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Abstract
Variational Bayesian (VB) factorial approxima-
tions anchor a wide variety of probabilistic mod-
els, where tractable posterior inference is almost
never possible. This basic strategy is particu-
larly attractive when estimating structured low-
dimensional models of high-dimensional data,
exemplified by the search for minimal rank
and/or sparse approximations to observed data.
To this end, VB models are frequently deployed
across applications including multi-task learning,
robust PCA, subspace clustering, matrix comple-
tion, affine rank minimization, source localiza-
tion, compressive sensing, and assorted combi-
nations thereof. Perhaps surprisingly however,
there exists almost no attendant theoretical expla-
nation for how various VB factorizations operate,
and in which situations one may be preferable to
another. We address this relative void by com-
paring arguably two of the most popular factor-
izations, one built upon Gaussian scale mixture
priors, the other bilinear Gaussian priors, both
of which can favor minimal rank or sparsity de-
pending on the context. More specifically, by re-
expressing the respective VB objective functions,
we weigh multiple factors related to local min-
ima avoidance, feature transformation invariance
and correlation, and computational complexity to
arrive at insightful conclusions useful in explain-
ing performance and deciding which VB flavor
is advantageous. We also envision that the prin-
ciples explored here are quite relevant to other
structured inverse problems where VB serves as
a viable solution.

1. INTRODUCTION
Variational Bayesian (VB) techniques (Attias, 2000;
Bishop, 2006) are now commonplace for performing ap-
proximate inference in structured probabilistic models
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of high-dimensional data, usually representing the only
tractable alternative to computationally expensive MCMC
sampling. Unfortunately however, even with a specific data
set and operational goal, there is often no established pre-
scription for how to optimally apply VB, and different pa-
rameterizations and associated distributional factorizations
can have wide-ranging impacts. To elucidate these differ-
ences, we will consider observational models of the form

y =
∑m
i=1Ai(Xi) + e ≡

∑m
i=1 Φivec[Xi] + e, (1)

where y ∈ Rn is an observed data vector, {Xi} represents
a set of unknown latent matrices we would like to esti-
mate,1 and e is noise with distribution N (0, λI), λ > 0.
Additionally, {Ai} represents a set of known linear opera-
tors defined by the corresponding matrices {Φi}, and vec[·]
denotes the column-wise vectorization of a matrix. We also
assume Xi ∈ Rpi×ρi for all i, and without loss of gener-
ality that pi ≤ ρi. Also, if pi = ρi = 1 for some i, we
may include scalars as a special case. Compounding the
estimation difficulty is the allowance that the combined di-
mensionality of all {Xi} may be substantially larger than
y, or

∑
i piρi � n, meaning the measurement process

is severely underdetermined or only partially observable.
Consequently prior assumptions are required to restrict the
solution space if we hope to recover {Xi}.

In this work we will be assuming that each unknown el-
ement Xi has relatively small rank, possibly even zero
for many indeces, such that overall

∑
i rank[Xi], or some

weighted alternative, is minimal. While perhaps decep-
tively simple on the surface, special cases encompass a
wide range of machine learning applications and data anal-
ysis tools including trace regression (Rohde & Tsybakov,
2011), multi-task learning (Jalali et al., 2010), robust PCA
(Candès et al., 2011), subspace clustering (Liu et al., 2013),
matrix completion (Candès & Recht, 2009), general affine
rank minimization (Chandrasekaran et al., 2012), source
localization (Limpiti et al., 2006), compressive sensing
(Candès et al., 2006), and assorted combinations thereof
(McCoy & Tropp, 2013; Nakajima et al., 2013a). More-
over, we envision that the underlying VB principles we

1We frequently adopt the abbreviated notation {Xi} to denote
the set {Xi : i ∈ I}, with I an index set which should be appar-
ent by context.
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intend to dissect here will nonetheless remain relevant to
other types of structured inverse problems.

Arguably the most direct approach to estimating the un-
known set {Xi} is to solve a regularized regression prob-
lem of the form

min
{Xi}
‖y −

∑
iΦivec[Xi]‖22 +

∑
iλirank[Xi], (2)

where each λi > 0 is a weighting factor. For example, if
Xi is some scalar xi, Φi is an n-dimensional column vector
φi, and λi = λ for all i, then (2) reduces to the canonical
sparse estimation problem

min
x
‖y − Φx‖22 + λ‖x‖0, (3)

where Φ = [φ1, . . . ,φm], x = [x1, . . . , xm]>, and ‖x‖0
denotes the `0 norm, or a count of the number of nonzero
elements in a vector. In contrast, if we instead assume a
single matrix componentX ∈ Rp×ρ and design matrix Φ ∈
Rn×pρ, then (2) simplifies to

min
X
‖y − Φvec[X]‖22 + λrank[X]. (4)

If each row of Φ is all zeros with a lone ‘1,’ then (4) is
equivalent to the well-studied matrix completion problem
(Candès & Recht, 2009); alternatively if elements of Φ are
drawn iid from N (0, 1) we have the Gaussian matrix re-
covery problem (Chandrasekaran et al., 2012).

While foundational to numerous application domains, all
of these cases require an NP-hard optimization problem.
This has of course prompted a wide variety of convex re-
laxations or other efficient approximations for practical de-
ployment. But within this high-level context, and espe-
cially when narrowed to many special cases, variational
Bayesian (VB) methods provide an attractive alternative
that often outperform purely optimization-based methods.

