
IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3473 | P a g e

ASSESSMENT OF SOFTWARE UNDERSTANDABILITY

USING SOFTWARE MATRICES
AHMER MANZOOR MAKAYA1, SHAMINDER SINGH2

1M.TECH Student, Desh Bhagat University Mandi Gobindgarh
2Assistant Professor, Desh Bhagat University Mandi Gobindgarh

(E-mail: ahmermakaya@gmail.com)

Abstract—Understandability is one of the important

characteristics of software quality, because it may influence

the maintainability of the software. Cost and reuse of the

software is also affected by understandability. In order to

maintain the software, the programmers need to understand

the source code. The understandability of the source code

depends upon the psychological complexity of the software,

and it requires cognitive abilities to understand the source

code. The understandability of source code is get effected by

so many factors, here we have taken different factors in an

integrated view. In this we have chosen rough set approach to

calculate the understandability based on outlier detection.

Generally the outlier is having an abnormal behavior, here we

have taken that project has may be easily understandable or

difficult to understand. Here we have taken few factors, which

affect understandability, an brings forward an integrated view

to determine understandability.

Keywords—Understandability, Roughset, Outlier, Spatial

Complexity.

I. INTRODUCTION

 Software products are expensive. Therefore, software

project managers are always worried about the high cost of

software development, and are desperately looking for way-

outs to cut development cost. A possible way to reduce

development cost is to reuse parts from previously developed

software. In addition to reduced development cost and time,

reuse also leads to higher quality of the developed products

since the reusable components are ensured to have highquality.

When programmers try to reuse code which are written by

other programmers, faults may occur due to misunderstanding

of source code. The difficulty of understanding limits the reuse

technique. On Software Development Life Cycle (SDLC) the

maintenance phase tends to have a comparatively much longer

duration than all the previous phases taken together, obviously

resulting in much more effort. It has been reported that the

amount of effort spent on maintenance phase is 65% to 75%

[5]of total software development.

In Figure1,the programmers of the original system were absent,

then the other programmers need to reuse the components to

enhance the functionalities and correcting faults[16]. Fig.1

shows the communication between programmers and software,

in the evolution of software systems. Programmer 1 writes the

current version of a software system, programmer 2 evolves

next version of that software from the current version[14]. If it

is difficult to understand, changes to it may cause serious faults,

these changes may cost more time than remaking the software

systems. However, it is not easy to measure software

understandability because understanding is an internal process

of humans.

Basic etc. supports the concept of reusability. Reuse of the

something that already existed is always nice rather than to

create the same all over again. Reusability feature may increase

the reliability, decrease the cost and time.

There are the many aspects of the software. Some of them

contribute towards the design and algorithmic complexity,

some contribute towards readability and understandability of

the software, and some other aspects have an influence on the

debugging and testability of the software. Developers should

look more into writing code for not just as instructions to a

computer, but as a medium of communication with other

programmers. The time taken for a human to understand code

is significantly longer than the time taken from a computer to

compile and run a piece of software. Writing code that is more

comprehensible by other developers should be emphasized.

Software Maintenance Software maintenance[18] is becoming

an important activity of a large number of organizations. This is

no surprise, given the rate of hardware obsolescence, the

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3474 | P a g e

immortality of a software product, and the demand of the user

community to see the existing software products run on newer

platforms, run in newer environments, and/or with enhanced

features. When the hardware platform changes, and a software

product performs some low-level functions, maintenance is

necessary. Types of Software Maintenance Software

maintenance can be required for three main reasons as follows:

Corrective: Corrective maintenance of a software product is

necessary either to rectify the bugs observed while the system

is in use.

Adaptive: A software product might need maintenance when

the customers need the product to run on new platforms, on

new operating systems, or when they need the product to

interface with new hardware or software.

Perfective: A software product needs maintenance to support

the new features that users want to support, to change different

functionalities of the system according to customer demands, or

to enhance the performance of the system.

Now a days software maintenance is associated with the

problem is very expensive than what it should be and takes

more time than required to work.

II. LITERATURE REVIEW

A software metric is a measure of some property of a piece of

software or its specifications. Since quantitative measurements

are essential in all sciences, there is a continuous effort by

computer science practitioners and theoreticians to bring

similar approaches to software development.

