (PGCs) emerge at em-

bryonic day (E) 7.25 and are precursors of both male and 
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female germ cells [Lesch and Page, 2012; Saitou and Yam-
aji, 2012; Kelleher, 2017]. The development of PGCs con-
sists of 3 stages: specification, migration, and differentia-
tion [Tam and Snow, 1981; Hayashi et al., 2007]. PGCs 
are specified from the posterior proximal epiblast cells at 
E6.25 and first appear as a cluster of about 40 cells in the 
mesoderm at E7.25. These founder cells migrate to the 
developing hindgut endoderm at E7.75, then into the 
mesentery at E9.5, and arrive at the genital ridge at E10.5 
[Seki et al., 2007; Richardson and Lehmann, 2010]. From 
E12.5 onwards, PGCs undergo sex-specific development 
and enter mitotic quiescence (male) or meiotic prophase 
(female) at E13.5 [Western et al., 2008; Spiller et al., 2017]. 
In mouse development, epigenetic reprograming takes 
place during PGC development to reestablish sex-specif-
ic epigenetic profiles in gametogenesis [Reik et al., 2001; 
Sasaki and Matsui, 2008]. This is the second wave of epi-
genetic reprogramming in development, the first taking 
place during preimplantation development to establish 
totipotency. Epigenetic reprogramming in PGCs includes 
DNA demethylation, chromatin remodeling, and erasure 
of genomic imprints [Hajkova, 2011], which leads to an 
epigenetic “ground state” of PGCs [Lesch and Page, 2012; 
Kobayashi et al., 2013] and initiates expression of the sex-
specific genes [Jameson et al., 2012; Sakashita et al., 2015].

DNA Demethylation
Global DNA demethylation is a representative event in 

epigenetic reprogramming in PGCs, leading to a hypo-
methylation state of TEs, thereby threatening genome in-
tegrity [Lesch and Page, 2012; Smallwood and Kelsey, 
2012]. In this process, the activity of de novo DNA meth-
yltransferases is limited due to a low expression of  
DNMT3A, DNMT3B, UHRF1 (DNMT1 cofactor), and 
DNMT3L until de novo DNA methylation takes place in 
later embryonic germ cells [Bourc’his et al., 2001; Seisen-
berger et al., 2012; Kagiwada et al., 2013]. Thus, in PGCs, 
maintenance of DNA methylation barely takes place, 
leading to replication-coupled passive DNA methylation 
[Kagiwada et al., 2013]. As a next step, active DNA de-
methylation takes place in a locus-specific manner to 
erase genomic imprinting and induce meiotic genes [Ya-
maguchi et al., 2012, 2013; Hackett et al., 2013; Vincent et 
al., 2013]. This delayed active demethylation is due to the 
DNMT1-dependent preservation of DNA methylation at 
imprinting control regions and meiotic genes at the first 
step of passive demethylation [Hargan-Calvopina et al., 
2016]. Further, germline genes required for gamete gen-
eration and meiosis are activated upon DNA demethyl-
ation [Hill et al., 2018]. While a mass of retrotransposons 
is demethylated in PGCs, some IAP, ERV1, and ERVK 
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LINE1 silencing. In spermatocytes, ret-
rotransposon silencing is post-transcrip-
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elements are still in a high level of DNA methylation 
[Lane et al., 2003; Seisenberger et al., 2012; Kobayashi et 
al., 2013], raising the possibility that this reprogramming-
resistant DNA methylation may carry heritable epigene-
tic information across generations [Gill et al., 2012]. 
However, a recent study demonstrated that variably 
methylated alleles of IAP loci undergo reprogramming 
after fertilization challenged the view that IAPs carry her-
itable methylation information [Kazachenka et al., 2018]. 
Thus, the mechanisms of heritable epigenetic states in the 
germline remain a looming mystery in biology.

Histone Modifications
In the male germline, DNA methylation, chromatin 

modifications, and the piRNA pathway are crucial for ret-
rotransposon silencing. Global DNA methylation gradu-
ally takes place in PGCs, and piRNA does not act until 
E12.5; thus, additional mechanisms for retrotransposon 
silencing are required at this stage [Aravin et al., 2008; 
Kelleher, 2017]. In PGCs, histone H2A and H4 arginine 
3 di-methylation (H2A/H4R3me2s), H3 lysine 9 tri-
methylation (H3K9me3), and histone H3 lysine 27 tri-
methylation (H3K27me3) are implicated in retrotranspo-
son silencing (Fig. 2).

PRMT5, a member of the protein arginine methyl-
transferases (PRMTs) family that catalyzes the formation 
of H2A/H4R3me2s [Branscombe et al., 2001], suppress-
es IAP and LINE1 in PGCs to protect genomic integrity 
during global DNA demethylation [Kim et al., 2014]. 
This function of PRMT5 follows the erasure of H3K9me2 
and coincides with global epigenetic reprogramming 
[Kim et al., 2014]. PRMT5 also contributes to the regula-
tion of RNA splicing to control DNA damage response 
in PGCs and thus maintain genomic integrity [Wang et 
al., 2015]. Further, FANCD2, a protein of Fanconi ane-
mia (FA) DNA damage response pathway, works with 
PRMT5 to suppress IAP and LINE1 in PGCs [Nie et al., 
2020]. Another critical mechanism of retrotransposons 
in PGCs is SETDB1, an H3K9 methyltransferase medi-
ated H3K9me3 [Liu et al., 2014]. SETDB1-mediated 
H3K9me3 and H3K27me3 co-occupy the LINE1 and 
LTRs locus at E13.5, which suggests possible coordina-
tion between H3K9me3 and H3K27me3 in retrotranspo-
son silencing. Interestingly, although H3K9me3 and 
H3K27me3 are decreased at both IAP and LINE1 ele-
ments in Setdb1 mutants, expression of LINE1 was only 
slightly increased in mutant PGCs. Therefore, IAP and 
LINE1 silencing mechanisms are not identical, and ad-
ditional silencing pathways may regulate LINE1 silenc-
ing [Liu et al., 2014].