Obviously (1) defines a likelihood function p(y|{Xi}).
From this starting point, VB algorithms can broadly be par-
titioned into two flavors based on how the underlying latent
variables are defined and factored for inference purposes.
The first is built upon Gaussian scale mixture representa-
tions (GSM) (Andrews & Mallows, 1974) of sparse or low-
rank favoring prior distributions p(Xi) (Bishop & Tipping,
2000; Neal, 1996; Palmer et al., 2006). More concretely,
the prior is built as p({Xi}) =

∏
i p(Xi), p(Xi) =∫

p(Xi|Γi)p(Γi)dΓi ∝
∫

exp
(
− 1

2 tr
[
X>i ΓiXi

])
p(Γi)dΓi,

(5)
where Γi ∈ Rpi×pi is a precision matrix with prior p(Γi).
In the scalar case, any prior of this form can be shown
to be super-Gaussian (Palmer et al., 2006), with heavy
tails and a sharp peak at zero (i.e., sparsity-promoting).
In contrast, with suitable choice for p(Γi) it can have the
same effect on the singular values of Xi to favor minimal

rank. Although we might like to compute the posterior
p({Xi}|y), this is intractable; likewise for the expanded
posterior p({Xi}, {Γi}|y), where {Γi} is the companion
set of precisions defining the GSM prior for all Xi. Fortu-
nately, VB offers a convenient means of computing surro-
gate posterior approximations.

The basic idea is to specify some class of distribu-
tions q({Xi}, {Γi}) and then minimize the Kullback-
Leibler divergence KL [q({Xi}, {Γi})||p({Xi}, {Γi}|y)]
over q({Xi}, {Γi}) (Attias, 2000; Bishop, 2006). As it
turns out, if p(Γi) is a suitably chosen conjugate prior,
in this case a Wishart distribution on each precision
Γi, and we assume the factorization q({Xi}, {Γi}) =
q({Xi})q({Γi}), then no additional restrictions need be
applied and we can globally solve for q({Xi}) with
q({Γi}) fixed and vice versa. Up to an irrelevant constant,
this is equivalent to minimizing∫

q({Xi})q({Γi}) log
q({Xi})q({Γi})
p (y, {Xi}, {Γi})

∏
idXidΓi (6)

over q({Xi}) and q({Γi}) sequentially via coordinate de-
scent, a procedure we will refer to as VB-GSM. Upon con-
vergence, the mean of q({Xi}) is typically used as a final
point estimate.

In contrast, a bilinear Gaussian (BG) factorization under-
scores the second type of VB model (Babacan et al., 2012;
Ilin & Raiko, 2010; Lim & Teh, 2007; Nakajima et al.,
2013a; Wang & Yeung, 2013). Here we generically as-
sume that Xi = AiB

>
i for matrices Ai ∈ Rpi×ri and

Bi ∈ Rρi×ri , and then adopt the independent Gaussian
priors

p(Ai) ∝ exp
(
− 1

2 tr
[
AiΩAiA

>
i

])
p(Bi) ∝ exp

(
− 1

2 tr
[
BiΩBiB

>
i

])
, (7)

where ΩAi and ΩBi are diagonal precision matrices, possi-
bly known (Mnih & Salakhutdinov, 2008; Nakajima et al.,
2013b). In the special case where ΩAi = ΩBi = αiI ,
for some αi > 0, the corresponding induced prior on Xi

can be shown to be p(Xi) ∝ exp (−αi‖Xi‖∗) (Srebro
et al., 2005), where ‖ · ‖∗ denotes the nuclear norm, a com-
mon convex penalty for rank minimization. Proceeding to
VB inference, we now employ a factorization over the sets
{Ai} and {Bi} and minimize∫

q({Ai})q({Bi}) log q({Ai})q({Bi})
p(y,{Ai},{Bi})

∏
i dAidBi, (8)

over q({Ai}) and q({Bi}), which we henceforth denote as
VB-BG. If desired, this expression can also be optimized
over precision sets {ΩAi} and {ΩBi} as well, a process
referred to as empirical Bayes (Nakajima et al., 2013b).

Despite the widespread use of both VB-GSM and VB-
BG templates, there exists essentially no existing compar-
ative analysis of meaningful intrinsic differences, nor clear
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guidelines for which might lead to better performance. Ad-
ditionally, VB-BG is especially devoid of supporting the-
oretical understanding except in one very particular spe-
cial case, namely, when there is only a single unknown la-
tent X and we observe all entries corrupted simply with iid
Gaussian noise, or equivalently, the observation model (1)
is simplified to

y = vec[X] + e. (9)

In this restricted regime (see (Nakajima et al., 2013b) and
many references within), often referred to as the fully-
observable model since n = pρ, the VB-BG estimator, like
many other estimators Bayesian or otherwise, naturally re-
duces to X̂ = Ug(S)V >, where USV > is the SVD of
y (when stacked into a matrix in correspondence with X)
and g is a shrinkage/thresholding operator on the respec-
tive singular values. Hence the behavior of VB-BG largely
defaults to that of standard estimators, and has been very
precisely characterized (Nakajima et al., 2013b). However,
none of these results are suggestive of how VB-BG might
perform once we move to the wider, practical class of NP-
hard partially-observable models such as those encoun-
tered in sparse estimation, matrix recovery, robust PCA,
and beyond that we intend to tackle here.