Understandability of software also requires few metrics. Here

few metrics of code understandability[3] are explained which

are used by many organizations. Source code readability,

quality of documentation, should be taken into account while

measuring the software maintainability.

LOC: A common basis of estimate on a software project is the

LOC(Lines of Code). LOC are used to create time and cost

estimates.

Comment percent: RSM(Resource Standard Metrics) counts

each comment line. The degree of commenting within the

source code measures the care taken by the programmer to

make the source code and algorithms understandable. Poorly

commented code makes the maintenance phase of the software

life cycle an extremely expensive.

In addition to the LOC (Lines Of Code), we may consider

eLOC (Effective LinesOf Code), lLOC(Logical Lines Of

Code), Blank lines of code and White Space Percent metric

areused.

LEN* Length of names: If the names of procedures,

variables, constants etc are long, then the more descriptive they

probably are.

Example : ‘a ’is not good variable name, ‘age’ is better,

‘employee age’ is much more descriptive.

In addition to length of names, sometimes we may consider

average length of names of the variables, functions, constants

etc are considered. we may consider Name Uniqueness Ratio

also, because when 2 program entities have the same name, it’s

possible that they get mixed. UNIQ measures the uniqueness

of all names.

UNIQ = Number of unique names /total number of names

Function Metrics: In this we can measure the number of

functions and the lines of code per function. Functions that

have a larger number of lines of code per function are difficult

to comprehend and maintain. They are a good indicator that the

function could be broken into sub functions whereby

supporting the design concept that a function should perform a

singular discrete action.

Function Count Metric: The total number of functions within

your source code determines the degree of modularity of the

system. This metric is used to quantify the average number of

LOC per function, maximum LOC per function and the

minimum LOC per function. In addition to the function count,

we may consider Average lines of code, maximum LOC per

function, minimum LOC per function metrics are also used.

Macro Metrics [2]: Macro will make your less

understandable and difficult to maintain. As macros are

expanded prior to the compilation step, most debuggers will

only see the macro name and have no context as to the contents

of the macro, therefore if the macro is the source of a bug in

the system, the debugger will never catch it. This condition can

waste many hours of labor.

The number of macros used in a system indicates the design

style used to construct the system. Systems heavily laden with

macros are subject to portability problems. The macro LOC

metric yields insight in to how large macros are in the system.

The larger the macro, them ore complex its structure and the

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3475 | P a g e

greater the probability for erroneous behavior to be hidden by

the macro.

Class Metrics: In this we can measure the number of classes

and the lines of code per class can be taken. The number of

classes in a system indicates the degree of object orientation of

the system. In addition to this, we determine the average lines

of code per class, maximum LOC per class and minimum LOC

per class.

Code and Data Spatial Complexity [7]: Spatial ability is

a term that is used to refer to an individuals cognitive abilities

relating to orientation, the location of objects in space, and the

processing of location related visual information.

Every software consists of two parts: code and data. To

understand the behavior of any software, one needs to

comprehend both of these entities. The programs code helps in

understanding the processing logic and the data variables and

constants help in recognizing the input and output of the

software. The spatial complexity based on the code is

dependent on the definition and use of various components of

the software.

Code spatial complexity: To compute the code-spatial

complexity, the module is considered as the basic unit, as every

module is defined at one place, but is called many times. The

functionality of the module is visible in the definition part,

while the use of that module is understood through various

calls of that module. The processing details of software can be

understood by interrelating the definition of every module with

its corresponding uses.

code-spatial complexity of a module (MCSC) is defined as

average of distances (in terms of lines of code) between the use

and definition of the module. Many a times, the software is

written using multiple source-code files. Then an attribute

may be defined in one file and used in some other file.In that

case, the above definition of distance will be incomplete. When

an attribute is used for the first time in a file, where it is not

defined, the programmer first tries to find that class and

attribute at the starting of the current file, because classes are

usually declared at the start of a file. If the definition is not

present in the current file, the programmer tries to find the

details of that class and attribute in the other file. In that case,

understanding of such use takes more cognitive effort. The

effort is dependent on the file in which the attribute is being

used, and the file in which it is defined.

Class method spatial complexity: Every class consists of many

methods, A method basically means a function/subroutine in

any language containing some processing steps. The purpose

and functionality of the class can be better understood, if all

methods of the class are defined close to the class declaration.