Retrotransposon Silencing in Prospermatogonia

De novo DNA Methylation
Following epigenetic reprogramming of PGCs, male 

germ cells enter mitotic arrest and undergo de novo DNA 
methylation [Kota and Feil, 2010; Smallwood and Kelsey, 
2012]. From E13.5 to postnatal day 3 (P3), the male germ 
cells in mitotic arrest are named prospermatogonia or 
gonocytes [Culty, 2013; McCarrey, 2013]. Two waves of 
de novo DNA methylation occur in prospermatogonia: 
the first wave of de novo DNA methylation is region-spe-
cific, and the second wave is genome-wide [Molaro et al., 
2014]. By E18.5, most TEs and satellite sequences have 
been methylated [Kafri et al., 1992; Lees-Murdock et al., 
2003; Li et al., 2004]. However, some young LINE1 and 
IAP retrotransposons escape this round of de novo DNA 
methylation and threaten genomic integrity. To neutral-
ize this threat, PIWI (P-element-induced wimpy testis) 
proteins and piRNAs drive piRNA-directed de novo 
methylation at TE loci and post-transcriptional cleavage 
of TE transcripts [Aravin et al., 2008; De Fazio et al., 2011] 
(Fig. 2).

The DNMT3 family plays critical roles during the pro-
cess of de novo methylation [Kaneda et al., 2004; Kato et 
al., 2007], which include DNA de novo methyltransfer-
ases DNMT3A and DNMT3B, as well as their cofactor 
DNMT3L [Li and Zhang, 2014]. DNMT3A is primarily 
responsible for de novo methylation at imprinted loci in 
PGCs, whereas DNMT3B is dispensable for the comple-
tion of spermatogenesis [Kaneda et al., 2004]. However, 
DNMT3A and DNMT3B are likely to have redundant 
functions; both DNMT3A and DNMT3B are involved in 
de novo methylation at IAP and LINE1 loci [Kato et al., 
2007]. DNMT3L is an enzymatically inactive paralogue, 
but in the germline, the expression of DNMT3L coincides 
with the process of de novo methylation [Bourc’his et al., 
2001]. DNMT3L engages in de novo methylation by co-
operating with other DNMTs in prospermatogonia [Hata 
et al., 2002; Bourc’his and Bestor, 2004], and DNMT3L 
specifically maintains the stability of DNMT3A to facili-
tate DNA methylation [Veland et al., 2019]. In addition 
to these DNMT3 family members, a novel DNA de novo 
methyltransferase, DNMT3C, was recently discovered to 
be the repressor of evolutionarily young retrotransposons 
[Barau et al., 2016; Jain et al., 2017].

Of note, MORC1, a Microrchidia (Morc) family of 
GHKL ATPase, was found to be a critical regulator of de 
novo DNA methylation and suppression of specific class-
es of retrotransposons in PGCs [Pastor et al., 2014]. In 
Morc1-mutant mice, H3K4me3 is aberrantly enriched at 
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the specific regions that are failed to be de novo methyl-
ated [Pastor et al., 2014]. Since the deposition of H3K-
4me3 counteracts the recruitment of DNMT3L and de 
novo DNA methylation [Ooi et al., 2007], MORC1 may 
facilitate the formation of unmethylated H3K4 at TE loci 
to establish DNMT3L-induced de novo methylation 
[Pastor et al., 2014].

Transient Opening of Heterochromatic Domains in 
Prospermatogonia
In prospermatogonia, heterochromatic domains be-

come transiently accessible, and these differentially ac-
cessible domains (DADs) occur mainly in regions with 
certain types of retrotransposons (such as LINE1 and 
ERVK) [Yamanaka et al., 2019]. Histone marks, includ-
ing active marks H3K4me3 and repressive marks H3K-
9me3 and H3K27me3, are dynamically reconstructed in 
the differentially accessible domains (DADs). These 
DADs resist the first wave of de novo DNA methylation 
and become open before the second wave. Concomitant 
with the accessible domain formations, TEs transiently 
generate transcripts, raising the possibility that ret-
rotransposons in DADs may function as gene regulatory 
elements [Yamanaka et al., 2019].