Our contributions are summarized as follows:

• In Section 2 we examine VB-GSM and VB-BG solu-
tions to solving (3), where the number of components
m is large but the dimensionality of each component,
pi × ρi = 1 × 1, is small (scalars). This analysis re-
veals a key differentiating factor that surfaces based
on the structure of Φ>Φ, as well as connections with
convex `1-norm penalized regression. Our results in-
dicate that VB-GSM will be preferable when columns
of Φ display some degree of correlation structure and
maximal sparsity is paramount.

• In Section 3 we expose complementary theoretical dif-
ferences on general matrix recovery of the form given
by (4), where now m = 1 (small), but p and ρ are ar-
bitrarily large. Here we show that tractable implemen-
tation of VB-BG requires an additional row-wise fac-
torization, the net result being that the underlying cost
function collapses to a standard regularized regression
problem with many troublesome local minima, mean-
ing that minimal rank solutions can be more evasive.

• In Section 4 we present corroborating empirical phe-
nomena exactly predicted by our theory.

We emphasize that although our focus is on two illustrative
cases, (I) sparse estimation and (II) affine matrix recovery,
more complex models in the general from of (1) will natu-
rally display attributes of these two building blocks. Hence
any undesirable local minima properties or the sensitivity

to design correlations will likely be inherited, extending the
scope of our analysis. Moreover, if we choose a wider class
of likelihood models (e.g., exponential families, etc.), then
VB can no longer be applied in the present context with-
out including an additional variational bound such as that
used by (Jaakkola & Jordan, 2000). But once this bound
is applied, then the objective function reduces to the same
basic structures we already analyze herein, albeit with het-
eroscedastic noise, a relatively inconsequential difference.

2. CASE I: SPARSE ESTIMATION
This section will examine the basic sparse linear inverse
problem from (3) from first the VB-GSM viewpoint and
later that of VB-BG. In both cases the relevant likelihood
function is

p(y|x) ∝ exp
[
− 1

2λ‖y − Φx‖22
]
. (10)

In contrast, the assumed prior distribution will depend on
whether we are applying VB-GSM or VB-BG leading to
divergent algorithmic properties as discussed in Sections
2.1 and 2.2 respectively.

2.1. Gaussian Scale Mixture Factorization

The VB-GSM prior from (5) simplifies to p(x) =∫
p(x|γ)p(γ)dγ ∝

∏
i

∫
exp

(
−γix

2
i

2

)
p(γi)dγi, where

γ = [γ1, . . . , γm]> is a vector of unknown prior pre-
cisions. Each element is independently distributed as
p(γi) = Gam[c, d] ∝ γ

(c−1)
i exp[−dγi] for all i, or a con-

jugate Gamma distribution with non-negative parameters
c and d fixed and known. The goal is then to optimize
(6) over the factorized approximate distributions q(x) and
q(γ), where now {Xi} = x and {Γi} = γ. Obviously this
objective involves functional-valued arguments and high-
dimensional integrals. However, using standard VB results
from (Bishop, 2006) we can actually convert to a more fa-
miliar parameterized form as follows. First, the optimal
q(x) and q(γ) must satisfy

q(x) ∝ exp
(
Eq(γ) [log p (y,x,γ)]

)
⇒ N (x̄,Σx),

q(γ) ∝ exp
(
Eq(x) [log p (y,x,γ)]

)
⇒∏

i Gam
(
c+ 0.5, c+0.5

γ̄i

)
, (11)

which form the basis of the update rules for the popular
variational relevance vector machine (Bishop & Tipping,
2000). Given these distributions, we observe that q(x) only
depends on a mean x̄ and a covariance Σx, while q(γ) only
depends on a mean parameter γ̄ , [γ̄1, . . . , γ̄m]>. Con-
sequently, the VB-GSM problem for sparse estimation re-
duces to minimizing

L(x̄,Σx, γ̄) =

∫
q(x)q(γ) log

q(x)q(γ)

p (y,x,γ)
dxdγ

= Eq(x)q(γ) [− log p (y,x,γ)]− H [q(x)q(γ)] (12)
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over x̄, Σx, and γ̄, where H denotes the entropy function.2

Interestingly, with γ̄ fixed, this can be solved in closed-
form, leading the following result.

Proposition 2.1. Let L(γ̄) , infx̄,Σx L(x̄,Σx, γ̄). Then

L(γ̄) = y>
(
λI + Φdiag[γ̄]−1Φ>

)−1
y (13)

+ log
∣∣λI + Φdiag[γ̄]−1Φ>

∣∣+ 2
∑
i (dγ̄i − c log γ̄i) .

Additionally, let γ̄∗ be a minimum of L(γ̄) and define

x̄∗ , diag[γ̄∗]−1Φ>
(
λI + Φdiag[γ̄∗]−1Φ>

)−1
y

Σ∗x ,
(
λΦ>Φ + diag[γ̄∗]

)−1
. (14)

Then q(x) = N (x̄∗,Σ∗x) and q(γ) =∏
i Gam

(
c+ 0.5, c+0.5

γ̄∗i

)
collectively minimize (6).