The distance can be easily computed as long as the method

declaration and definition belong to the same file. But some

times source code of the software is written in multiple files,

and a method is declared in one file and defined in some other

file. Then the programmer first tries to find that class in the

current file. If it is not present in that file, he looks for that

class declaration in the other file.

Distance = (distance of definition from the top of the file

containing definition)+(distance of declaration of the method

from the top of the file containing declaration).

Total class method spatial complexity (TCMSC) of a class is

defined as average of class method spatial complexity of all

methods of the class. As the class is an encapsulation of

attributes and methods, the class spatial complexity is an

integration of both types of spatial complexities, and hence the

class spatial complexity (CSC) of a class is proposed as

CSC = TCASC + TCMSC

This measure of class spatial complexity depends only on intra-

properties of the class. In a way this measure helps in

measurement of the understandability and cohesiveness of the

class from the point of view of cognitive abilities. This

measure does not take care of the possible use of that class in

the form of objects, which ultimately interact with each other

for achieving the complete functionality of the object-oriented

software. The spatial complexity generated because of the

various objects is measured in the form of object spatial

complexity.

Object Spatial Complexity: The Object-Oriented software

works with the help of ob- jects and their interactions.

Different methods of the class are called through the objects in

a specific sequence so as to obtain the proper results from the

software. The object spatial complexity is of two types: Object

definition spatial complexity and Object-member usage spatial

complexity.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3476 | P a g e

Object definition spatial complexity: As soon as an object is

defined, the programmer needs to establish the relation of this

object with the corresponding class. This cognitive effort will

depend upon the distance of the object definition from the

corresponding class declarations.

If an object is defined immediately after its class declaration, it

will take almost no effort to comprehend the purpose of the

object, as the details of the corresponding class will be present

in the working memory of the person. If the object is defined in

the same source- code file where the corresponding class has

been declared, the distance can be calculated as above; but if

the Object-Oriented software is written using multiple source

code files, and the object is defined in a different file than the

file containing class declaration, the effort is dependent on two

files, as already discussed.

In that case, the distance for that particular object is defined as:

Distance = (distance of object definition from top of current

file)+ (distance of declaration of the corresponding class from

the top of the file containing class)

Object-member usage spatial complexity[8]: Once the

objects are defined, they keep on calling various members

(methods mostly, but attributes also may be referred

sometimes). If an object-member is called after a long distance

from its definition, spatial abilities needed will be much more.

Thus, the object-member usage spatial complexity (OMUSC)

of a member through a particular object is defined as the

average of distances (in terms of lines of code) between the

call of that member through the object and definition of the

member in the corresponding classDistance is equal to the

absolute difference in number of lines between the method

definition and the corresponding call/use through that object.

The OMUSC measure concentrates on the usage of the classes

through objects, which do interact with other processing blocks

(such as main) and other classes (in which the object

ofanotherclassmayhavebeendefined).Justlikepreviouscases,inca

seoftwofilescoming in to picture for measurement of this

distance, the distance is defined as

Distance = (distance of object definition from top of current

file)+ (distance of declaration of the corresponding class from

the top of the file containing class)

Total object-member usage spatial complexity (TOMUSC) of

an object is defined as average of object-member usage spatial

complexity of all members being used of that method. where k

is the count of object-members being called through that object.

Based on the above formulas, the objects patial complexity of

an object is defined as

OSC = ODSC + TOMUSC

This measure of object spatial complexity depends on the inter-

usage of the classes within the routines or other classes of the

object-oriented software. It may be noted that this measure

inherently takes care of the effect of inheritance and

polymorphism towards understandability of the software.

A. Object-Oriented Metrics

Very few metrics have been proposed for object -oriented

software systems

The Chidamber and Kemerer Metrics (C&K) Suite: The

Chidamber and Kemerer Metrics (C&K)[26][12] suite includes

the following metrics: Weighted methods per class (WMC):

WMC is a measure of number of methods implemented within

a class. This metric measures understandability, maintaina-

bility, and reusability as follows:

 The number of methods in a class reflects the time and

effort required to develop and maintain the class.

 The larger the number of methods, the greater the

potential impact on children, since children inherit all

of the methods defined in a class.