Pre-Pachytene piRNAs
Another key event in prospermatogonia is the produc-

tion of pre-pachytene piRNAs, mainly derived from TE 
transcripts, which are considered to be genome defense 
mechanisms against retrotransposons [Girard and Han-
non, 2008; Senti and Brennecke, 2010]. The biogenesis of 
pre-pachytene piRNAs begins with the process of prima-
ry piRNA biogenesis in intermitochondrial cement (IMC, 
also known as Nuage or pi-body: a cellular structure 
found between aggregated mitochondria). Multiple mi-
tochondrial proteins have been reported to engage in pri-
mary piRNA biogenesis [Wang et al., 2020]. Following 
the transcription of long single-stranded piRNA precur-
sors, piRNA precursors might be exported into the cyto-
plasm with the help of Maelstrom (MAEL) [Castaneda et 
al., 2014]. In IMC, RNA helicase MOV10L1 and endo-
nuclease PLD6 (MITOPLD or Zucchini) fuel piRNA pre-
cursors to produce piRNA intermediates with a 5′ uridine 
(U) end (1U bias) [Huang et al., 2011; Watanabe et al., 
2011; Vourekas et al., 2015]. Then, the piRNA intermedi-
ates bind to the PIWI proteins, and their 3′-end are 
cleaved by the poly(A) specific 3′-5′ exonuclease PNLDC1 
acting in concert with protein TDRKH [Saxe et al., 2013; 
Anastasakis et al., 2016; Izumi et al., 2016; Ding et al., 
2017; Zhang et al., 2017; Nishimura et al., 2018] and 2′-O-

methylated by a methyltransferase HENMT1 [Saito et al., 
2007; Lim et al., 2015] (Fig. 3a).

Two members of the PIWI protein family, MILI (PI-
WIL2) and MIWI2 (PIWIL4), are involved in pre-pachy-
tene piRNA biogenesis (Fig. 2) [Kuramochi-Miyagawa et 
al., 2004; Carmell et al., 2007]. MILI is expressed from 
E12.5 to the adult stage, but MIWI2 is transiently ex-
pressed during E14.5-P2 (Fig. 2) [Kuramochi-Miyagawa 
et al., 2004; Carmell et al., 2007]. Each PIWI protein binds 
to specific piRNAs (about 26 nt length for MILI, 28 nt 
length for MIWI2), constituting piRNA ribonucleopro-
tein complexes (piRNPs) [Girard et al., 2006; Aravin et 
al., 2007; Iwasaki et al., 2015]. In particular, MILI is stabi-
lized by mitochondrial outer membrane proteins, ASZ1 
(GASZ) and GPAT2, in the processes of primary piRNA 
biogenesis and TE silencing [Ma et al., 2009; Shiromoto 
et al., 2013, 2019; Zhang et al., 2016].

Following the primary piRNA biogenesis, the second-
ary piRNA biogenesis generates and amplifies pre-pachy-
tene piRNAs, which is called the ping-pong cycle [Ernst 
et al., 2017] (Fig.  3a). In this process, primary piRNAs 
bind to MILI, guiding the recognition of target antisense 
RNAs [Aravin et al., 2007; De Fazio et al., 2011]. Then, 
these target RNAs are cleaved between the 10th and 11th 
nucleotides to generate secondary piRNAs, which are 
characterized by an adenine (A) at the 10th nucleotide 
(10A bias) [Wang et al., 2009b; Ernst et al., 2017]. Subse-
quently, the generated secondary piRNAs bind to MILI 
or MIWI2 and initiate 2 distinct pathways for MILI and 
MIWI2 [Manakov et al., 2015]; both pathways are regu-
lated by gametocyte-specific factor 1 (GTSF1), which 
forms complexes with MILI or MIWI2 [Yoshimura et al., 
2009, 2018]. When secondary piRNAs bind to MILI,  
MILI-piRNA complexes recognize antisense RNAs and 
generate piRNAs with the same sequence as primary  
piRNAs, thereby facilitating the amplification of primary 
piRNAs and accomplishing a ping-pong cycle (Fig.  3) 
[Kuramochi-Miyagawa et al., 2008; De Fazio et al., 2011]. 
When secondary piRNAs bind to MIWI2, MIWI2- 
piRNA complexes are imported into the nucleus and pro-
mote the recruitment of epigenetic silencing factors, in-
cluding de novo DNA methyltransferases, contributing 
to the repression of young TEs [Aravin et al., 2008; Kura-
mochi-Miyagawa et al., 2008]. MIWI2 directly interacts 
with RNA transcribed from piRNA-dependent DNA 
methylated loci and induces piRNA-mediated DNA 
methylation [Watanabe et al., 2018]. Further, MIWI2-de-
pendent piRNA biogenesis can be partly independent of 
MILI, revealing the distinct functions between MILI and 
MIWI2 [Vasiliauskaitė et al., 2017].
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In conjunction with ping-pong amplification, another 
critical mechanism in piRNA production, called the 
phased piRNA production, generates strings of tail-to-
head piRNA, one after another, from the precursor gen-
erated by the ping-pong pathway (Fig.  3a) [Han et al., 
2015; Mohn et al., 2015; Ozata et al., 2019]. The linear 
nature of phased piRNA production enables the spread-
ing of piRNA synthesis and increases the sequence diver-
sity to target TEs efficiently. In phased piRNA produc-
tion, MILI acts as the trigger to initiate further 5′ to 3′ 
processing into non-overlapping phased piRNAs, which 
associate with MILI in the cytoplasm and MIWI2 in the 
nucleus (Fig. 3a) [Yang et al., 2016]. During this process, 
ATPase activity of Mouse Vasa Homolog (MVH/DDX4) 
is required for phased piRNA production, while down-
stream, ATPase activity of TDRD9 is required for MI-
WI2-mediated transcriptional silencing of TEs in the nu-
cleus, independent of piRNA biogenesis [Wenda et al., 
2017]. Notably, the piRNA-guided PIWI-mediated pro-
duction of phased piRNAs was found in a broad range of 
animals, revealing an evolutionarily conserved mecha-
nism of piRNA production [Gainetdinov et al., 2018].

