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Introduction 

There are a number of variations of the simple, and thus approximate, method of analyzing 
slope stability known generically as the method of slices (or columns in 3D).  The simplest of 
these, like the Ordinary Method of Slices (OMS), neglect side forces and define the factor of 
safety as the sum of the resisting forces divided by the sum of the driving forces.  In 3D the 
OMS becomes the Ordinary Method of Columns (OMC). Then there are limit equilibrium 
methods, in which the factor of safety is defined as the number which, when used to factor the 
shear strengths, brings the driving and resisting forces into equilibrium.  Limit equilibrium 
methods then fall into two classes, those like Bishop’s Simplified Method, that do not fully 
satisfy both force and moment equilibrium and those, such as the Morgenstern and Price 
(1965) and Spencer (1967) methods, which do.  But all of these methods use similar procedures 
to calculate the normal and shear stresses acting on the base of each slice (or column in a 3D 
analysis). This paper examines two alternate ways of accommodating the presence of water 
and pore pressures in computing the normal force on the base of a slice and thus the shear 
strength of frictional materials.  That discussion leads to comments on how best to include 
seepage forces and pond pressures in these analyses. 

 

Calculation of the Normal Effective Stress on the Base of a Slice 

The classic way to compute the normal force or pressure on the base of a slice is shown in 
Figure 1.  In order to make the impact of pore pressures clearer, this figure shows a slope that is 
completely submerged with a horizontal water surface located above the top of the slice. This is 
a hydrostatic condition.  Common-sense suggests that the height of this water surface above 
the top of the slice should not matter because it will only increase the pore pressure at the 
center of the base of the slice and not the effective stresses.  In this figure the “total weight of 
the slice” includes both the total weight of the slice itself and the weight of the slice of water 
above it.  The weight of the water must be included because the full depth of water will be 
accounted for in any normal calculation of the pore pressure.  But care should be taken in 



subsequent calculations not to, for instance, apply a seismic coefficient to that full total weight, 
as was done in some early computer programs. 

 

Figure 1 – Hydrostatic condition 

 

The reaction normal to the base of the slice, R, is equal to the sum of the normal effective force 
and the water force acting on the base of the slice. If now we switch to stresses, the normal 
effective stress on the base of the slice is conventionally calculated as shown in Equation 1, 
where σv’ is the normal effective stress, u is the pore pressure, equal to γwzw, where γw is the 
unit weight of water and the other terms are as shown in Figure 1. 
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However, as pointed out, for instance, by Whitman and Bailey (1967) and Duncan, Wright and 

Brandon (2014), this expression can lead to the calculation of negative normal forces when the 

angle of inclination of the base of the slice and/or the pore pressure are large.  Duncan, Wright 

and Brandon provide a worked example to demonstrate this on their page 66.  Both these sets 

of authors, and others, have pointed to this as a limitation of the OMS but it is equally true of 

all methods of analysis that use this expression.  It just becomes more apparent in the OMS and 

it is obscured in other methods because of the way the factor of safety is defined and use of 

arbitrary interslice forces. 

Both Whitman and Bailey and Duncan, Wright and Brandon, and others cited by them, suggest 
a workaround or alternate equation for the OMS in which only the buoyant unit weight of the 
slice is considered.  The equation for the effective normal stress on the base of the slice then 
becomes as shown in Equation 2: 
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It may be seen that the pore pressure term is now reduced by a factor of cos2α , which will 
become increasingly small as the angle of inclination of the base of the slice, α, increases.  This 
prevents the calculation of negative normal effective stresses on the base of the slices and 
provides results using the OMS that are closer to those obtained from limit equilibrium 
methods. Therefore, it would seem to make sense to use buoyant unit weights in conjunction 
with the OMS, but that leaves two questions hanging.  One question is which of these 
expression is “more correct” and the other is, if Equation 2 is the better answer for the OMS, 
would it not also be better in limit equilibrium methods? 

The answer to the first question is simple.  Equation 2 is more correct.  In the first place it 
provides an answer that is consistent with common-sense.  The normal effective stress on the 
base of the slice should only be a function of the buoyant unit weight of the slice itself and 
should not be a function of the elevation of any pond above it.  The second reason is that there 
is a flaw in the development of Equation 1.  Water is a fluid and fluid pressures act in all 
directions.  You cannot resolve a fluid pressure or any forces derived from them into 
components. It is in doing that that the two cosα terms get cancelled out in Equation 1.   