 A class with a large number of methods is more

application-specific, and therefore is not likely to be

reused.

Depth of Inheritance Tree (DIT): DIT is the maximum

length from the class node to the root of the tree. It is measured

by the number of ancestor classes. This metric measures

understandability, reusability, and testability as follows:

 The deeper a class is within the hierarchy, the greater

the number of methods it is likely to inherit. This

makes the deep class more complex to predict its

behavior.

 Deeper trees constitute greater design complexity,

since more methods and classes are involved.

 The deeper the inheritance tree is, the more the

potential for reuse.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3477 | P a g e

Number of Children (NOC): NOC is the number of

immediate subclasses of a class in the hierarchy. This is an

indicator of the potential influence a class can have on the

design and on the system hierarchy. This metric measures

efficiency, reusability, and testability as follows:

 The greater the number of children, the greater the

likelihood of improper abstraction of the parent and

may be a case of misuse of sub-classing.

 The greater the number of children, the greater the

reusability since inheritance is a form of reuse.

 If a class has a large number of children, it may

require more testing of the methods of that class ,thus

increase the testing time.

Lack of Cohesion in Methods (LCOM): This metric

evaluates efficiency and reusability. Here we are not

considering this metric for understandability.

Coupling Between Objects (CBO): CBO is a count of the

number of other classes to which a class is coupled. CBO is

measured by counting the number of distinct non- inheritance

related class hierarchies on which a class depends.

 The higher the coupling the more sensitive the system

is to changes in other parts of the design, and

therefore maintenance is more difficult.

 High coupling also reduces the systems

understandability because it makes the mod- ule

harder to understand, change, or correct by itself if it is

interrelated with other modules.

Response For a Class (RFC): RFC is the number of all

methods that can be invoked in response to a message to an

object of the class or by some method in the class. This

measures the amount of communication with other classes.

 The larger the number of methods that can be invoked

from a class through messages, the greater the

complexity of the class.

 If a large number of methods can be invoked in

response to a message, the testing and debugging of

the class becomes complicated as it requires a greater

level of understanding on the part of the developer.

 This metric evaluates understandability,

maintainability, and testability.

The Lorenz and Kidd Metrics suite Unlike C & K metrics the

most of the L & K metrics[21] are directly measures are include

directly countable measures. Those metrics are:

Number of Public Methods: This simply counts the number

of public methods with in the class. According to L & K this

metric is useful to estimate the amount work done to develop a

class or subsystem.

Number of Methods: The total number of methods with in the

class counts all private, public, and protected methods

defined.

Number of Public variables per class: This metric counts

number of public variables with in the class. L & K consider

the number of variables in a class is to be one measure of its

size. The fact that if one class is having more number of public

variables then that class has more relationship with other

objects and as such it is more likely to be key class.

Number of Variables per Class: This metric includes the

total number of variables with in the class. This includes all

public, private and protected variables. According to L & K

the total number of private and protected variables to the total

number variables indicates the effort required by that class in

providing information to other classes. Private and protected

variables are therefore viewed as data to service the methods in

the class.

Number of Methods Inherited by Subclass: This metric can

measures the number of methods inherited by subclasses.

Number of Methods Overridden by subclass: A subclass

is allowed to re-define or over ride the methods in one of its

super class. According to L & K a large number of overridden

methods are indicates the design problem.

 Number of Methods added by Subclass: A method is

defined as an added method in a subclass,if there no method

of the same name in any of its super classes. According to L &

K normal expectation is that for subclass it will further

specializes or adds the methods to the super class object.

Average Method Size: The average method size is calculated

as the number of non commented lines and non blank source

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3478 | P a g e

lines in the class divided by the number of methods in that

class. This is clearly a size metric.

Number of Times a class is reused: The definition given by

the L & K for this metric is ambiguous. This metric is intended

to count the number of times a class is referenced by other

classes. This is similar to coupling, so high reusability is

undesirable according to coupling definition.

Number of Friends of a class: This metric is especially for

C++, by using this metric we can count the number of friends

of that class. This metric is also one type of measure for

coupling.

