Analyzing Natural Calamities Using Apache Hive

¹Sandeep Iddalgave, ²M.Tejashree, ³G.Nikhil, ⁴Dattu goud ¹Ass.professor, Department of IT, MLRIT, Hyderabad, India. ^{2,3,4} Final year IT, Department of IT, MLRIT, Hyderabad, India.

Abstrac-: Analysis of the severity of geographical events is the need of the hour. Using Apache hive in hadoop distributed file system (HDFS) environment, we will be analyzing various data recorded by the climate monitoring organization. Around the world various geographical events will be occurring, like: earthquakes, Tsunamis, landslides, volcanic eruptions and so on. To identify the amount of destruction or damage caused by these events, we will be developing hive queries.

Keyword- Bigdata, Apachehive

I.

INTRODUCTION

Consistently, land, organic, hydrological, and climatic elements deliver characteristic risks, which now and again result in cataclysmic events that can devastatingly affect biological systems and human social orders. Dangers can be geophysical (e.g. seismic tremors, cyclonic tempests), organic (e.g. pervasion), or created by a blend of various elements (e.g. surges, rapidly spreading fires, and so forth).Huge Data advancements can assume a part in:

- monitoring risks
- mitigating vulnerabilities; and
- Strengthening flexibility of groups.

Especially intriguing is the part of Big Data for identifying quakes, surges, sea tempests, and in addition guaging future event of such dangers.

Cataclysmic events are extraordinary and unforeseen wonders coming about because of regular procedures of the Earth that, ordinarily, cause human and financial misfortunes. Among these damaging occasions, tremors, waves, volcanic ejections, typhoons, tornadoes or surges emerge.

As of late, enormous measure of information are put away in all orders. Geosciences are not a special case. Large time arrangement or high determination satellite and airborne pictures are wellsprings of profitable data. Be that as it may, the learning extraction from such gigantic information can't generally be performed by utilizing standard factual procedures.

Powerful methodologies have been created inside the setting of huge information investigation. These methodologies can manage expansive datasets, thinking about all examples and estimations. With its quick advancement, mechanized machine learning techniques for separating applicable examples, superior registering or information representation are in effectbroadly, and effectively, connected to catastrophic events related information. For all the previously mentioned, we compassionately welcome the Scientific Community to add to this unique issue, by submitting novel and unique research tending to at least one of the accompanying themes, dependably with regards to enormous information:

- 1. New methodologies for cataclysmic events prior examples disclosure.
- 2. New methodologies for cataclysmic events expectation.
- 3. New methodologies for cataclysmic events information combination and incorporation.
- 4. New methodologies for cataclysmic events information representation from perceptions and models.
- 5. Case investigation portraying pertinent discoveries with clear enthusiasm to the Scientific Community. At long last, creators are urged to share codes and information so their examinations can be effortlessly reproducible and fill in as seed for future change.

II. METHODOLOGY

- a) Technologies used HDFS: Hadoop File System was created utilizing conveyed document framework plan. It is keep running on item equipment. Not at all like other disseminated frameworks, HDFSis exceptionally faulttolerant and outlined utilizing minimal effort equipment.
- b) HDFS holds huge measure of information and gives less demanding access. To store such enormous information, the documents are put away over different machines. These documents are put away in repetitive design to protect the framework from conceivable information misfortunes if there should be an occurrence of disappointment. HDFS additionally makes applications accessible to parallel preparing.

Highlights of HDFS

- It is appropriate for the disseminated stockpiling and preparing.
- Hadoop furnishes a charge interface to cooperate with HDFS.
- The worked in servers of namenode and datanode help clients to effortlessly check the status of bunch.
- Streaming access to record framework information.
- HDFS gives record consents and confirmation.

HDFS Architecture: Given beneath is the design of a Hadoop File System.

HDFS takes after the ace slave engineering and it has the accompanying components.

Namenode

The namenode is the item equipment that contains the GNU/Linux working framework and the namenode programming. It is a product that can be keep running on ware equipment. The framework having the namenode goes about as the ace server and it does the accompanying undertakings:Manages the record framework namespace. Regulates customer's entrance to records.It likewise executes document framework operations, for example, renaming, shutting, and opening records and catalogs.

Datanode

The datanode is an item equipment having the GNU/Linux working framework and datanode programming. For each hub (Commodity equipment/System) in a group, there will be a datanode. These hubs deal with the information stockpiling of their framework.