piRNA-Directed de novo DNA Methylation
The biogenesis of pre-pachytene piRNAs is a process 

of TE silencing at the post-transcriptional level [Ernst et 
al., 2017]. In addition, piRNA-directed de novo DNA 
methylation at TE loci can repress TEs at the transcrip-
tional level [Aravin et al., 2008]; this methylation usually 
occurs with young TEs and TE promotor elements [Mo-
laro et al., 2014; Manakov et al., 2015; Zoch et al., 2020]. 
Of all 3 PIWI proteins, MIWI2 is present in the nucleus 
from E14.5 to P2, and this short expression window is 
consistent with the window of de novo methylation [Car-
mell et al., 2007; Manakov et al., 2015]. During this de 
novo methylation process, MIWI2 can be loaded with 
piRNAs, forming piRNA-MIWI2 complexes, and im-
ported into the nucleus to transcriptionally active TE loci, 
which will be methylated and successfully repressed 
[Kuramochi-Miyagawa et al., 2008; Manakov et al., 2015]; 
however, how piRNAs or MIWI2 direct de novo DNA 
methylation puzzled researchers for decades.

Recent studies addressed this question by identifying 
testis-specific gene 15 (TEX15) and SPOCD1 as 2 critical 
executors of piRNA-directed de novo methylation 
[Schopp et al., 2020; Yang et al., 2020; Zoch et al., 2020]. 
TEX15 is present in both the nucleus and cytoplasm in 
prospermatogonia and is highly expressed at E16.5–E18.5 
and increased at P2.5 [Yang et al., 2020]. The deletion of 
TEX15 in mice resulted in meiotic arrest and upregula-

tion of LINE1 and IAP in prospermatogonia [Yang et al., 
2020]. Although TEX15 interacts with MILI, Tex15−/− 
prospermatogonia can normally generate piRNAs, form 
MIWI2-piRNA complexes, and transport MIWI2 into 
the nucleus, indicating that the piRNA pathway is intact 
[Yang et al., 2020]. Therefore, TEX15 likely silences ret-
rotransposons by linking MILI to its downstream effec-
tors. TEX15 also interacts with MIWI2 [Schopp et al., 
2020; Zoch et al., 2020] and functions as a downstream 
effector of MIWI2-directed de novo methylation [Schopp 
et al., 2020]. Another protein, SPOCD1, localizes in the 
nucleus from E14.5 and disappears in P5, similar to the 
expression pattern of MIWI2 [Carmell et al., 2007; Zoch 
et al., 2020]. SPOCD1 is an executor of piRNA-directed 
de novo methylation and is required for suppression of 
IAP and LINE1. SPOCD1 interacts with MIWI2 and co-
purifies in vivo with de novo methylation apparatus  
(DNMT3L and DNMT3A) and repressive chromatin re-
modeling complexes (NURD and BAF complexes) [Zoch 
et al., 2020]. Thus, it was suggested that MIWI2 works 
with SPOCD1 to recruit de novo methylation apparatus 
and repressive chromatin remodeling complexes to me-
diate the repression of TEs. Notably, although both 
TEX15 and SPOCD1 are executors of piRNA-directed de 
novo DNA methylation, TEX15 does not interact with 
SPOCD1 [Schopp et al., 2020]. Thus, TEX15 and SPOCD1 
may have distinct functions in piRNA-directed de novo 
methylation.

Retrotransposon Silencing in Spermatogonia

After birth, male germ cells re-enter the active cell cy-
cle and migrate from the abluminal space to the basement 
membrane [Kluin and de Rooij, 1981; Nagano et al., 2000; 
Yoshida et al., 2006; Drumond et al., 2011]. During devel-
opment, spermatogonia establish a heterogenous cell 
population comprising undifferentiated spermatogonia, 
including a spermatogonial stem cell population and dif-
ferentiating spermatogonia. The lifelong male fertility re-
lies on the delicate balance of self-renewal and differen-
tiation of spermatogonial stem cells [La and Hobbs, 2019; 
Yoshida, 2019; Zhou et al., 2021]. Thus, the maintenance 
of the germline genome integrity is critical in spermato-
gonia, though how retrotransposons are regulated in 
spermatogonia that contain a stem cell population re-
mains a mystery.