Abreu Metrics :The emphasis behind the development of the

metrics is on the features of inheritance, encapsulation and

coupling. The six Abreu Metrics[21] can be summarized as

Polymorphism Factor : This metrics is based on the number

of overriding methods in a class as a ratio of total possible

overridden methods. Polymorphism arises from inheritance,

Abreu claims that some times overriding reduces the

complexity, so it may increases the understandability.

Coupling Factor: This metric counts the number of inter class

communications. Here there is a similarity with the number of

classes reused metric according to L & K. Abreu views

coupling increases the complexity and limiting the

understandability.

Method hiding factor: This metric is the ratio of

hidden(private & protected) meth- ods to the total number of

methods.

 Attribute Hiding Factor: This metric is the ratio of

hidden(private & protected) attributes to the total number of

attributes.

Method Inheritance Factor: This metric is a count of

number of inherited methods as a ratio of total methods, Abreu

proposes that it expressing the level of reuse in a system.

Attribute Inheritance Factor: This metric is a count of

number of inherited at- tributes as a ratio of total attributes,

Abreu proposes that it expressing the level of reuse in a system.

III. EFFECT OF SPATIAL COMPLEXITY ON OBJECT-
ORIENTED PROGRAMS

By considering all the metrics, most of the research already

done in software complexity. In addition to despite of all the

metrics, we want to explore our work on the spatial complexity.

The researchers already did in class spatial complexity and

object spatial complexity. In these days object-oriented

programming is used by programmers in their projects to get

the benefit of reusability, so here, we considered the effect of

inheritance in the spatial complexity.

A. Effect of Inheritance

Fortunately, C++ strongly supports the concept of reusability.

The C++ classes can be reused in several ways. once a class has

been written and tested, it can be adapted by other programmers

to suit their requirements. This is basically done by creating by

new classes, reusing the properties of the existing ones.

The mechanism of deriving a new class from an old one is

called inheritance. The old class is referred to as the base class

and the new one is called the derived class or subclass. The

derived class inherits some or all of the traits from the base

class. Inheritance is the one of object-oriented features, which

helps in reusability. Inheritance can be implemented in different

combinations.

B. Spatial Complexity of Derived Classes

Aclasscanalsoinheritpropertiesfrommorethanoneclassorfrommo

rethanonelevel.So, here we concentrating on the spatial

complexity between the classes. According to previous

researchers they focused mainly on particular class spatial

complexity. Here we focused on the number of classes derived

from the base class, and the number of methods & attributes

inherited by that class.

Single Inheritance: The spatial complexity of the derived class

is different from the spatial complexity of base class. Here,

while calculating the derived class spatial complexity (DCSC),

we consider the attributes and methods which inherit from the

base class.

Attribute Spatial Complexity: While calculating the derived

class spatial complexity, we need to consider the attributes and

methods of that derived class. Attribute spatial complexity of a

derived class can be calculated as

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3479 | P a g e

CASC is the Class Attribute Spatial Complexity and CIASC is

the Class Inherited Attribute Spatial Complexity.

Distance is measured in Lines Of Code(LOC) in between the

successive use of that variable or definition to the use of that

variable. Example: The program which is in Fig 1.1 is the

example program which illustrates the single inheritance.

Method Spatial Complexity In the case of method spatial

complexity, we need to consider all the methods of its own

class and the inherited methods. DCMSC(Derived

Figure 1.1: Example program for single inheritance

Figure 1.2: Class Spatial Complexity of the above single

inheritance program in Fig. 1.1

CMSC can also be calculated similar to CASC by using The

total derived class spatial complexity can be defined as the sum

class attribute spatial complexity and class method spatial

complexity.

DCSC=DCASC+DCMSC (1.1)

So, the spatial complexity involved in single inheritance is

given by

CSC Single Inheritance = DCSC+CSC Base Class ...(1.2)

C. Multiple Inheritance

In case of multiple inheritance, the new class is derived from

multiple base classes. While calculating the spatial complexity

of a derived class, we need to consider all the base class spatial

complexities.

Class Attribute Spatial Complexity While calculating the

derived class attribute spatial complexity, we need to consider

the attributes and methods of that derived class.

Figure 1.3: Example program for multiple inheritance.

Example: The program which is in Fig 1.3 is the example

program which illustrates the multiple inheritance.

.

Figure 1.4: Class Spatial Complexity of the above multiple

inheritance program in Fig. 1.3

Class Method Spatial Complexity In the case of method spatial

complexity, we need to consider all the methods of its own

class and the inherited methods from the parent/base class.