Datanodes perform read-compose operations on the record frameworks, according to customer ask.

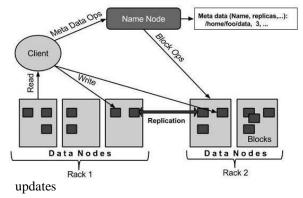
• They likewise perform operations, for example, piece creation, cancellation, and replication as indicated by the guidelines of the namenode.

Square: By and large the client information is put away in the records of HDFS. The document in a record framework will be partitioned into at least one fragments and additionally put away in singular information hubs. These document sections are called as squares. At the end of the day, the base measure of information that HDFS can read or compose is known as a Block. The default square size is 64MB, however it can be expanded according to the need to change in HDFS setup.

Objectives of HDFS

Fault discovery and recuperation: Since HDFS incorporates an expansive number of item equipment, disappointment of parts is visit. Subsequently HDFS ought to have systems for speedy and programmed blame recognition and recuperation.Huge datasets: HDFS ought to have many hubs per group to deal with the applications having gigantic datasets.Hardware at information: An asked for errand should be possible productively, when the calculation happens close to the information. Particularly where immense datasets are included, it lessens the system movement and builds the throughput.

III. HIVE


Hive is an information stockroom framework device to process organized information in Hadoop. It lives over Hadoop to compress Big Data, and makes questioning and investigating simple. This is a concise instructional exercise that gives an acquaintance on how with utilize Apache Hive HiveQL with Hadoop Distributed File System. This instructional exercise can be your initial move towards turning into an effective Hadoop Developer with Hive

Hive is an information distribution center framework apparatus to process organized information in Hadoop. It dwells over Hadoop to abridge Big Data, and makes questioning and investigating simple.

At first Hive was created by Facebook, later the Apache Software Foundation took it up and created it further as an open source under the name Apache Hive. It is utilized by various organizations. For instance, Amazon utilizes it in Amazon Elastic MapReduce.

Hive isn't

- A outline for OnLine Transaction Processing (OLTP)
- A dialect for continuous inquiries and column level HDFS Architecture

- Highlights of Hive
- It stores diagram in a database and handled information into HDFS.
- It is intended for OLAP.
- It gives SQL compose dialect to questioning called HiveQL or HQL.
- It is natural, quick, versatile, and extensible.
- Architecture of HiveThe following segment outline delineates the design of Hive

b) Implementation:

• First we downloaded and installed winscp and putty in our working system.

Then collected some datasets regarding landslides and stored the dataset in the form of csv file.

We stored that dataset in our folder in winscp by dragging it to the local file.

And implemented some queries to upload the dataset into the cluster like:

We used Hadoop fs -copyFromLocal dataset/catalog.csv

created a database by the command create database

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING A UNIT OF 120R 821 | P a g e

naturalcalamitiesdb

And created table by using the command

Sample Queries:

- Hive>create table naturalcalamities(id int, date date, time int, country_name string, country_code string, state string, population longint, city string, distance float, location_description string, latitude float, longitude float, geolocation double, hazard_type string, landslide_type string, landslide_size string,trigger string, strom_name string, injuries int, fatalities int, source_name string, source_link string)row format delimited fields terminated by ',';
- to upload the dataset we used:
- hive>load data inpath '/catalog.csv' overwrite into table naturalcalamities.
- And at last developed some hive queries to retrieve the data form the datasets

hive≻

> select state, count(state) from landslide where country name="United States" group by state;

.ve) select state,trigger,fatalities from landslide where country name="United States";

Aguada 1		
Ahuachapán	2	
Alabama 9		
Alajuela	20	
Alta Verapaz	3	
Amapá 1		
Ancash 5		
Antioquia	19	
Aragua 1		
Arizona 16		
Arkansas	6	
Artemisa Provinc	ce	1
Artibonite	3	
Atlántico Norte	1	
Azuay 2		
Baja California	4	
Baja California	Sur	1
Baja Verapaz	1	
Bocas del Toro	7	
Bolívar 1		
Borough of Arima	a	1
Boyacá 3		
Cabañas 1		
Caldas 10		
California	57	
Caquetá 2		
Carchi 2		
Cartago 6		
Cauca 5		
Cayo 1		