PIWI/ARGONAUTE (AGO) was initially discovered 
in Drosophila melanogaster as an evolutionarily con-
served regulator of stem cell maintenance in diverse or-
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ganisms [Cox et al., 1998]. MILI is required for the pre-
pachytene piRNA pathway and DNA methylation, and 
the global ablation of MILI in mice was initially found to 
result in meiotic arrest at the early pachytene stage [Kura-
mochi-Miyagawa et al., 2004, 2008; Aravin et al., 2008]. 
However, a later study demonstrated that MILI is re-
quired for spermatogonial stem cell renewal and is impli-
cated in translation control in spermatogonia, even 
though retrotransposons and mRNA expression was 
largely unchanged in Mili−/− mice [Unhavaithaya et al., 
2009]. Consistent with this observation, in the absence of 
both a functional piRNA pathway and DNA methylation 
in mitotic spermatogonia, LINE1 is still repressed; in-
stead, a silent histone mark, H3K9me2, was found to sup-
press LINE1 until spermatogonia differentiate into mei-
otic pachytene spermatocytes [Di Giacomo et al., 2013]. 
Thus, regulation of LINE1 in spermatogonia requires the 
cooperation of DNA methylation, the piRNA pathway, 
and histone modifications [Di Giacomo et al., 2013].

A mystery of the piRNA studies is that many pre-
pachytene piRNA mutant mice manifest meiotic defects 
much later than the spermatogonial stage [Yang and 
Wang, 2016]. Further, derepression of LINE1 and IAP are 
prominent in pachytene spermatocytes of Dnmt3L−/− 
and Miwi2−/− mice that have defective DNA methylation 
in the male germline [Zamudio et al., 2015]. Therefore, 
retrotransposons were considered to be silent, presum-
ably with H3K9me2, in the absence of DNA methylation.

The function of H3K9me2 in LINE1 suppression was 
later confirmed by the study showing that G9A, a H3K9 
methyltransferase that mediates H3K9me2 [Tachibana et 
al., 2007], is responsible for the suppression of LINE1 in 
mitotic spermatogonia of the Mili-null background (i.e., 
absence of both a functional piRNA pathway and DNA 
methylation) [Di Giacomo et al., 2014]. Curiously, the 
loss of G9A or MILI alone has no obvious impact on the 
expression of LINE1 in spermatogonia [Di Giacomo et 
al., 2014]. Therefore, G9A/H3K9me2 and MILI seem to 
work together to repress LINE1 in spermatogonia. The 
same study further highlighted a difference between the 
regulatory mechanisms of LINE1 and IAP; IAP was dere-
pressed in the single Mili-null spermatogonia and was 
modestly derepressed in the single G9a-mutant sper-
matogonia [Di Giacomo et al., 2014]. This suggests that 
DNA methylation is the primary mechanism to repress 
IAP in spermatogonia.

The function of de novo DNA methylation and piRNA 
biogenesis in spermatogenesis were investigated in recent 
studies. By comparing the loss of de novo DNA methyla-
tion (loss of Dnmt3L) and the loss of piRNA biogenesis 

(loss of Pld6) in prospermatogonia, a recent study showed 
that piRNA is critical in retrotransposon silencing in pro-
spermatogonia, but DNA methylation has more impor-
tant roles in retrotransposon silencing in later stages [In-
oue et al., 2017]. Importantly, the loss of de novo DNA 
methylation leads to ectopic activation of meiotic genes 
in pachytene spermatocytes [Inoue et al., 2017]. In an-
other study, the loss of de novo DNA methylation (loss of 
DNMT3L or MIWI2) caused derepression of IAP and ab-
normal activation of neighboring transcripts, leading to 
rewiring of spermatogonial transcriptomes [Vasiliaus-
kaite et al., 2018]. These altered transcriptomes are asso-
ciated with defective proliferation and differentiation of 
spermatogonia [Vasiliauskaite et al., 2018]. Although 
MIWI2 is expressed in undifferentiated spermatogonia, 
conditional deletion of MIWI2 in spermatogonia re-
vealed that MIWI2’s function in spermatogonia is not re-
quired for later spermatogenesis [Bao et al., 2014], sper-
matogenic homeostasis, or regeneration [Vasiliauskaite 
et al., 2018], but is required for injury-induced spermato-
genesis [Carrieri et al., 2017]. However, these studies used 
relatively young mice, and it remains an outstanding 
question as to how retrotransposons are controlled to 
sustain the long-term fertility of males.

Retrotransposons in Male Meiosis

Following spermatogonial differentiation, male germ 
cells enter meiosis, which is a fundamental switch in the 
genome to prepare the haploid genome. In meiosis, the 
genome undergoes meiotic recombination between ho-
mologous chromosomes that ensure the production of 
haploid gametes, leading to the genetic diversity of off-
spring [Hunter, 2015]. At the same time, germline tran-
scriptomes, epigenomes, and 3D chromatin undergo dy-
namic changes in the transition from mitotic spermato-
gonia to meiotic spermatocytes [Hasegawa et al., 2015; 
Alavattam et al., 2019; Maezawa et al., 2020]. In normal 
germ cells, diverse and highly complex transcripts start to 
express in pachytene spermatocytes of meiotic prophase 
I [Soumillon et al., 2013]. At this transition, there are sev-
eral remarkable features in the regulation of TEs. Pachy-
tene piRNAs, a distinct class of piRNA from pre-pachy-
tene piRNAs, start to express in the pachytene spermato-
cytes to suppress TEs and regulate gene expression 
[Ozata et al., 2019]. Somewhat counter-intuitively to the 
expression of pachytene piRNA, unique copies of various 
TEs, including SINEs, LINEs, and ERVs start to express 
in pachytene spermatocytes [Sakashita et al., 2020]. LTRs 
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of ERVs (mainly Class III ERVLs) serve as promoters to 
drive the burst expression of long noncoding RNAs in 
pachytene spermatocytes in mice and other vertebrates 
[Davis et al., 2017]. Further, ERVs (mainly Class II ER-
VKs) can act as enhancers to drive germline genes, in-
cluding species-specific genes, contributing to species-
specific germline transcriptomes in the mouse and hu-
man germline [Sakashita et al., 2020]. These recent 
studies revealed positive functions of retrotransposons 
and the complex nature of TE regulation in male meiosis.