Now, the derived class spatial complexity can be written as

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3480 | P a g e

DCSC=DCASC+DCMSC (1.3)

But, in multiple inheritance, we need to consider all parent/base

class spatial complexities also. Because while considering the

inherited attributes/methods, we need to calculate, the spatial

complexities of all members.

D. Multilevel Inheritance

In the case of multilevel inheritance, a derived class is derived

from another derived class. Here, we have to consider the

different levels of parent class from which different attributes

and methods are inherited by derived classes.

Class Attribute Spatial Complexity Let us consider that the

level of inheritance is started from 1st to lth level.

Class Method Spatial Complexity In the multilevel inheritance,

in addition to the attributes, different methods are also inherited

from the parent/base classes which are at different levels. Let us

consider that the level of inheritance is started from 1st to lth

level.

Figure 1.5: Example program for multi-level inheritance

program.

Figure 1.6: Class Spatial Complexity of the above multi-level

inheritance program in Fig 1.5

 Where l is the level of inheritance, n is the number of methods

of its own class, m is the number of methods derived from its

base class. Then the derived class spatial complexity in

multilevel inheritance can be calculated as

DCSC = DCASC +DCMSC (5.4)

E. Spatial complexity metric analysis with Weyuker’s

Properties

Weyuker proposed a formal list of nine properties which are

used to evaluate a software complexity metric. But it is not

necessary to satisfy all the properties by a single metric. Here,

the spatial complexity of the derived class is evaluated by using

Weyuker’s nine properties. While describing these properties,

X denotes an Object-Oriented Program/Class by default and |X|

represents its complexity, which will always be a non-negative

number.

Property 1: This property states that (∃ X), (∃ Y) such that (|X|

/= |Y |)

Two programs X and Y can always differ in values of derived

class spatial complexity measures, because these measures are

defined in terms of distance LOC (Lines Of Code), which will

have most of the times different values for two different

programs. Thus, object- oriented spatial measures satisfy

Property 1.

Property 2: Let c be a non-negative number, and then there are

only a finite number of programs of complexity c.

This property is a strengthening of Property 1. Derived class

spatial complexity can be calculated by using the class

attribute spatial complexity, and class method spatial

complexity. Class attributes spatial complexity itself can be

calculated by considering the number of inherited attributes,

and attributes of its own class. Similar to this, class method

spatialcomplexitycanalsobecalculatedbyusingthedifferentnumb

erofinheritedmethods and methods of its own class. There can

be always a finite number of programs having the same value

of these factors and thus, Property 2 is well satisfied with the

object-oriented spatial complexity measures.

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3481 | P a g e

Property 3: This property states that (∃ X), (∃ Y) such that (|X|

= |Y |)

 This property states that a complexity measure must not be too

fine, i.e. any specific value of this metric should not only

given by a single program. This property requires that

derived class spatial complexities of two different classes may

be equal, i.e DCSCX

= DCSCY , where DCSCX , DCSCY are the derived class

spatial complexities for two

different classes X,Y. This is quite possible that two different

and totally unrelated Object- Oriented programs X and Y may

come out with the same spatial complexity values. Thus,

derived spatial complexity measures satisfies the Property 3.

Property 4: This property states that (X ≡ Y &(|X| /= |Y|)

This property states that , if two programs are equal in same

functionality may differ in spatial complexities. Because,

spatial complexity depends on implementation of that

functionality. Two object-oriented programs X and Y of the

same functionality but different implementations will have

different spatial complexities.

i.e. DCSCX /= DCSCY for two object-oriented programs X &

Y even though X=Y.

Property5: (∀X)(∀Y)(|X|≤|X;Y| and |Y|≤|X;Y|)

This property explains the concept of monotonicity with respect

to composition. This property explains that the spatial

complexity of concatenated programs which are obtained from

the concatenation of two programs can never be less than the

spatial complexity of either of the programs. Let DCSCX and

DCSCY be the derived class spatial complexities of two

object-oriented programs X and Y respectively and DCSCXY

be the derived class spatial complexity of the concatenated

program of X and Y.