Alabama 9	
Arizona 16	
Arkansas	6
California	57
Colorado	108
Connecticut	6
Florida 2	
Georgia 11	
Idaho 37	
Illinois	9
Indiana 5	
Iowa 11	
Kansas 2	
Kentucky	124
Maine 2	
Maryland	8
Massachusetts	10
Michigan	1
Minnesota	23
Mississippi	2
Missouri	9
Montana 1	
Nevada 7	
New Hampshire	7
New Jersey	11
New Mexico	11
New York	31
North Carolina	52
Ohio 61	
Oklahoma	4
Oregon 1	
Pennsylvania	97
South Carolina	
South Dakota	2
Tennessee	39
Texas 4	
Utah 65	
Vermont 7	

id	date	time	continent	country_n	country_c	state/prov	populatio	city/town	distance
34	3/2/2007	Night	NA	United Sta	US	Virginia	16000	Cherry Hil	3.40765
42	*****		NA	United Sta	US	Ohio	17288	New Phila	3.3352
56	4/6/2007		NA	United Sta	US	Pennsylva	15930	Wilkinsbu	2.9197
59	*****		NA	Canada	CA	Quebec	42786	Château	2.9868
61	*****		NA	United Sta	US	Kentucky	6903	Pikeville	5.6654
64	*****		NA	United Sta	US	Kentucky	6903	Pikeville	0.2371
67	*****		NA	United Sta	US	South Dak	2540	Dakota Du	2.4803
77	*****		SA	Colombia	со	Risaralda	440118	Pereira	0.6202
105	*****		SA	Ecuador	EC	Zamora-C	15276	Zamora	0.4771
106	*****		SA	Ecuador	EC	Loja	117796	Loja	0.3564
107	*****		SA	Ecuador	EC	Pichincha	5114	Sangolqu	33.9460
109	7/1/2007		NA	United Sta	US	Texas	42409	Haltom Ci	0.0366
115	7/4/2007		NA	Mexico	MX	Veracruz-	1947	Laguna Ch	9.5100
119	7/8/2007		NA	Canada	CA	Ontario	812129	Ottawa	1.7475
124	*****	Night	NA	Dominica	DO	Distrito N	13456	San Carlos	1.7029
138	*****		NA	United Sta	US	Texas	175396	Grand Pra	5.6693
165	8/9/2007		NA	Guatemal	GT	Guatemal	47247	San JosÃ@	4.7438
174	*****		NA	Jamaica	JM	Portland	14400	Port Anto	7.7902
185	*****		NA	United Sta	US	Colorado	2475	Meeker	10.8794

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING A UNIT OF 120R 822 | P a g e

location_cl	atitude	longitude	geolocatio	hazard_ty	landslide	landslide	trigger	storm_na	injuries	fatalities	
Unknown	38.6009	-77.2682	(38.600900	Landslide	Landslide	Small	Rain				
	40.5175	-81.4305	(40.517499	Landslide	Landslide	Small	Rain				
Urban are	40.4377	-79.916	(40.4377, -	Landslide	Landslide	Small	Rain				
Above riv	45.3226	-73.7771	(45.322600	Landslide	Riverbank	Small	Rain				
Below roa	37.4325	-82.4931	(37.432499	Landslide	Landslide	Small	Downpou	r		0	J
	37.4814	-82.5186	(37.481400	Landslide	Landslide	Small	Rain				
	42.4941	-96.4576	(42.494100	Landslide	Landslide	Small	Rain				
	4.8081	-75.6941	(4.8080999	Landslide	Mudslide	Large	Rain			13	8
	-4.065	-78.951	(-4.065000	Landslide	Landslide	Medium	Downpou	r			
	-3.99	-79.205	(-3.99, -79	Landslide	Landslide	Medium	Downpou	r			
	-0.356	-78.148	(-0.355999	Landslide	Landslide	Medium	Downpou	r			
	32.7995	-97.2688	(32.799500	Landslide	Landslide	Medium	Rain				
	18.5369	-96.8229	(18.536899	Landslide	Landslide	Medium	Rain			7	1
	45.4257	-75.6896	(45.425699	Landslide	Landslide	Small	Unknown				
	18.4757	-69.914	(18.4757, -	Landslide	Landslide	Small	Unknown				
	32.7883	-97.0317	(32.7883, -	Landslide	Landslide	Small	Rain				
	14.5667	-90.45	(14.566700	Landslide	Mudslide	Medium	Rain			5	5