Importantly, meiosis is a key stage of LINE1 retrotrans-
position shown by a reporter transgenic mouse line in 
combination with a piRNA mutant line deficient for 
MOV10L1 [Newkirk et al., 2017]. In the absence of an 
intact piRNA pathway in Mov10l1−/− germ cells, LINE1 
mRNAs were expressed prior to meiosis, but LINE1 ret-
rotransposition was only detected in meiosis. This may be 
related to the unique chromatin states in meiosis. Anoth-
er intriguing aspect of meiotic chromatin states is the in-
tersection between DNA methylation and H3K9me2, 
which is present until zygotene spermatocytes emerge in 
meiotic prophase and suppress LINE1 in normal meiosis 
[Di Giacomo et al., 2013]. Using 2 DNA methylation-de-
ficient backgrounds, the Dnmt3L and Miwi2 mutant 
mice, H3K9me2 was shown to have been precociously 
lost from TEs prior to the zygotene stage. Furthermore, 
in these mutants, sites of TEs were ectopically selected for 
sites of meiotic recombination that take place in the lep-
totene stage [Zamudio et al., 2015]. Thereby, DNA meth-
ylation was proposed to be a mechanism to prevent the 
occurrence of erratic chromosomal events. Thus, in con-
sideration of common meiotic defects of pre-pachytene 
piRNA mutants, it would be intriguing to speculate that 
pre-pachytene piRNA protects the genomic integrity of 
TEs from developmental events in meiosis, and the host 
genome efficiently removes erratic chromosomal events 
by strict meiotic checkpoint mechanisms [Handel and 
Schimenti, 2010]. In addition, H3K9me3, which is medi-
ated by a histone methyltransferase SETDB1, is implicat-
ed in the suppression of a group of ERVs in male meiosis; 
Setdb1 deletion led to the mild depression of ERVs and is 
associated with defects in chromosome synapsis and mei-
otic sex chromosome inactivation [Hirota et al., 2018; 
Cheng et al., 2021].

Another notable feature of male meiosis is the tran-
sient reduction of DNA methylation (∼12–13 percent re-
duction in the genome), which was observed at the time 
of premeiotic DNA replication [Gaysinskaya et al., 2018]. 
This is due to the hemimethylated genome after premei-
otic DNA replication and the level of DNA methylation 

recovered at the spermatogonia level by the pachytene 
stage. This phenomenon appears to be related to the tran-
sient relaxation of LINE1 silencing [Soper et al., 2008; van 
der Heijden and Bortvin, 2009]. However, the physiolog-
ical function of this transient phenomenon remains a 
mystery.

Pachytene piRNAs and Post-transcriptional TE 
Silencing and Gene Regulation
Concurrent with monitoring of chromosome integrity 

by meiotic checkpoint, the completion of chromosome 
synapsis marks the beginning of the pachytene stage that 
expresses pachytene piRNAs, which suppress TEs post-
transcriptionally and regulated gene expression. Due to 
their abundance in testes, pachytene piRNAs were the 
first class of piRNAs initially discovered in 2006 [Aravin 
et al., 2006; Girard et al., 2006; Grivna et al., 2006; Lau et 
al., 2006]. Distinct from pre-pachytene piRNAs, which 
are mainly expressed TEs, pachytene piRNAs are mostly 
derived from genomic clusters that are less enriched with 
transposable elements (the content of TEs in pachytene 
piRNA clusters is about 20%; far below the genomic aver-
age) [Girard et al., 2006; Gan et al., 2011]. The expression 
of pachytene piRNA clusters is driven by a transcription 
factor A-MYB (MYBL1) [Li et al., 2013], which is a mas-
ter regulator of meiotic transcripts in males [Bolcun-Filas 
et al., 2011]. A-MYB also drives the expression of coding 
genes of piRNA pathway proteins, including MIWI (PI-
WIL1) [Li et al., 2013]. Thus, the feed-forward mecha-
nism underlies the robust expression of pachytene piR-
NAs. Further, A-MYB is required for the global establish-
ment of meiotic enhancers, including super-enhancers 
and ERV-driven enhancers [Maezawa et al., 2020; 
Sakashita et al., 2020]. Together, pachytene piRNA pro-
duction is linked to the establishment of meiotic tran-
scriptomes.