According to the definition of derived class spatial complexity,

the resulting derived class spatial complexity of the combined

program would be approximately sum of the class spatial

complexities two individual programs. If they were

independent and if the code of program X, without disturbing

the individual distances of definitions and usage of members of

the class i.e. DCSCXY∼=DCSCX+DCSCY If the

programs X and Y were not in dependent,

then the common classes may appear once in concatenated

program . In that case the class spatial complexity of common

portion will contribute once in the measures and independent

portions of both X and Y will continue to have their original

contribution to wards DCSC.

 In that situation

DCSCXY = DCSCX + DCSCY – CSC common−class

Property 6

1. (∃ X) (∃ Y)(∃ Z) (|X| = |Y |) & (|X; Z||Y ; Z|)

 2. (∃ X) (∃ Y)(∃ Z) (|X| = |Y |) &(|Z;X||Z;Y|)

As already stated in property 3, object-oriented programs

having different implementations may have the same values for

object-oriented spatial complexity measures. When these two

different programs having equal spatial complexity are

combined with the same program, this may result into different

spatial complexities for the two different combinations.

This means,

(∃ X) (∃ Y)(∃ Z) (DCSCX = DCSCY) & (DCSCZX /=

DCSCZY)

Thus, property 6a and 6b are well satisfied with the object-

oriented spatial complexity measures.

Property 7: This property says that there are two programs X

and Y such that Y is formed by permuting the order of the

statements of X, and |X|/=

|Y |, that means a complexity measure should be sensitive to the

permutation of statements.

The object-oriented spatial complexity measures are mainly

defined in terms of distances in lines of code between uses of

different program elements such as class-members (at-

tributes/methods). Thus, the spatial complexity of an object-

oriented program depends on the order of the statements of the

program. When program Y is formed by permuting the order of

statements of the program X, the spatial complexity measures

of program Y will also change from values obtained from the

program X due to change in lines of code between

program elements. Thus, for programs X and Y,DCSCX

 DCSCY where program Y is formed by permuting the order

of the statements of X. Hence, the object-oriented spatial

complexity measures satisfy property 7.

Property 8: If X is a renaming of Y, then |X| = |Y|. This

property states that by changing the name of the program or its

elements. does not affect the spatial complexities of object-

IJRECE VOL. 7 ISSUE 2 (APRIL- JUNE 2019) ISSN: 2393-9028 (PRINT) | ISSN: 2348-2281 (ONLINE)

INTERNATIONAL JOURNAL OF RESEARCH IN ELECTRONICS AND COMPUTER ENGINEERING

 A UNIT OF I2OR 3482 | P a g e

oriented program. i.e DCSCx = DCSCy where X is renaming of

Q. Thus, Property 8 is satisfied with the object-oriented

measures.

Property 9: (∃X) (∃Y)such that (|X| + |Y | <|X; Y |) According

to this property, the spatial complexity of a new program

obtained from the combinations of two programs, can be

greater than the sum of spatial complexities of two individual

programs.

VI. CONCLUSION

Software understandability affects quality of overall software

engineering. If software understandability is favorable,

software development process can be mastered definitely. In

this work, we considered so many different types of metrics.

But, we want to focus few more metrics in our further research.

We used a rough set approach to detect the project which is

having abnormal behavior. This type of behavior tells us that

the particular project is either easily understandable or very

much difficult to understand. The algorithm which is used by

us is having less time complexity than fuzzy based approach.

In our further work we want to include threshold values which

have been calculated based on the standard values of different

attributes, based on that threshold value we will give outlier

ranking.

Furthermore, we have considered the affect of spatial

complexity metric on object-oriented programming features

like inheritance. Here, we have calculated the spatial

complexity of different derived classes, which are involved in

different types of inheritance. In further, we want to explore

this spatial complexity to templates, macros etc.

References

[1] Rough set. Website. http://en.wikipedia.org/wiki/Roughset.

[2] Rsm metrics. Website.
http://msquaredtechnologies.com/m2rsm/docs/rsmmetrics.

[3] Understandability metrics.
Website.http:www.aivosto.com/project/help.

[4] Using uml part two- behavioral modelling
diagrams. Website.http://www.sparxsystems.com.

