

INFORMATION TECHNOLOGY UNIVERSITY

- particular vulnerability.
- sufficient conditions to guarantee resilient distributed consensus in heterogeneous networks.

Motivation **Resilient Consensus** Improving Robustness in Sparse Networks **Network Model and Problem Formulation** • Multi-agent System → Undirected Graph • A typical way of improving structural robustness in networks is by strategically adding edges. Edge set \rightarrow Communication Vertex Set \rightarrow Robots, Sensors link (\mathcal{V}) Different types of nodes are represented by different colors. They share their states and color classes with each other. 3 – connected 4 – connected 2 – connected An attacker compromises nodes of the by exploiting a particular same type vulnerability. Redundancy • What can be alternate • Two types of nodes: approaches, especially Hardening Normal Nodes in sparse networks? Diversity Adversarial Nodes Threat Scope **Diversification** can improve structural • F-Total : At most F adversarial nodes of the robustness in sparse heterogeneous same color in the overall network. networks without adding extra links. • F-Local : At most F adversarial nodes of the same color in the neighborhood of a node.

Leveraging Diversity for Resilient Consensus in Sparse Networks

Faiq Ghawash¹ and Waseem Abbas^{1,2} ¹Information Technology University, ²Vanderbilt University (faiq.ghawash@itu.edu.pk, waseem.abbas@vanderbilt.edu)

Abstract

• We propose an alternative way of improving network's robustness by considering heterogeneity of nodes. Nodes in a network can be of different types having disjoint sets of vulnerabilities. Thus, an attacker can only compromise a particular type of nodes by exploiting a

• We show that, by such a diversification of nodes, attacker's ability to change the underlying network structure is significantly reduced. Consequently, even a sparse network with heterogeneous nodes can exhibit the properties of a structurally robust network.

• Using these ideas, we propose a distributed control policy that utilizes heterogeneity in the network to achieve resilient consensus in adversarial environment. By extending the notion of (r, s)-robustness to incorporate the diversity of nodes, we provide necessary and

Objective : Resilient Consensus

- Agreement : Asymptotic convergence of normal nodes' states to a common value .
- Safety : State of every normal node is within the interval defined by the maximum and minimum of the initial values

Network Robustness with Coloring

r-valid node

A node $v \in S$ having at least rmonochromatic or two distinct color neighbours outside of S .

(r, s)-robustness with coloring

Let r, s > 1, and S_1 and S_2 be non-empty, disjoint subsets of \mathcal{V} . Let $\mathcal{X}_r^{S_1}$ and $\mathcal{X}_r^{S_1}$ be sets of r-valid nodes in S_1 and S_2 respectively. A graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ is (r, s)-robust with coloring if at least one is always satisfied:

(i)
$$|\mathcal{X}_{r}^{S_{1}}| = |S_{1}|$$

(ii) $|\mathcal{X}_{r}^{S_{2}}| = |S_{2}|$
(iii) $(\mathcal{X}_{r}^{S_{1}} \cup \mathcal{X}_{r}^{S_{2}})$ is polychromatic
(iv) $(\mathcal{X}_{r}^{S_{1}} \cup \mathcal{X}_{r}^{S_{2}})$ is monochromatic
and $|\mathcal{X}_{r}^{S_{1}} \cup \mathcal{X}_{r}^{S_{2}}| \ge s$
blue nodes
blue nodes

 \mathcal{X}_{S_2}

di-chromatic

• \mathcal{X}_{S_2}

No.of blue nodes should be at least \overline{s}

Update Rule

where

\mathcal{D}_i

Theorem. Let $\mathcal{G}(\mathcal{V}, \mathcal{E})$ be a colored network, in which normal nodes follow RCP-C. Then, • F -total model: resilient asymptotic consensus is achieved if and only if the underlying graph topology is (F + 1, F + 1)robust with colors. • F -local model: resilient asymptotic consensus is achieved if the graph topology is (2F + 1)-robust with colors.

VANDERBILT JNIVERSITY

$$\mathcal{R}_{i}(t) = \overline{\mathcal{R}_{i}}(t) \cup \frac{\mathcal{R}_{i}(t)}{\sqrt{\mathcal{R}_{i}}(t)} \cup \frac{\mathcal{R}_{i}(t)}{\sqrt{\mathcal{R}_{i}}(t)} \setminus \frac{V_{m}^{i}(t)}{\sqrt{\mathcal{R}_{m}}(t)}$$