MIWI and MILI are 2 mouse PIWI proteins that par-
ticipate in the biogenesis of pachytene piRNA. MIWI is 
expressed specifically in mid-pachytene spermatocytes, 
reaching a high level in diplotene spermatocytes and 
becoming undetectable in step 3 round spermatids 
(Fig. 2) [Deng and Lin, 2002]. The global knockout of 
MIWI in mice causes spermatogenic arrest in step 4 
round spermatids [Deng and Lin, 2002] and the upreg-
ulation of LINE1 in both spermatocytes and round 
spermatids [Reuter et al., 2011]. A point mutation in 
MIWI’s slicer domain resulted in the upregulation of 
LINE1 without affecting MIWI protein abundance and 
primary piRNA biogenesis, indicating that the silencing 
of LINE1 relies on the slicer activity of MIWI [Reuter et 
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al., 2011]. On the other hand, MILI engages both in pre-
pachytene piRNA biogenesis and pachytene piRNA 
biogenesis, and MILI’s slicer activity is essential for si-
lencing of LINE1 in spermatocytes [De Fazio et al., 
2011]. In contrast with the Miwi−/− spermatids, neither 
LINE1 nor IAP is upregulated in Mili−/− spermatids, in-
dicating that MIWI, but not MILI, is critical for ret-
rotransposon silencing in spermatids [Di Giacomo et 
al., 2013].

While the ping-pong cycle is associated with the bio-
genesis of pre-pachytene piRNAs [Aravin et al., 2008], the 
biogenesis of pachytene piRNAs is not associated with the 
ping-pong cycle [Beyret et al., 2012; Iwasaki et al., 2015] 
(Fig. 3b). In spermatocytes, a Tudor protein RNF17 sup-
presses the ping-pong cycle; interestingly, the loss of 
RNF17 restarts the ping-pong cycle and generates more 
piRNAs that can be mapped to young transposons such 
as LINE1 [Wasik et al., 2015]. These LINE1 piRNAs con-
tain adenine (A) at position 10 from 5′ UTR, which is a 
characteristic of secondary piRNAs generated by the 
ping-pong cycle.

Although pachytene piRNA is independent of the 
ping-pong cycle, it is associated with phased piRNA pro-
duction. The poly(A) specific 3′-5′ exonuclease PNLDC1 
is required for precursor piRNA trimming in pachytene 
piRNA biogenesis and LINE1 silencing [Ding et al., 2017; 
Nishimura et al., 2018]. PNLDC1-dependent trimming is 
required for tail-to-head strings of phased precursor piR-
NAs and phased piRNA production in pachytene piRNA 
[Ding et al., 2017; Gainetdinov et al., 2018]. Thus, phased 
piRNA production is a common feature both in pre-
pachytene piRNA and pachytene piRNA biogenesis 
(Fig. 3b).

In addition, UHRF1, a multi-functional epigenetic 
regulator and DNMT1 cofactor, interacts with PIWI pro-
teins (such as MIWI, MILI) and regulates distinct aspects 
of DNA methylation and piRNAs [Dong et al., 2019]. The 
loss of Uhrf1 in differentiating spermatogonia (Stra8-Cre 
mediated) led to a reduction or mislocalization of PIWI 
proteins and derepression of some of the retrotranspo-
sons, suggesting UHRF1 may be involved in the piRNA 
pathway for regulating retrotransposons in the male 
germline. Strikingly, the pachytene piRNA populations 
were found to be decreased in Uhrf1 knockout testes 
[Dong et al., 2019]. UHRF1 changes its subnuclear local-
ization from the nucleus to the cytoplasm in the leptotene 
to pachytene stages, and UHRF1 interacts with PRMT5 
and colocalizes together in the nucleus of pachytene sper-
matocytes [Dong et al., 2019]. PRMT5 is essential in sper-
matogenesis and is translocated from the cytoplasm to 

the nucleolus prior to the pachytene stage [Wang et al., 
2015]. Thus, UHRF1 likely works together with PRMT5 
and potentially links transcriptional regulation in the nu-
cleus and post-transcriptional regulation in the cyto-
plasm.

The mystery of pachytene piRNA is the negative rep-
resentation of retrotransposons in the pachytene piR-
NA clusters. Studies in the past decade revealed that 
pachytene piRNA is critical for post-transcriptional 
gene regulation in late spermatogenesis. piRNA path-
ways regulate the degradation of mRNAs and lncRNAs 
post-transcriptionally through retrotransposon se-
quences within the piRNAs [Watanabe et al., 2015]. 
Further, MIWI and pachytene piRNA mediate cleavage 
of messenger RNA [Goh et al., 2015; Zhang et al., 2015]. 
Thus, mounting evidence established that pachytene 
piRNA regulates gene expression that is required for 
spermiogenesis.

Retrotransposon Silencing and piRNA Functions in 
Spermatids

After meiosis, 1 spermatocyte can develop into 4 round 
spermatids, which undergo nuclear elongation and chro-
matin reorganization before developing into spermato-
zoa [Rathke et al., 2014]. Of 3 PIWI proteins, MILI and 
MIWI are expressed in early round spermatids (Fig. 2). 
However, the loss of MIWI but not MILI leads to the up-
regulation of LINE1 in spermatids, indicating that MIWI 
is essential for the silence of LINE1 in spermatids, though 
MILI has less of an impact on LINE1 silencing [Deng and 
Lin, 2002; Di Giacomo et al., 2013]. The underlying mo-
lecular mechanism of retrotransposon silencing in sper-
matids remains unclear.