In the non-informative (or improper) limit of the hyper-
prior on γ where c, d → 0, i.e., a flat prior in log space
for scale parameters as motivated in (Tipping, 2001), the
objective function L(γ̄) can be derived differently from a
type-II maximum likelihood perspective and has been ana-
lyzed extensively in the context of sparse estimation (Wipf
et al., 2011; Aravkin et al., 2014); hence VB-GSM directly
inherits all desirable attributes derived therein. To briefly
summarize, minimizingL(γ̄) maintains a number of intrin-
sic advantages over traditional sparse regression techniques
such as `1-norm minimization or general MAP estimation.
In particular, sparse solutions x̄∗ are guaranteed (as ele-
ments of γ̄∗ are pushed towards∞), and in certain circum-
stances these solutions are guaranteed to be as sparse or
sparser than the minimum `1 norm solution. Additionally,
VB-GSM is invariant to a large degree of correlation struc-
ture among the columns of Φ, unlike most other existing
estimators. Section 4 below will verify this empirically.

2.2. Bilinear Gaussian Factorization

For VB-BG we first assume that x = a � b, where �
denotes the Hadamard product. The prior p(x) is then
specified by the priors p(a) ∝ exp

[
− 1

2a
>Ωaa

]
and

p(b) ∝ exp
[
− 1

2b
>Ωbb

]
, with Ωa and Ωb diagonal. Again,

by adhering to standard VB procedures, we observe that
the optimal approximate distributions will be of the form
q(a) = N (ā,Σa) and q(b) = N (b̄,Σb) for some respec-
tive means and covariances {ā, b̄,Σa,Σb}. After applying
these optimal parameterizations to the corresponding cost
(8), performing a few algebraic manipulations, VB-BG can

2For notational simplicity, we define all objective functions
using L(·), with different objectives being distinguished by the
associated differing arguments and should be differentiable by
context, similar to how p(·) is frequently used to define various
distributions.

be shown to be equivalent to minimizing

L(ā, b̄,Σa,Σb) , 1
λ‖y − Φ(ā� b̄)‖22 (15)

+ 1
λ tr
[(

Σa � (b̄b̄
>

) + Σb � (āā>) + Σa � Σb

)
Φ>Φ

]
+ā>Ωaā+ b̄

>
Ωbb̄+ tr [ΩaΣa + ΩbΣb]− log |ΣaΣb|

over ā, b̄, Σa, and Σb (this expression can be obtained by
following a similar procedure as outlined in the proof of
Proposition 2.1). At any minimizing solution, ā and b̄ are
the posterior mean and x̄ , ā� b̄ acts as a final point esti-
mate. Unlike in Proposition 2.1, there does not appear to be
any direct way to collapse (15) to a convenient closed-form
function of a single variable amenable to analysis. How-
ever, close inspection of targeted special cases reveals im-
portant underlying properties relevant to the sparse estima-
tion problem and direct connections with VB-GSM.

Non-Informative Limit: We first consider the non-
informative limit as Ωa = Ωb = αI , with α→ 0 (meaning
a flat prior), reflecting maximum prior agnosticism regard-
ing both a and b (Nakajima et al., 2013b). This can be
viewed as the analogous non-informative limit of VB-GSM
described above which has lead to considerable practical
success.

Proposition 2.2. Let x̄ , ā � b̄ such that
ā = x̄B̄−1 with B̄ , diag[b̄]. Also, let
L(b̄,Σb) , infx̄,Σa limα→∞ L(x̄B̄−1, b̄,Σa,Σb)

and W , 1
λ B̄
−1ΣbB̄

−1. Then L(b̄,Σb) ≡

L(W ) , y>
(
λI + Φ

(
W � Φ>Φ

)−1
Φ>
)
y (16)

+ log
(∣∣∣λI + Φ

(
W � Φ>Φ

)−1
Φ>
∣∣∣ ∣∣W � Φ>Φ

∣∣ /|W |) .
In words, this result implies that we can optimize (15) over
both x̄ and Σa analytically, and once we have done so, the
remaining dependency on b̄ and Σb can be merged into a
single variable W . This simplification relates to the VB-
GSM representation directly as follows:

Proposition 2.3. If either (i) W is restricted to be diago-
nal, or (ii) Φ>Φ = I , then (16) is equivalent to the VB-
GSM-based cost function from (13) in the non-informative
limit c, d→ 0.

Hence VB-BG will inherit all of the same sparsity-
promoting properties as the VB-GSM representation men-
tioned in Section 2.1. Additionally, even without the as-
sumption that Φ>Φ = I (or that W is diagonal) it ap-
pears that under relatively mild conditions, and in the limit
λ→ 0, both VB-BG and VB-GSM objective functions will
have the same global solution (details omitted for brevity).

Crucially however, in general the overall objective function
shape and local minima structure of VB-BG and VB-GSM
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will be quite different as we transfer away from the sim-
plified case with orthogonal designs, and it behooves us to
probe further to better understand intrinsic differences that
may influence sparse estimation. In particular, as correla-
tions are introduced into Φ, the behavior of VB-BG and
VB-GSM deviates sharply. The following result speaks to
this effect:

Proposition 2.4. Let ỹ , Ψy and Φ̃ , ΨΦ, where Ψ is an
arbitrary invertible matrix. Define the associated VB-BG
objective function with λ→ 0 as

L(W ; Ψ) , ỹ>
(

Φ̃
[
W � Φ̃>Φ̃

]−1

Φ̃>
)−1

ỹ (17)

+ log

∣∣∣∣Φ̃ [W � Φ̃>Φ̃
]−1

Φ̃>
∣∣∣∣+ log

∣∣∣W � Φ̃>Φ̃
∣∣∣− log |W |.