[5] Krishan K. Aggarwal, Yogesh Singh, and Jitender Kumar
Chhabra. An integrated measure of software maintainability.
pages 235–240, GGS Indraprastha University, Delhi and
Regional Engineering College, Kurukshetra, 2012. 2012
PROCEEDINGS Annual RELIABILITY and MAINTAIN
ABILITY Symposium.

[6] Richard H. Carver, Steve Counsell, and Reuben V. Nithi. An
evaluation of the mood setofobject-oriented software metrics.
IEEETrans. Software Eng.,24(6):491–496, 1998.

[7] Jitender Kumar Chhabra, K. K. Aggarwal, and Yogesh
Singh. Code and data spa- tial complexity: two important
software understandability measures. Information &Software
Technology, 45(8):539–546,2013.

[8] Jitender Kumar Chhabra, K. K. Aggarwal, and Yogesh Singh.
Measurement of object- oriented software spatial complexity.
Information & Software Technology,46(10):689– 699,2044.

[9] Jitender Kumar Chhabra and VarunGupta. Evaluation of object-
oriented spatial complexity measures.ACMSIGSOFT Software
Engineering Notes,34(3):1–5,2019.

[10] Nicolas E. Gold, Andrew Mohan, and Paul J. Layzell. Spatial
complexity metrics: An investigation of utility. IEEE Trans.
Software Eng., 31(3):203–212,2015.

 [11] Maurice H.Halstead. Elementsof Software Science.ISBN:0-444-
00205-7.Amsterdam, 1977.

[12] Seyyed Mohsen Jamali. Object oriented metrics. Department of
Computer Engineering Sharif University of Technology,2016.

[13] Feng Jiang, Yuefei Sui, and Cungen Cao. A rough set approach
to outlier detection. volume 37, pages 519–536. International
Journal of General Systems, october2018.

[14] K.Shima, Y.Takemura, and K.Matsumoto. An approach to
experimental evaluation of software understandability.
Proceedings of the 2012 International Symposiumon Empirical
Software Engineering (ISESE’12),2012.

[15] Xiangjun LI and Fen RAO. An rough entropy based approach
to outlier detection. Journal of Computational Information
Systems, pages 10501–10508, 2012. Department of Computer
science and Technology, Nanchang University,Nanchang
330031, China and College of Economy and Management,
Nanchang University,Nanchang 330031, China.

[16] Jin-Cherng Lin and Kuo-Chiang Wu. A model for measuring
software understandabil- ity. In CIT, page 192,2016.

[17] Jin-Cherng Lin and Kuo-Chiang Wu. Evaluation of software
understandability based on fuzzy matrix. In FUZZ-IEEE, pages
887–892,2018.

[18] Rajib Mall. Fundamentals of Software Engineering. Prentice
Hall, 3rd edition,2009.

[19] Sanjay Misra and A. K. Misra. Evaluating cognitive complexity
measure with weyuker properties. In IEEE ICCI, pages 103–
108,2014.

[20] Yuto Nakamura, Kazunori Sakamoto, Kiyohisa Inoue, Hironori
Washizaki, and Yoshi- aki Fukazawa.Evaluation of
understandability of uml class diagrams by using word
similarity. In IWSM/Mensura, pages 178–187,2011.

[21] R.Horrison, S.Counsell, and R.Nithi. An overview of object-
oriented design metrics. Dept. of Electronics and Computer
Science,Southampton,1997.IEEE.

[22] S. W. A. Rizvi and R. A. Khan. Maintainability estimation
model for object-oriented software in design phase (memood).
CoRR, abs/1004.4447,2018.

 [23] Patricia L. Roden, Shamsnaz Virani, Letha H. Etzkorn, and
Sherri L. Messimer. An empirical study of the relationship of
stability metrics and the qmood quality models over software
developed using highly iterative or agile software processes. In
SCAM, pages 171–179,2017.

[24] Yingxu Wang and Jingqiu Shao. Measurement of the cognitive
functional complexity of software. In IEEE ICCI, pages 67–74,
2013.

[25] Tong Yi, Fangjun Wu, and Chengzhi Gan. A comparison of
metrics for uml class diagrams. ACMSIGSOFT Software
Engineering Notes,29(5):1–6,2014.

[26] Aida Atef Zakaria and Dr. Hoda Hosny. Metrics for aspect-
oriented software design. pages228–233.ACM press, 1975

