1. Using n rectangles and the limit process, find the area under the given curve.

$$
y=3 x-x^{2} \text { on }[1,3]
$$

Sol: The thickness of each rectangle is $\Delta x=\frac{3-1}{n}=\frac{2}{n}$. We choose $x_{i}=1+\frac{2 i}{n}$ so the height of the $i^{\text {th }}$ rectangles is $h_{i}=f\left(x_{i}\right)=3\left(1+\frac{2 i}{n}\right)-\left(1+\frac{2 i}{n}\right)^{2}$. Next, the area of this rectangle is $A_{i}=f\left(x_{i}\right) \Delta x=\left[3\left(1+\frac{2 i}{n}\right)-\left(1+\frac{2 i}{n}\right)^{2}\right] \frac{2}{n}$
Thus,

$$
\begin{aligned}
A & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[3\left(1+\frac{2 i}{n}\right)-\left(1+\frac{2 i}{n}\right)^{2}\right] \frac{2}{n} \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{4}{n}+\frac{4 i}{n^{2}}-\frac{8 i^{2}}{n^{3}}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{4}{n} \cdot n+\frac{4}{n^{2}} \cdot \frac{n(n+1)}{2}-\frac{8}{n^{3}} \cdot \frac{n(n+1)(2 n+1)}{6}\right) \\
& =4+2-\frac{8}{3}=\frac{10}{3}
\end{aligned}
$$

2. Find the area bound by the following curves

$$
y=x^{2} \quad y=2-x, \quad x=0, \quad x, y \geq 0 .
$$

We sketch the curves to find the region of interest (the one on the left). The intersection points between the two curves are

$$
x^{2}=2-x \Rightarrow x^{2}+x-2=0 \Rightarrow(x+2)(x-1)=0 \Rightarrow x=1,-2
$$

and only $x=1$ is applicable.

The area is then given by

$$
A=\int_{0}^{1}\left(2-x-x^{2}\right) d x=2 x-\frac{x^{2}}{2}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=2-\frac{1}{2}-\frac{1}{3}=\frac{7}{6}
$$

Often one mistakes the region and calculates the other region (the one one the right) so we'll do it here. Using vertical rectangles, we'll need two integrals so

$$
\begin{aligned}
A & =\int_{0}^{1} x^{2} d x+\int_{1}^{2}(2-x) d x \\
& =\left.\frac{x^{3}}{3}\right|_{0} ^{1}+\left.\left(2 x-\frac{x^{2}}{2}\right)\right|_{1} ^{2} \\
& =1 / 3+((4-2)-(2-1 / 2))=5 / 6
\end{aligned}
$$

Using horizontal rectangle we note the intersection point of $x=1$ which gives $y=1$ and so the area is

$$
A=\int_{0}^{1}(2-y-\sqrt{y}) d y=2 y-\frac{y^{2}}{2}-\left.\frac{2}{3} y^{3 / 2}\right|_{0} ^{1}=5 / 6
$$

3. Evaluate the following

$$
\begin{aligned}
& \text { (i) } \frac{d}{d x} \int_{1}^{x} \sin \left(t^{2}\right) d t=\sin \left(x^{2}\right) \\
& \text { (ii) } \begin{aligned}
\frac{d}{d x} \int_{x}^{x^{2}} \sqrt{1+t^{2}} d t & =\frac{d}{d x} \int_{x}^{0} \sqrt{1+t^{2}} d t+\frac{d}{d x} \int_{0}^{x^{2}} \sqrt{1+t^{2}} d t \\
& =-\frac{d}{d x} \int_{0}^{x} \sqrt{1+t^{2}} d t+\frac{d}{d x} \int_{0}^{x^{2}} \sqrt{1+t^{2}} d t \\
& =-\sqrt{1+x^{2}}+\sqrt{1+\left(x^{2}\right)^{2}} \cdot 2 x
\end{aligned} \text {. }
\end{aligned}
$$

4. Find the following limits
(i) $\lim _{x \rightarrow \infty} \frac{e^{x}-1}{e^{x}+1}$

Soln: Applying the limit we see the form " $\frac{\infty^{\prime \prime}}{\infty}$ so using L'H we get

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{e^{x}}=1
$$

(ii) $\lim _{x \rightarrow 0^{+}} x \ln x$

Soln: Applying the limit we see the form " $0 \cdot \infty$ " so we must put the limit in proper form. Here we consider

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\frac{" \infty^{\prime \prime}}{\infty} \text { so L'H gives } \lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{\frac{-1}{x^{2}}}=-\lim _{x \rightarrow 0^{+}} x=0
$$

and thus

$$
\lim _{x \rightarrow 0^{+}} x \ln x=0
$$

(iii) $\lim _{x \rightarrow 0^{+}} x^{x}$

Soln: Applying the limit we see the form " 0 " " so we must put the limit in proper form. Here we consider

$$
x^{x}=e^{\ln x^{x}}=e^{x \ln x}
$$

Since the limit of

$$
\begin{gathered}
\lim _{x \rightarrow 0^{+}} x \ln x=0(\text { from (i)) then } \\
\lim _{x \rightarrow 0^{+}} x^{x}=e^{0}=1
\end{gathered}
$$

5. Evaluate the following indefinite integrals
(i) $\int \sec ^{2} x \tan x d x$

Let $u=\sec x$ so $d u=\sec x \tan x d x$ and the integral becomes

$$
\int u d u=\frac{u^{2}}{2}+c=\frac{\sec ^{2} x}{2}+c
$$

(ii) $\int \frac{e^{1 / x}}{x^{2}} d x$

Let $u=\frac{1}{x}$ so $d u=-\frac{1}{x^{2}} d x$ and the integral becomes

$$
\int-e^{u} d u=-e^{u}+c=-e^{1 / x}+c
$$

(iii) $\int \frac{x}{x^{2}+1} d x$

Let $u=x^{2}+1$ so $d u=2 x d x$ and the integral becomes

$$
\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+c=\frac{1}{2} \ln \left|x^{2}+1\right|+c
$$

(iv) $\int_{1}^{5} x \sqrt{x-1} d x$

Let $u=x-1$ so $d u=d x$ and the limits

$$
x=1 \Rightarrow u=0 \text { and } x=5 \Rightarrow u=4
$$

and the integral becomes

$$
\int_{0}^{4}(u+1) \sqrt{u} d u=\int_{0}^{4} u^{3 / 2}+u^{1 / 2} d u=\frac{2}{5} u^{5 / 2}+\left.\frac{2}{3} u^{3 / 2}\right|_{0} ^{4}=\frac{64}{5}+\frac{16}{3}=\frac{272}{15}
$$

(v) $\int_{0}^{\pi / 4} \sin x \cos x d x$

Let $u=\sin x$ so $d u=\cos x d x$ and the limits

$$
x=0 \Rightarrow u=0 \text { and } x=\pi / 4 \Rightarrow u=\sqrt{2} / 2
$$

and the integral becomes

$$
\int_{0}^{\sqrt{2} / 2} u d u=\left.\frac{u^{2}}{2}\right|_{0} ^{\sqrt{2 / 2}}=\frac{1}{4}
$$

(vi) $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x$

Let $x=2 u$ so $d x=2 d u$ and the limits

$$
x=0 \Rightarrow u=0 \text { and } x=1 \Rightarrow u=1 / 2
$$

and the integral becomes

$$
\frac{2}{2} \int_{0}^{1 / 2} \frac{1}{\sqrt{1-u^{2}}} d u=\left.\sin ^{-1} u\right|_{0} ^{1 / 2}=\sin ^{-1} \frac{1}{2}=\frac{\pi}{6}
$$