piRNA is critical in post-transcriptional gene regula-
tion and translation in haploid spermatids. Mael-null 
mutant testes with the 129 background possess low levels 
of piRNAs derived from MAEL-associated piRNA pre-
cursors and exhibit reduced translation of numerous 
spermatogenic mRNAs, including those encoding acro-
some and flagellum proteins [Castaneda et al., 2014]. A 
later study demonstrated the mechanisms underlying this 
process: function of MIWI/piRNA in the translation con-
trol of a subset of mRNA in mouse spermatids [Dai et al., 
2019]. Pachytene piRNA instructs massive mRNA elimi-
nation in elongating spermatids to prepare sperm [Gou 
et al., 2014]. Further, genes essential for sperm functions 
are regulated by one of the pachytene piRNA clusters, pi6 
piRNAs [Wu et al., 2020].
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Evolutionary Aspects of Retrotransposons in the 
Germline

piRNA is considered to be an innate defense mecha-
nism to cope with endogenous retrovirus integration. Us-
ing a Koala model, unspliced provirus transcripts were 
shown to be processed to piRNA to suppress integration 
of active retrovirus [Yu et al., 2019]. Thus, in the germ-
line, it is likely that piRNA immediately operates to safe-
guard the integrity of the genome from retrotransposon 
invasion before adaptive immunity develops [Haase and 
Macfarlan, 2019]. Over the course of evolution, the host 
genome also utilized retrotransposons, which acquire 
beneficial transcription factor binding sites and the inte-
gration of which confers reproductive fitness to drive spe-
cies-specific germline transcriptomes [Sakashita et al., 
2020]. Further, pachytene piRNA clusters are rapidly 
evolved and divergent, as shown in humans [Ozata et al., 
2020]; thus, acquiring new pachytene piRNA clusters 
confers reproductive fitness in terms of gene regulation. 
Further, there could be another layer of mechanisms to 
safeguard the integrity of the genome. Together, it is con-
ceivable that pachytene piRNAs and retrotransposon ex-
pressions are meiotic landmarks in the battle between ret-
rotransposons and the host genome, wherein the host ge-
nome likely exploits retrotransposons and pachytene 
piRNA for the sake of reproduction and evolution. An 
immediate response to retrovirus integration by piRNA 
could be followed by a latent response, which involves the 
Krüppel-associated box (KRAB)-Zinc Finger proteins 
(ZFPs). This family of proteins has coevolved with ERVs 
to suppress ERV expression as a consequence of an evo-

lutionary arms race between ERVs and the host genome 
[Ecco et al., 2016; Imbeault et al., 2017; Bruno et al., 2019; 
Senft and Macfarlan, 2021]. Thus, the multi-layered 
mechanisms may operate to precisely control the activi-
ties of retrotransposons in the germline.

Conclusion

The germline is a unique place where retrotransposons 
need to be activated for self-propagation. Retrotranspo-
sons are dynamically regulated in each stage of the male 
germline. In PGCs, histone modification-based mecha-
nisms account for TE silencing when the genome under-
goes epigenetic reprogramming and DNA demethyl-
ation. In prospermatogonia, pre-pachytene piRNAs sup-
press their targets at both transcriptional and 
posttranscriptional levels. In spermatogonia, LINE1 si-
lencing is mediated by a combination of DNA methyla-
tion, histone modifications, and piRNA pathways. Meio-
sis is the unique stage where retrotransposon activity 
changes, LINE retrotranspositions occur, and pachytene 
piRNAs start to suppress TEs and regulate gene expres-
sion.

The piRNA pathway is the key mechanism to silence 
retrotransposons in the germline, and various key regula-
tors have been recently identified. Loss of piRNA path-
way components resulted in spermatogenic defects, 
mainly at 2 stages: meiosis and spermiogenesis. The loss-
of-functions of genes required for pre-pachytene piRNA 
biogenesis (Mili, Miwi2, Tdrkh, Tdrd1, Tdrd9, Ddx4, 
Movl10l1, Mael, Asz1, and Pld6) and those required for 

Table 1. Recently discovered and representative factors against retrotransposons in the male germline

Name Function Biological phenotype Reference

SETDB1 H3K9 methylation Depletion of PGCs [Liu et al., 2014]
PRMT5 Arginine methylation of H2A/H4R3me2s Depletion of PGCs [Kim et al., 2014]
FANCD2 Arginine methylation of H2A/H4R3me2s Depletion of PGCs [Nie et al., 2020]
G9A H3K9 methylation Depletion of spermatogonia [Di Giacomo et al., 2014]
DNMT3L De novo DNA methyltransferase cofactor Meiotic arrest [Bourc’his and Bestor, 2004; Webster et al., 

2005; Kato et al., 2007]
SPOCD1 piRNA-directed de novo DNA methylation Meiotic arrest [Zoch et al., 2020]
TEX15 piRNA-directed de novo DNA methylation Meiotic arrest [Schopp et al., 2020; Yang et al., 2020]
MIWI2 piRNA biogenesis and piRNA directed de novo methylation Meiotic arrest [Carmell et al., 2007; Manakov et al., 2015]
MILI piRNA biogenesis Meiotic arrest [Aravin et al., 2007; De Fazio et al., 2011]
GPAT2 piRNA biogenesis Meiotic arrest [Shiromoto et al., 2013, 2019]
UHRF1 piRNA biogenesis, DNA methylation and histone modifications Meiotic arrest [Dong et al., 2019]
MIWI piRNA biogenesis Spermiogenic arrest [Reuter et al., 2011]
PNLDC1 piRNA biogenesis Spermiogenic arrest [Ding et al., 2017; Zhang et al., 2017]
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