Unlike the corresponding VB-GSM cost from (13),
L(W ; Ψ) is *not* invariant to transformations via Ψ. As
an extreme case, in the limit as Ψ approaches any rank one
matrix uv>, we have that

lim
Ψ→uv>

L(W ; Ψ) ≡ y>
(
ΦW−1Φ>

)−1
y+log

∣∣ΦW−1Φ>
∣∣

(18)
up to irrelevant constant scaling and additive factors.

Proposition 2.4 elucidates an important distinction between
VB-BG and VB-GSM. First, as Φ>Φ transitions from an
identity matrix (with no correlation structure) to a rank
one matrix, the VB-BG cost actually becomes less encour-
aging of sparse solutions, and in the limiting case, spar-
sity is not favored at all. To see this, observe that (18)
can be driven to −∞ using any W = USU> such that
y ∈ span[ΦUS−1/2] and S−1 with (approximately) rank
less than n. Under these conditions, the data term can
be held constant while the log-det can be driven to an ar-
bitrarily large negative value. But this will not typically
lead to a sparse estimate of x. In general, given any opti-
mal W ∗, the associated optimal x̄∗ is computed via (14),
with

(
W ∗ � Φ>Φ

)
replacing diag[γ̄∗]. The sparsity of

VB-GSM comes from the sparse diagonal structure of this
diag[γ̄∗]−1; however, with VB-BG

(
W ∗ � Φ>Φ

)−1
need

not be either sparse nor diagonal. In some ways this be-
havior is similar to the trace Lasso estimator, which be-
haves like the minimum `1-norm solution with an orthogo-
nal design matrix, and the minimum `2-norm solution with
a (nearly) rank one design (Grave et al., 2011).

Additionally, there is nothing intrinsically special about in-
troducing correlations into Φ via left multiplication by Ψ.
In general, the more Φ>Φ contains decaying singular val-
ues, the more W � Φ>Φ behaves like W , and the lesser
the preference for sparse solutions exhibited by VB-BG.
Simulation experiments in Section 4 below explicitly illus-
trate this effect. Finally, although not explored here for

space considerations, when we learn Ωa and Ωb via empir-
ical Bayes, the resulting cost function has similar behavior
(both theoretically and empirically) to the non-informative
limiting case, and therefore does not represent a solution to
the drawbacks of VB-BG discussed in this section.

Strongly Informative Limit: Conversely, we now con-
sider Ωa = Ωb = αI , with α becoming large. In gen-
eral, the larger α, the stronger the prior forcing elements
of a and b, and therefore x, towards zero. However, pro-
vided λ is reduced at a proportional rate, then the data fit
term remains significant such that the degenerate solution
a = b = 0 can be avoided and we can still isolate the ef-
fects of the prior. With these considerations in mind, we
have the following:
Proposition 2.5. In the limit λ → 0, α → ∞, with λα →
C for some constant C > 0, we have that

inf
Σa,

¯b
L(ā, b̄,Σa,Σb)→ ‖y − Φx̄‖22 + 2C‖x̄‖1, (19)

where x̄ , ā� b̄.

In brief, this implies that the VB-BG objective will lose its
dependency on Σb and converge to standard `1-norm pe-
nalized regression given the stated limiting conditions on
α. The experiments presented in Section 4 provide corrob-
orating empirical evidence of this general trend.

3. CASE II: MATRIX RECOVERY FROM
AFFINE MEASUREMENTS

In Section 2 we analyzed the situation where the number
of components m was large, but the dimensionality of each
component Xi was small (a scalar), and hence low rank
equated with sparsity. In this section we turn things around
and consider the complementary case where m = 1 (a sin-
gle component), but the unknown X ∈ Rp×ρ can have ar-
bitrarily large dimensions. For both VB-GSM and VB-BG
the appropriate likelihood function is given by

p(y|X) ∝ exp
[
− 1

2λ‖y − Φvec[X]‖22
]
. (20)

Although the likelihood function is more or less identical
to the one described in Section 2, the prior distributions
are quite different, with distinctive attendant analyses and
algorithms, especially in the case of VB-BG.