The answer to the second question is more complex.  It might well be “better” in some sense to 
use buoyant unit weights in limit equilibrium analyses also, but for most problems it may not 
make much difference, and there is accumulated experience that has been developed using 
these methods with total unit weights.  Application of the pore pressures normal to the bases 
of the slices in conventional limit equilibrium analyses also gives the impression that this 
accounts for seepage forces in non-hydrostatic conditions.  However, as explained in the next 
section this is not correct.  The seepage forces that one assumes might be applied by using total 
unit weights and specifying the pore pressures along the slip surface do not actually make their 
way into the analysis.  Thus, it is an open question whether or not it might be better to use 
buoyant unit weights and omit the pore pressures on the bases of the slices in limit equilibrium 
analyses. 

In the case of non-hydrostatic conditions, as shown in Figure 2, any seepage forces in the 
vertical direction have to be added or subtracted to the weight of the slice computed using 
buoyant unit weights because the pore pressure at the base of the slice is no longer equal to 
γwzw.  This difference may not be large. It can be approximately calculated as γwzwsin2θ so that 
the pore pressure u is then given by γwzwcos2θ, when the slope of the phreatic surface, θ, is 
small, but it becomes larger as θ increases and should then probably be computed from a 
flownet or a numerical analysis.  The vertical seepage force can then be calculated as, for 
instance, explained by Lambe and Whitman (1969) but in practice it might be more convenient 
to compute what we might call the “buoyant weight adjusted for seepage forces” by using the 
total unit weight and then subtracting the vertical water pressure that acts on the base of the 



slice.  This procedure can also be used for cases like that shown in Figure 1 when there is water 
above the slice.  Then the vertical water pressure on the top of the slice should be added and 
the vertical water pressure on the bottom of the slice should be subtracted from the weight of 
the slice calculated using total unit weights.  But all this should be done before calculating the 
component of the weight of the slice that acts normal to the base of the slice.  Either of these 
approaches is relatively simple to apply and is recommended for use with the OMS.  Again, it is 
unclear what the effect will be and whether it is worth changing the traditional approach of just 
using the total unit weights and the pore pressures at the bases of the slices in limit equilibrium 
methods. 

 

 

 

Figure 2 – Non-hydrostatic condition 

 

Seepage Forces 

The assertion made above that the seepage forces that one assumes might be applied by using 

total unit weights and specifying the pore pressures along the slip surface in non-hydrostatic 

conditions do not actually make their way into limit equilibrium analyses can easily be checked 

by running an analysis of a cohesive slope with varying phreatic surfaces.  However steep the 

phreatic surface, it will make no difference to the computed factor of safety in a standard limit 

equilibrium analysis.  The reason that a slope in which all the strengths are specified as fixed 

quantities such as cohesions or undrained shear strengths must be used is that the strength of 



frictional materials will vary with the normal effective stress, so that changing the phreatic 

surface will make a difference to the shear strengths, but it does not make a difference to the 

limit equilibrium problem. The writer and his then colleagues learnt this the hard way some 

years ago by trying to included excess pore pressures generated by earthquake loading in the 

second stage of a two stage analysis.  Once the programming was completed we found that it 

made no difference to the calculated factor of safety! 

This problem related to seepage forces was noted by King (1989) and is most simply explained 

by saying that if the seepage forces are pictured as boundary water pressures, the 

corresponding forces will be applied at the center of the base of each slice and they make no 

difference to the standard equations of equilibrium.  They make no difference to the moment 

because the moment arm is zero and they are not included in the solution for force equilibrium 

parallel to the base of the slice. They make no overall difference to force equilibrium normal to 

the base of the slice because the force due to the weight of the slice is fixed and increasing the 

pore pressure simply reduces the effective stress, which may change the calculated shear 

strength, but doesn’t impact the solution of the equations of equilibrium. King suggested a 

solution which involved calculating the distributed seepage forces and applying them at the 

appropriate height in each slice, but this is a little unwieldy and requires a companion seepage 

analysis, so that his proposed solution has never caught on. 