	NULL	Afterno			United	States		Nevada	24085	N
	23.6028			36.2423	-115.54		"(36.24	23		54
	Landslid	le	Debris f	low	Medium	21 NULL	NULL			
5351	NULL	Afterno		NA	United	States		Nevada	36441	N
						"(36.25				64
	Landslid	ie	Debris f	low	Medium	NULL	NULL			
5385	NULL	23:30:0			United	States		Utah	9555	N
	1.96154		40.4679	-111.76		"(40.46	79		65)"	L
andslide		Mudslid		Medium	NULL	NULL				
5387	NULL	10:00:00			United	States		Pennsyl	vania	
						States				
	0.57038			-112.438	89	"(42.87)	29000000	00001		43
89)"	Landslid	le	Mudslide		Medium	NULL	NULL			
5390	NULL	Morning		United 3	States	NULL US	Utah	2129	NULL	2
2.93764 39.4714		-111.154	16	"(39.47	14000000				L	
						NULL				
5397	NULL		NA	United 3	States		Tenness	ee	12714	N
	5.71688		35.2865			" (35.28	64999999	99997		78
89999999	99999) "	Landsli	de	Mudslide		Small States 71	NULL	NULL		0
5400	NULL	18:00:00			United	States		Californ	nia	3
552	NULL	1.82682		34.0588	-116.56		"(34.05	879999999	99998	
-116.561		Landsli	de	Mudslide		Medium	NULL	NULL		0
						MX				
						"(20.50)				
69999999	99993) "	Landsli	de	Landslid	de	Medium	NULL	NULL		3
5405	NULL		NA	Mexico	MX	Veracru: 060000000	z-Llave	15800	NULL	2
.85382		19.7906	-97.2428		"(19.79	06000000	00001	-97.242	2800000	00
0003)"	Landslid	ie	Landslid	ie	Medium	NULL	NULL			
5406	NULL		NA	Mexico	MX	Veracru	z-Llave	3198	NULL	3
.7316		19.8413	-96.8005		"(19.84		-96.80		Landsl	id
	Landslid	ie	Medium	NULL	NULL					
5408	NULL		NA	Costa R	ica		Alajuel	a		N
TTT T	4 97422		10 1101	-94 214		11/10 11	01	-94 21	1500000	00

	Mudslide	2	1			
Aguada	Landsli	ie	1			
Ahuacha	pán	Landslid	ie	1		
Ahuachap	pán	Mudslide	2	1		
Alabama	Landsli	de	7			
Alabama	Mudslide	2	2			
Alajuela	a	Landslid	ie	14		
Alajuela	a	Mudslide	2	4		
		Rockfall		2		
Alta Ver	rapaz	Landslid	ie	2		
Alta Ver	rapaz	Mudslide	2	1		
Amapá	Landsli	de	1			
	Complex					
	Landsli		2			
	Mudslide		2			
		Complex				
Antioqu	ia	Landslid	ie	15		
Antioqu	ia	Mudslide	2	3		
_		de	1			
	Complex					
		flow				
	Landsli		4			
	Mudslide		5			
		Landslid		5		
		Mudslide		1		
		ce			1	
		Landslid		1		
		Mudslide		2		
		Complex				
-		de				
_		1				
-		Landslid		2		
Baja Ca	lifornia	Mudslide	2	2		

IV. CONCLUSION

Various geographical events like landslides, tsunamis, earthquakes and so on will be taking place around the world and the climate monitoring organisation will be recording the destructions/damages caused. The Analysis made by running hive queries on the datasets provided helps to reduce damages caused to the lives in those regions. We can also predict the future occurrence of such incidents based on the date and time recorded of the previous occurrences.

V. REFERENCES

- [1]. Challenges and opportunities with Big Data, http://cra.org/ccc/wpcontent/uploads/sites/2/2015/05/bigdatawhit epaper.pdf
- [2]. Oracle: Big Data for Enterprise, June 201http://www.oracle.com/us/products/datab ase/bigdata-forenterprise-519135.pdf
- [3]. Marta C. González, César A. Hidalgo, and Albert-László Barabási. 5 June 2008 Understanding individual human mobility patterns. Nature 453, 779-782.
- [4]. James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, and Angela Hung Byers. May 2011 Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.
- [5]. Yuki Noguchi. Nov. 30, 2011 The Search for Analysts to Make Sense of Big Data. National Public Radio.
- [6]. Data set is taken from edureka http://www.edureka.co/my-course/big-data- and-hadoop