3.1. Gaussian Scale Mixture Factorization
For VB-GSM, the prior is expressed as in (5), but with no
subscript required as there is a single component. Also,
p(Γ) = Wp(Λ, β) ∝ |Γ|(β−p−1)/2 exp[− 1

2 tr(ΛΓ)], a
Wishart distribution with degrees-of-freedom parameter
β > p − 1 and positive definite, symmetric scaling matrix
Λ. We then follow a similar analysis pipeline as in Section
2.1, arriving at the optimal factorized distributions

q(vec[X]) = N (vec[X̄], I ⊗ ΣX), (21)
q(Γ) = Wp

(
[ρ+ β] Γ̄−1, ρ+ β

)
,
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where ⊗ denotes the Kronecker product, and the revised
implicit cost function

L(Γ̄) = y>
(
λI + Φ(I ⊗ Γ̄)−1Φ>

)−1
y + (22)

log
∣∣λI + Φ(I ⊗ Γ̄)−1Φ>

∣∣+ tr
[
ΛΓ̄
]
− (β − p+ 1) log |Γ̄|

after analogous simplifications (details are somewhat re-
dundant and omitted for brevity). This objective function
is quite similar to (13) and in the non-informative limit as
(β − p+ 1) and Λ go to zero, it has been analyzed to some
extent (Xin & Wipf, 2015), again from the vantage point of
type-II maximum likelihood. In general, it acts as a close
proxy for the matrix rank function (maintaining the same
global solution and scale invariance), but with many fewer
bad locally minimizing solutions. It therefore represents a
robust tool for solving rank minimization problems.

3.2. Bilinear Gaussian Factorization
VB-BG, which is more commonly applied to rank min-
imization and matrix recovery problems than VB-GSM,
again follows a similar path as before. The relevant pos-
teriors are

q(vec[A>]) = N
(
vec[Ā>],ΣA

)
q(vec[B>]) = N

(
vec[B̄>],ΣB

)
. (23)

The corresponding parameterized objective function anal-
ogous to (15) can be shown to be L(Ā, B̄,ΣA,ΣB) ,

1
λ‖y − Φvec

[
AB>

]
‖22 + 1

λ tr
[
ΣA
(
I ⊗ B̄

)>
Φ>Φ

(
I ⊗ B̄

)
+ ΣB

(
I ⊗ Ā

)>
PΦ>ΦP

(
I ⊗ Ā

)]
+ 1

λf(ΣA,ΣB)

+ tr
[
AΩAA

> +BΩBB
>]− log |ΣAΣB |

+ tr [ΣA (I ⊗ ΩA) + ΣB (I ⊗ ΩB)] , (24)

where f is a bilinear function of its arguments and P is a
permutation matrix. For any reasonable degree of scalabil-
ity, it is not feasible to work with full covariances for ΣA
and ΣB , which will be (pr) × (pr) and (ρr) × (ρr) ma-
trices respectively, and without knowledge of the true rank
we must assume r = min(p, ρ). Hence the required VB
algorithm would require inverting huge matrices.

Therefore, we instead assume that the approximate poste-
rior distributions q(A) and q(B) factorize over rows, a stan-
dard assumption which is equivalent to requiring that ΣA
and ΣB are block diagonal, with r × r dimensional blocks
denoted {ΣAi} and {ΣBj} respectively. This factorization
can be justified, at least in part, by the fact that when Φ>Φ
is diagonal (which includes the case of matrix completion),
then the posterior automatically possesses these row-wise
factorizations anyway.3 Given this necessary assumption,

3The alternative column-wise factorization has other issues.

(24) simplifies to

L(Ā, B̄, {ΣAi}, {ΣBj}) , 1
λ‖y − Φvec

[
AB>

]
‖22

+ 1
λ

∑
itr
[
ΣAiB̄

>GiB̄
]

+ 1
λ

∑
j tr
[
ΣBj Ā

>HjĀ
]

+ 1
λf({ΣAi}, {ΣBj}) + tr

[
AΩAA

> +BΩBB
>]

+
∑
i (tr [ΣAiΩA]− log |ΣAi |)

+
∑
j

(
tr
[
ΣBjΩB

]
− log |ΣBj |

)
, (25)

where f is redefined accordingly (the exact form of f is
not important for what follows, beyond its bilinearity), and
{Gi} and {Hj} are the required block diagonal elements of
Φ>Φ and PΦ>ΦP respectively. As before, we now con-
sider relevant special cases more amenable to analysis.

Non-Informative Limit: Here we again assume that ΩA =
ΩB = αI , with α → 0, allowing us to ignore the α-
dependent terms originating from the prior. But this pruned
objective still remains difficult to unpack largely because of
the term f({ΣAi}, {ΣBj}) that couples the covariances in
a bilinear yet complex way. However, if we also consider
the limit as λ becomes small (canonical noiseless case), in-
sightful analysis is possible based on the following result.
We also assumeA andB are square matrices for simplicity
(i.e., p = ρ), although this can be relaxed with additional
effort. We first define the indicator function I∞[z 6= θ],
which equals zero if z = θ or∞ otherwise. Then we have
the following:
Proposition 3.1. Assume that α → 0, Gi and Hj are full
rank for all i and j, and that p = ρ. Then excluding ir-
relevant constants/scale factors, at all full-rank Ā and B̄

lim
λ→0

inf
{ΣAi},{ΣBj }

L(Ā, B̄, {ΣAi}, {ΣBj}) (26)

≡ log |ĀĀ>|+ log |B̄B̄>|+ I∞
(
y 6= Φvec

[
ĀB̄>

])
.

