

JOB No: PREPRD.BY: FGL
CLIENT: Frontier Energy / ACC
PROJECT: Alpha Crude Connector
SUBJECT: API 1102 Overburden Load Calculations - Regency Line at Truck Unloading
Values as listed from above:

| $\mathrm{tw} / \mathrm{D}=$ | 0.016 |  |
| :--- | ---: | :--- |
| $\mathrm{E}^{\prime}=$ | 0.2 |  |
| $\mathrm{~K}_{\mathrm{He}}$ | $=$ | 2500 |

Finding Burial Factor, Be:
Using the resulting values from the list below and the figure 4 from tables workbook, select and input Be below:
Values as listed from above:

| $\mathrm{H} / \mathrm{Bd}=$ | 0.313 |  |
| :--- | :---: | :--- |
| Soil Type $=$ | loose sand |  |
| Be | $=$ | 1.5 |

Finding Excavation Factor, Ee:
Using the resulting values from the list below and the figure 5 from tables workbook, select and input Be below:
Values as listed from above:

| $\mathrm{Bd} / \mathrm{D}=$ | 1.000 |  |
| :--- | :--- | :--- |
| Ee | $=$ | 0.83 |

Circumferential Stress from Earth Load
Using the values listed below the stress is calculated:

|  | D= | 16.000 | inches |
| :---: | :---: | :---: | :---: |
|  | $y=$ | 0.0694 | \#/in^3 |
| $\mathrm{S}_{\text {he(calculated) }}$ | 3458.33 psi |  |  |

STEP D: Impact Factor, Fi, and Applied Design Surface Pressure, w
Step $D$ is finding the critical case for live loading over the roadway.
Finding Impact Factor, Fi:
Using the depth, H , as listed in the input section and Figure 7 from tables workbook, select and input the Impact Factor, Fi:

| $\mathrm{H}=$ | 5 | ft |
| :--- | ---: | ---: |
| $\mathrm{Fi}=$ | 1.50 |  |

Finding Applied Design Surface Pressure, w:
Using Table 1 from API 1102 in tables workbook find the critical case of live loading (axles), select and input Critical Case, Pt and w below: Refer to API 1102 Section 4.7.2.2.1 for more information.

Excerpt from Section 4.7.2.2.1:
The live, external rail load is the vehicular load, w , applied at the surface of the crossing. It is recommended that Cooper E-80 loading of $\mathrm{w}=13.9 \mathrm{psi}$ be used, unless the loading is known to be greater. This is the load resulting from the uniform distribution of four 80 kip axles over an area 20 feet by 8 feet. If the load is known to be greater (highway), then the following recommended loading cases should be used. Use Table 1 and find the critical case. Knowing the critical case, the recommnended design loads (heavy trucks) are listed below:

| $\mathrm{Ps}=$ | 12 | kips | (when critical case is single axle) |
| ---: | :--- | :--- | :--- |
| $\mathrm{Pt}=$ | 10 | kps | (when critical case is tandem axle) |

The live, external highway load, $w$, is due to the wheel load, $P$, applied at the surface of the roadway. For design, only the load from one of the wheel sets needs to be considered. The design wheel load should either be the maximum wheel load from the truck's single axle, Ps, or the maximum wheel load from the truck's tandem axle set:

Pt. Flexible pavement refers to asphalt; rigid pavement refers to concrete.
Since w= P/Ap (API 1102 formula) where P= design wheel load (lbs) and Ap=area of contact of which wheel load is applied--usually 144 in^2
Thus

$\mathbf{w}=$|  | 83.3 | psi for single axle loading |
| :--- | :--- | :--- |
| $\mathbf{w}=$ | 69.4 | psi for tandem axle loading |


| Critical Case | tandem | (tandem or single) |
| :--- | :---: | :--- |
| $\mathrm{Pt}=$ | 10 | kips |
| $\mathrm{w}=$ | 69.40 | psi |

STEP E: Cyclic Stresses, Cyclic Circumferential Stress, $\Delta$ SHh, and Cyclic Longitudinal Stress, $\Delta$ SLh
The cyclic circumferential stress, $\Delta \mathrm{SHh}$, is the circumferential stress that results from the highway vehicular loading.
The formula (API 1102) is listed below:
$\Delta \mathbf{S H h}=\quad \mathbf{K}_{\mathrm{Hh}} \mathbf{G}_{\mathrm{Hh}}{ }^{*} \mathbf{R}^{\star} \mathrm{L}^{*} \mathrm{~F}_{\mathrm{i}} \times \mathbf{W} \quad \mathrm{psi}$
The cyclic longitudinal stress, $\Delta \mathbf{S L h}$, is the longitudinal stress that results from the highway vehicular loading.


Finding Highway Geometry Factor, GHh:
Using the values listed below and Figure 15 from tables workbook, select and input GHh below:

| $\mathrm{D}=$ | 16.00 | in |
| :--- | ---: | :--- |
| $\mathrm{H}=$ | 5 | ft |
| $\mathrm{GHh}=$ | 1.4 |  |

Finding $\mathbf{R}$ and L :
Using Table 2 with:

| flexible | pavement |  |
| :--- | ---: | :--- |
| tandem | axles |  |
| $\mathrm{H}=$ | 5 | ft |
| $\mathrm{D}=$ | 16 | in |
| $\mathrm{Fi}=$ | 1.5 |  |
| $\mathrm{R}=$ | 1.1 |  |
| $\mathrm{~L}=$ | 1.10 |  |

$\Delta \mathrm{SHh}$ (calculated) $=\quad 3,527 \quad \mathrm{psi}$
Calculating $\Delta$ SLh
Finding Highway Stiffness Factor,KLh:
Using the values listed below and Figure 16 from tables workbook, select and input KLh below:

| $\mathrm{tw} / \mathrm{D}=$ | 0.0156 |
| :--- | ---: |
| $\mathrm{Er}=$ | 5 |
| $\mathrm{KLh}=$ | 12 |

Finding Highway Geometry Factor, GLh:
Using the values listed below and Figure 17 from tables workbook, select and input GLh below:

| $\mathrm{D}=$ | 16.0000 | in |
| :--- | ---: | :--- |
| $\mathrm{H}=$ | 5 | ft |
| $\mathrm{GLh}=$ | 2.2 |  |

Finding R and L; Using Table 2 with:

| flexible | pavement |  |
| :--- | ---: | ---: |
| tandem | axles |  |
| $\mathrm{H}=$ | 5 | ft |
| $\mathrm{D}=$ | 16 | in |
| $\mathrm{Fi}=$ | 1.5 |  |
| $\mathrm{R}=$ | 1.1 |  |
| $\mathrm{~L}=$ | 1.10 |  |

$\Delta$ SLh (calculated) $=\quad 3,325 \quad \mathrm{psi} \quad$.

STEP F: Circumferential Stress due to Internal Pressurization, Shi
The circumferential stress due to internal pressurization is the stress that acts on the pipe steel itself.

| $\mathrm{p}=$ | 1000 | psi |
| :--- | ---: | :--- |
| $\mathrm{D}=$ | 16 | inches |
| $\mathrm{t} w=$ | 0.25 | inches |

$\mathbf{S}_{\mathrm{hi}=} \quad \mathbf{p}^{*}(\mathrm{D}-\mathrm{tw}) / \mathbf{2}^{\star} \mathrm{tw} \quad$ for natural gas and liquids