In the OMS, however, it is easy to specify the seepage forces as horizontally applied loads on 

each slice, as shown in Figure 2.  Note that the seepage forces in the vertical direction have 

already been taken into account as discussed above. The horizontal seepage forces could be 

applied over the full height of the portion of each slice that is below the phreatic surface, as 

shown in Figure 2, or, since the bulk of these forces will cancel out over the entire potential 

sliding mass, only the shaded portion acting on the base of the slide need be applied.  Thus the 

seepage forces are in fact being applied as boundary forces. The conventional wisdom is that 

one either uses buoyant unit weights and distributed seepage forces or total unit weights and 

boundary pressures, but that only applies to vertical flow as in the example given by Lambe and 

Whitman (1969) on their page 262.  In this case where the seepage forces are applied 

horizontally it does not matter whether total or buoyant unit weights have been used to 

compute the normal forces on the potential slip surface as they are separate calculations. If the 

forces corresponding to the shaded portion of the pressure distribution are then added 

vectorially, they will act in a direction that corresponds to the average direction of the seepage 

forces obtained from a flownet or numerical seepage analysis. 

In the case where there is a pond at the bottom of the slope, the seepage forces should be 

applied to both the bases of the slices that are coming up at the toe of the potential slide and to 

the tops of the slices that are below water, as shown in Figure 3. 



 

Figure 3 – Seepage Forces with Pond 

In Figure 3 all the seepage forces have been set back outside the potential slip surface for 

clarity, but they should be applied as forces acting at the center of the base or top of the 

relevant slice.  These are “active” forces that should be added to or subtracted from the sum of 

the driving forces in the denominator of the equation for the factor of safety in the OMS or the 

OMC. In the hydrostatic case, whether the water surface runs through the potential slide or is 

located above it, all the seepage forces will of course cancel.  

 

Pond Pressures 

The fact that in Figure 3 a horizontal loading is applied to the tops of the slices might imply that 

the pressures exerted by a pond on the face of the slope are accounted for, but this is not the 

case.  In the first place, if the slope is sufficiently pervious, water can just flow in and out of the 

face and there will be no additional pressure applied by the pond.  Thus the user of the 

program has to make a decision whether to apply pond pressures or not.  In practice there may 

be intermediate cases but simplified methods are not able to cope with these. If the user 

decides that pond pressures should be applied, which is equivalent to assuming an impervious 

boundary, whether one actually exists or not, then the forces that correspond to the pond 

pressure should be applied at the center of the tops of each slice perpendicular to the slope.  In 

the OMS or the OMC, these forces should then be treated as an “active” support and they 

should be subtracted from the sum of the driving forces in the denominator of the equation for 

the factor of safety.  In limit equilibrium methods the added forces should also be included as 

active support, reducing the driving forces due to gravity, but it is often not clear how this is 

implemented in computer programs. It is also difficult to impossible to know what effect, if any, 

pond pressures might have on the normal stresses on the potential slip surface and hence the 



 

Figure 4 – Application of Pond Pressures 

shear strengths, but with the OMS or the OMC the user can specify an appropriate distribution 

of pressures on the bases of affected slices for the purpose of computing the shear strengths, 

since that can be an independent calculation. The resulting loads are illustrated in Figure 4.  

Note that it is still up to the user to decide whether or not the phreatic surface inside the slope 

connects to the level of the pond outside the slope.  In, for instance, the case of a concrete or 

asphalt faced dam where the face is truly impervious, that will not be the case and the phreatic 

surface will not connect to the pond.  Thus, the elevation of the pond should be specified 

independently of the phreatic surface.  

The related case of rapid drawdown analyses is outside the scope of this note. 

 

Conclusions 

The apparent inconsistency between the two possible ways of applying the unit weight of the 

material involved in a potential slide has been discussed and resolved.  It is more robust and 

accurate to use buoyant unit weights, particularly with the OMS.  It is unclear what effect this 

might have on methods of analysis that fully satisfy equilibrium. 

It is not impossible, but it is difficult to apply seepage forces in limit equilibrium analyses, 

however, it is relatively easy to apply them with the OMS. 

The question of applying pond pressures is more complicated than is commonly assumed. 

Again, it is relatively easy to suggest ways of covering the extreme conditions of a porous face 

or an impervious face with the OMS but it is unclear what happens when pond pressures are 



applied in a limit equilibrium analysis.  This question illustrates the limitations of all simplified 

analyses and points to an issue where more sophisticated combined seepage-stress-

deformation analyses might be helpful. 
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