Technically speaking, Proposition 3.1 only applies when Ā,
B̄, and therefore X̄ , ĀB̄> are all full rank. However,
except for perhaps infinitesimally small regions around
low-rank solutions (and the set of low-rank matrices have
Lebesgue measure zero), which are essentially irrelevant
to the basic trajectory of the VB update rules anyway, the
VB-BG is equivalent to solving

minX̄ log |X̄X̄>| s.t. y = Φvec
[
X̄
]
. (27)

This only requires that we convert the I∞ term to an equiv-
alent constraint and apply log |X̄X̄>| = log |ĀĀ>| +
log |B̄B̄>| to the objective. In fact VB updates are guar-
anteed to reduce or leave unchanged (27). At one level
this is a reasonable endeavor given that log |X̄X̄>| ∝∑
i log σi[X̄], where σi[X̄] denotes the i-th singular value

of X̄ . Moreover, because log z = limε→0
1
ε (zε − 1), then∑

i log σi[X̄] approaches the rank function (up to constant
scaling and translation), and can be viewed as a smooth
proxy for favoring (nearly) low-rank solutions.
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The problem however is that this penalty has a combina-
torial number of locally minimizing solutions. This occurs
because whenever any σi[X̄] approaches zero, the cost ap-
proaches −∞ and we are necessarily trapped in a basin
of attraction whereby this singular value can never become
large again. In fact, minimization of (27) is NP-hard, and
various smoothing heuristics to incrementally modify the
cost function have already been suggested to improve per-
formance (Mohan & Fazel, 2012). Unfortunately though,
algorithms like VB-BG that directly minimize this function
can be easily trapped, which likely explains modest per-
formance relative to the algorithm from (Mohan & Fazel,
2012). Additionally, even when p 6= ρ, because the implic-
ity penalty function only depends on Gi and Hj , not the
entire Φ matrix, it will not be scale invariant either in the
sense described in Section 2. And finally, analogous to the
sparse estimation case, if we attempt to learn ΩA and ΩB ,
the implicit cost function of VB-BG is not significantly al-
tered and hence the same problems remain.

Strongly Informative Limit: In the opposite extreme as
α becomes large, VB-BG behavior mimics our findings for
the sparse estimation case from Section 2.2. Under analo-
gous limiting conditions, VB-BG converges to minimizing

L(X̄) , ‖y − Φvec
[
X̄
]
‖22 + 2C‖X̄‖∗. (28)

We omit the full derivation, but the basic structure mirrors
that of Proposition 2.5.

4. EMPIRICAL EXAMPLES
As our focus thus far has been on evaluating existing VB
paradigms rather than developing new algorithms, the pur-
pose of this section is restricted to merely presenting a few
tailored simulations that complement the analytical con-
clusions described previously. To begin, we will explore
some of the claims made in Section 2, which compares var-
ious flavors of VB sparse estimation algorithms. Specif-
ically, we have revealed analytically that VB-BG in the
non-informative limit is likely to be quite sensitive to cor-
relations in the design matrix Φ, while VB-GSM (also in
an analogous non-informative limit) is likely to be free of
such concerns, consistent with existing work from (Wipf
et al., 2011). Additionally, we demonstrated that VB-BG
with a highly informative prior converges to something like
an `1 norm regression problem, and hence we may expect
its behavior to mirror the popular Lasso estimator in this
regime. Finally, although not our primary emphasis, we
mentioned that VB-BG, with a learned prior via empirical
Bayes (Nakajima et al., 2013b) will likely exhibit some of
the same shortcomings as the non-informative limit.

To illustrate these effects, we conducted the following
Monte Carlo experiment. First we generate a sparse vec-
tor x with ‖x‖0 = 20 nonzero elements randomly lo-

cated with iid N (0, 1) nonzero elements. Next we gen-
erate a design matrix via Φ =

∑n
i=1

1
iηuiv

>
i , where each

vector ui ∈ R50 and vi ∈ R100 are distributed iid with
N (0, 1) elements. We then normalized columns of Φ to
have unit `2 norm. The exponent parameter η is chosen
from the interval [0, 2], the effect being that larger values
of η will introduce larger correlations into the resulting
columns of Φ, meaning that Φ>Φ will have stronger off-
diagonal elements. Finally we generate a data vector via
y = Φx. We then run various VB sparse estimation al-
gorithms and evaluate them using two metrics, normalized
MSE ,

〈
‖x−x̂‖22
‖x‖22

〉
and average # nonzeros , 〈‖x̂‖0〉,

where the empirical average 〈·〉 is taken across 1000 in-
dependent trials. This process is repeated for values of
η ∈ [0, 2], with results reported in Figure 1.

We observe that VB-BG in the non-informative limit (we
chose α = 10−4) performs exactly as predicted by Propo-
sition 2.4 and the attendant discussion that follows. When
η is near zero, 1

iη ≈ 1 for all i, and so Φ>Φ has little cor-
relation structure (although some small amount will exist
due to natural statistical variability). Therefore, the perfor-
mance of VB-GSM and VB-BG with their respective non-
informative priors have nearly the same normalized MSE
and sparsity level, and both fare far better than the standard
Lasso estimator, which finds the minimum `1 norm solu-
tion. In contrast, when η becomes large and stronger corre-
lations are introduced (as is common in many practical ap-
plications of sparse estimation), VB-BG performance de-
grades dramatically as anticipated, becoming much worse
than even the Lasso estimator which is already well-know
to be sensitive to such correlations (Candès et al., 2006). In
fact, VB-BG (with non-informative prior) barely produces
sparse estimates at all as seen in Figure 1 (bottom).

Note that by construction, with probability one we can
obtain a feasible solution to y = Φx̂ with ‖x̂‖0 = 50
using any subset of 50 columns of Φ (the maximum re-
quired). So once the average sparsity level approaches 50,
a given algorithm is not accomplishing anything particu-
larly challenging. Of course with η > 0.6, VB-BG with the
non-informative prior exceeds even this minimal number of
nonzeros, with ‖x̂‖0 approaching 100, or a completely non-
sparse solution as predicted by our theory. Consequently,
VB-BG is only advisable when maximal sparsity is not
the prevailing concern, and it may be more applicable as a
Bayesian competitor to the trace Lasso (Grave et al., 2011).
In contrast, at the other extreme, when α becomes large
for VB-BG (strong or informative prior case), the behav-
ior approaches that of the Lasso, both in terms of the MSE
recovery error and average sparsity, consistent with Propo-
sition 2.5. Finally, although not our primary emphasis, we
also include results for the empirical Bayesian version of
VB-BG, where the prior parameters Ωa and Ωb are learned
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from the data. Performance is consistently worse than the
Lasso, and the average value of ‖x̂‖0 can even exceed 50
as predicted. In fact, we can also explain why the perfor-
mance of VB-BG with a learned prior deteriorates more
slowly than VB-BG with a fixed non-informative prior, but
this requires rather lengthy technical arguments which we
prefer to leave for a future publication.
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Figure 1. Top: Normalized MSE as correlation parameter η is var-
ied. Bottom: Average number of nonzeros in x̂.

Turning to the matrix recovery problem from Section 3, we
already know based on results in (Mohan & Fazel, 2012)
that the implicit VB-BG penalty function log |XX>| de-
rived in Section 3.2 may not be advisable for matrix re-
covery and a heuristic smoothing term is required to ob-
tain more robust results. Additionally, although not la-
beled with this terminology, (Xin & Wipf, 2015) has al-
ready shown empirical comparisons between VB-BG, the
smoothed version of log |XX>| from (Mohan & Fazel,
2012), and VB-GSM. In this context, VB-GSM performs
the best while VB-BG lags the others by a significant mar-
gin as expected based on our theoretical results.

5. DISCUSSION
Often VB inference pipelines are mistakenly assumed to
be more or less the same because they are based on sim-
ilar structure-inducing priors and factorial approximations
to the KL divergence from the true posterior. However, de-
spite widespread practical use, there currently exists almost
no rigorous analysis of the extent to which this is actually
the case, or rather the degree to which we might prefer one
flavor of VB to another in certain situations. In this work
we have attempted to at least partially fill this void by ex-

amining two important cases that often form the building
blocks of larger systems, revealing that VB-BG is likely
to be more sensitive to design correlations and local min-
ima, which can be problematic if maximally parsimonious
representations are desired. However, on the positive side,
by manually specifying a maximum rank ri VB-BG does
benefit from a direct route for injecting a prior information
regarding the true rank of a given component (a flexibil-
ity not enjoyed by VB-GSM), and this can be exploited to
increase computational efficiency.

Regarding broader generalizations, we have observed that
the VB-GSM objective directly defaults to a relatively sim-
ple function based on a data-dependent inverse term and
a log-det term. This then suggests that VB-GSM inherits
desirable theoretical attributes previously ascribed to type-
II maximum likelihood estimators in the context of sparse
estimation, affine rank minimization, and robust PCA (Ar-
avkin et al., 2014; Wipf, 2012; Wipf et al., 2011; Xin &
Wipf, 2015). In fact, with some additional effort it can be
shown that this simplification naturally generalizes to any
likelihood function derived from (1) in the non-informative
limit leading to the broadly-applicable VB-GSM objective

L({Γ̄i}) = y>
(
λI +

∑
iΦi(I ⊗ Γ̄i)

−1Φ>i
)−1

y

+ log
∣∣λI +

∑
iΦi(I ⊗ Γ̄i)

−1Φ>i
∣∣ . (29)

When viewed from this vantage point, we may then ex-
pect to see expanded analytical studies of VB-GSM into
other applications of interest that leverage the same model
structure. Additionally, while not our primary focus, with
judicious implementation we can optimize (29) with VB
updates of worst-case order O(n2

∑
i piρi), or linear in

the combined dimensionality of {Xi} and quadratic in the
number of observations.

In contrast, VB-BG admits no such general representation,
and multiple potential drawbacks emerge from our anal-
ysis. One issue is that without additional factorizations,
VB-BG typically faces a wider parameter space to search
that includes problematic locales and/or local minima. For
example, in the case of sparse estimation, we observed in
Section 2.2 that the primary difference between VB-BG
and VB-GSM was that the former had a full parameter ma-
trix to estimate while the latter only required a diagonal
one (i.e., vector). Furthermore, these extra degrees of free-
dom in off-diagonal terms granted VB-BG the undesirable
ability to explore and actually favor non-sparse solutions
that counter the original goal of finding maximally sparse
estimates. A second issue is that, for computational rea-
sons discussed in Section 3.2, VB-BG is likely to require
additional heuristic factorizations of the approximate pos-
terior q({Ai}, {Bi}), and such factorizations will increase
the set of distracting candidate local minima. Interestingly,
this observation provides further concrete confirmation of
previous conjectures of this sort (Hoffman, 2014).
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